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1. Introduction. Number fields such as described in the title play a role in the study
of Artin L-functions and automorphic forms for the groups SL2 over rings of integers in
quadratic extensions of Q. They are also of some interest on their own. We have not
found many examples in the literature. Lang [4] mentions an unramified A5-extension of
a real quadratic number field which is due to E. Artin.

The purpose of the present paper is to provide an easy access to such fields. Our main
result is the following theorem.

THEOREM. Consider the polynomial

f(x) = xm + am_2xm~2 +. .. + a1x + aoeZ[x], m > 2.
Suppose:

(i) the polynomial discriminant A/ is square-free

Af=±pl...pn,

(ii) f(x) is irreducible over Q, and has Galois group Sm.
Consider the quadratic field

k=Q(V(A/)),

and the splitting field S of f. Then S/k is an unramified Am-extension.

Sm, Am denote the full symmetric and the alternating permutation group on m
symbols, respectively. We prove our theorem in Section 2. In Section 3 we give some
numerical results on the discriminants of polynomials of degree 5. Our tables contain
many cases where the assumptions of the theorem apply.

We acknowledge financial support by the Max-Planck-Institut fur Mathematik, Bonn.

2. Proof of theorem. Let tfj, fl2,..., #m be the roots of /(x) = 0, in some fixed
order. Introduce the chain of fields

Then

K, = *,_!(*,).

The extension Kj/Kj-i has the degree

\Ki:Ki-l\ = m-j + l, l s / sm-1 ,
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and the defining polynomial

Put
gi(x) = /(*)• •

Obviously we have

g)

The polynomial g,(x) has the roots •&,, •d,-+i,..., #m. Hence we have

Ag, = {(#,- - A + l)(A - -&l+2) • • • (#, ~ ^m)}2 Ag, + 1.

This can be written as
Ag,. = g;.(#,.)2Ag/+1. (i)

The quantity
= 8KIIKIJ-»I) (2)

is the relative different of ty. We have

NKf/K,.lg5(^) = Ag/. (3)

Let ^P, ̂  denote ideals in K,. Suppose, inductively,

A g , - ^ ? - " . . . ^ - " in K,.lt (4)

where ^i""1' is square-free, i.e. it is a product of different prime ideals, and

K^/Kofi - Pi > i - i , . . . , n . pj

For / = 1, we have gi = /. Hence (4) holds by assumption (i). The exponent on the right
hand side of (5) is understood to be 1 for / = 1. Hence the induction hypothesis holds true
for/ = 1.

We show that (4), (5) hold for / + 1. Since Agj-eKj^, we have

Conclude from (1) and (3):

""1'-1 = (??"l) • • • ^-'y- '"1 . (6)
The ideal (Ag,) is square-free in K,_,, by induction hypothesis. By assumption (i), it does
not contain any inessential divisors. Hence it coincides with the relative discriminant:

| | . (7)

Hence all prime factors of ̂ ~^ ramify in K,. Since the ramification is tame, by assumption
(i), and since (dK./K._) is square-free, the ramification must be of the form

^-^UW, (8)
^> = ( ^ -> ) " - - 1 . (9)
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The ideals ^ , $4f) are square-free in Kt. The ramified primes ^ all divide the
discriminant g|(#,):

&•&,) = W---*™.*. d o )

Inserting this equation in (1), we obtain

?«>.. . ̂  = *2Agi+1. (11)

Taking norms on both sides of (11), we conclude from (6) and (9):

NKj/Kjii
2=l, and hence 4 = 1 .

Hence we have

g'A) = A ? ) . . . ^ ) , (12)
Agj.+1 = ̂ \ . . ^ \ (13)

This proves (4) for / + 1 . Use (9) to conclude

N^K^^ NKl_JKoNKilK^= N^M^Y-'-1

_ (m-2)(m-3)...(m-j)(m-j-l)
Pi

This proves (5) for / + 1. Hence (4), (5) hold for all / such that l < j < m - l .
Let L, = Kjk. Hence L,/K, is the relative quadratic extension obtained by adjoining

V(A/). The extension is of degree 2, by assumption (ii). We use the decomposition laws in
quadratic extensions, see Hecke [2, p. 148]. We have, by (8):

(Pl . . . pn) = (A/) = ( tf>. . . / ^ V f • • • >?> • • • W • • • / « W • • • <$• (14)

Hence, in LjIKj, all prime factors of ^ ramify:

fP = m2, NUIKpP = ??\ (15)

The prime 2 does not ramify in K,, by assumption (i). Let I be a prime divisor of 2 in K,:

(2)=e.eu (4€,) = i.

We have to study the congruence
2. (16)

The assumption (i) implies that A/ is a field discriminant, of the field Kt. Use Stickel-
berger's theorem to conclude

A/= 1 mod 4.

Hence the congruence (16) is solvable in Kt, and hence € does not ramify in Lr Hence we
obtain for the relative different:

The different of L, is

Taking norms, we obtain
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Deduce from (14):

~^Kj 7*1 • * • fin • • • 7*1 • * * fin • • * fix • • * fin •

Hence we obtain

N^ S) = (T) Ti ^

NLSK&L, = (PI • • • pB)™<™-»-<"-i+«. (17)

For the different ? = (V(A/)) of k, we have
NL,/K0? = (pi . . . Pn)m<'"-»-(m-i+i).

Consider
®L, = ®L,/fc • 9-

Take absolute norms on both sides, and observe (17), (18), obtaining

and hence

Hence L,/fc is unramified for l < / < m - l . For / = m - 1 , this proves the theorem.

REMARK. Invoking class field theory, we find that our result implies congruence
relations for certain class numbers. Whenever fc<fc1<fc2<S is a chain of subfields such
that fc2/ki is normal with abelian Galois group, the class number hki of kj is divisible by
the degree |k2^il-

3. Numerical examples. In this section we give some numerical examples where the
assumptions of our theorem are satisfied. To do this it is necessary to have an explicit
formula for the discriminant A/ of a polynomial /. We report here on the case m = 5.

PROPOSITION 1. Let

be a polynomial with rational coefficients. Then its discriminant is

^f = 5 s d 4 -2 . 3 . 54 . d3ba + 24 . 53 . d2c2a + 2 . 3 2 . 53 . d2cb2

- 2 2 . 3 2 . 52 . d2ca3 + 3 . 5 2 . 1 1 . d2b2a2+22. 3 3 . d V - 2 6 . 52 . dc3b

+ 24 . 5 .7 . dc2ba2-2 . 3 2 . 5 .7 . dcb3a-23. 3 2 . dcba4

+ 22 . 33 . dfc5 + 2 4 . db3a3 + 28 . c 5 - 2 7 . c 4 a 2 +2 4 . 32 . c3b2a

+ 2 4 . c Y - 3 3 . c V - 2 2 . c ¥ a 3 .

The occurrence of the prime factors 7 and 11 is somewhat mysterious. The formula is
slightly more complicated than the well-known formulae for polynomials of degrees 2, 3,
4. It is, however, still useful for computations for small values of a, b, c, d. After we had
finished our computation, we discovered the formula of Proposition 1 in Cayley's work
[1].
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TABLE 1. f = x5 + ax3 + bx2+cx + d

no

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

a

-1
0

-1
0

-1
-1
-3
-2
-2
-2
-2
1

-1
-2
0

-1
-3
0
1

-1
-3
-3
0
2

-2
-2
0
0

-3
-3
-1
-2
-2
-2
-2
2
2

-2
-2
3

-3
-3
-3
-3
-1
-3
-3
-3
-3
3
1

6

-1
-1
0

-2
-2
-3
-1
-1
0
1

-1
-2
-2
-2
0
0
0

-3
-1
-3
1

-1
-2
0
0

-3
-3
-3
0

-1
-2
-1
-2
1

-3
-3
-2
2

-3
-2
2

-2
-2
0

-3
-1
-3
-1
-3
-1
-3

c

-1
-2
-2
-1
0
1

-1
-1
-2
-2
-2
-2
-2
-2
-3
-3
-1
0

-3
-1
-1
1

-3
-3
-3
0

-1
-2
-2
-1
-2
-2
-1
-3
1

-2
-3
-3
-2
-2
-2
2

-2
-3
-1
1
1

-1
-1
-3
-3

d

1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
3
3
3
2
2
1
1
1
1
1
1
1
1
1
3
3
1
3
1
1
1

A/

-7031 = -79. 89
-22583 = -11. 2053
-17151 = -3.5717
-13219
-4511 = -13. 347
-24447 = -3.29.281
-71943 = -3. 23981
-72579 = -3.13.1861
-49163 = -211.233
-19015 = -5. 3803
-77063 = -7.101.109
-54967 =-11.19.263
-60023 = -193. 311
-91363= -211.433
-59083
-90691 = -89.1019
-56123
-23119 =-61. 379
-105887 = -19. 5573
-40711 = -11. 3701
-28927
-5519

-179827
-46411
-168523
-15919
-95531
-118959 = -3. 39653
-132711 = -3. 31.1427
-268183 = -233.1151
-249119 = -13.19163
-345559 = -17. 20327
-253163 = -383. 661
-124763 = -17.41.179
-46259 = -167. 277
-170319 = -3 . 56773
-249707 = - 7 1 . 3517
-33131 = -7.4733
-96263
-44503 = -191.233
-25679
-8647

-188695 = -5.13.2903
-340531 = -503.677
-240871 = -79. 3049
-32519 = -31.1049
-14631 = - 3 . 4877

-545911
-41591 = -11.19.199

-147463 = -239. 617
-369223 = - 1 7 . 37. 587

K
108 = 22.33

90 = 2 . 32 . 5
110 = 2.5.11
31
84 = 22.3.7
92 = 22.23
130 = 2.5.13
72 = 23.32

50 = 2.52

106 = 2.53
276 = 22. 3 . 23
104 = 23.13
252 = 22.32.7
56 = 23 . 7
37
76 = 22.19
43
124 = 22.31
256 = 2 8

148 = 22.37
65 = 5.13
97
51 = 3.17
49 = 72

61
51 = 3. 17
123 = 3.41
236 = 22.59
380 = 22. 5.19
204 = 22.3.17
820 = 22. 5.41
226 = 2.113
108 = 22.33

68 = 22.17
94 = 2.47

308 = 2 2 . 7 . 11
148 = 22.37
92 = 22.23
301 = 7.43
74 = 2.37
239
31
164 = 22.41
98 = 2.72

258 = 2.3.43
178 = 2.89
58 = 2.29

321 = 3.107
256 = 28

142 = 2.71
292 = 22.73

Table (contd.)
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TABLE 1. (contd.)

no

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

a

-1
0

-1
-3
-3
-3
-3
-3
-2
-3
-3
2

-3
3

-3
-3
-3
-3

b

-3
-3
-2
0

-2
1
2

-2
-3
-2
-2
-3
-3
-3
3

-3
-3
-3

c

-3
-2
—3
-2
-1
—3
-3
-3
2
2

-2
-3
1

-3
-3
3

-3

-3

d

1
3
3
3
3
2
1
1
3
3
3
2
3
1
1
1
l

2

A/

-259783
-322247
-666507 = - 3 . 29. 47.163
-673463 = -7 . 23 . 47 .89
-707419 = -599.1181
-447871 = -227.1973
-101923 = -227.449
-480427
-11551
-18463 = -37.499

-1338863
-517243
-125951 = -7.19.947
-636991 = -47.13553
-27007 = -113. 239

-144079 = -13. 11083
-453823
-1264063

K

315 = 32.5.7
461
120 = 23.3 . 5
776 = 23.97
198 = 2. 32.11
350 = 2.52.7
60 = 22.3 . 5
123 = 3.41
57 = 3.19
54 = 2.33

555 = 3.5.37
121 = U 2

408 = 23 . 3 .17
608 = 25.19
68 = 22.17
310 = 2.5.31
353
407 = 11 . 37

We have produced, in Table 1, all extensions of imaginary quadratic fields such as
described in the title in the range - 3 < a , b, c, d <3 . In Table 2, we have listed a few
examples of unramified A5-extensions of real quadratic number fields, including Artin's
example which is the first in our table.

Using the formula of Proposition 1, it is a trivial matter to write a computer program
which computes A(/) for small values of a, b, c, d. We have carried out the computations
for a, b, c, d of absolute value s 3 . We list the results in the subsequent tables. The
column headed by hk contains the class number of k.

TABLE 2. f = xs + ax3+bx2+cx + d

no

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

a

0
0
0
1
1
1

-1
-1
-1
0
1

-1
0
0
0

b

0
1

-1
1
1

-1
1
1

-1
0
0
0
1

-1
-1

c

— 1

0
0
1

-1
1
1

-1
1
2

-2
2
1
1

-1

d

1
1
1
1
1
1
1
1
1
1
1
1
2
2
2

A/

2863=19.151
3017 = 7.431
3233 = 53.61
13033
4897 = 59 . 83
2297
1609
3857 = 7.19.29
8329
11317
2665 = 5.13.41
3089
56245 = 5.7.1607
62213
37301 = 11.3391
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PROPOSITION 2. In Table 1, we have listed all polynomials f = x5 + ax3 + bx2 + ex + d e
2[x] with -3^a , fc , c , ( i s3 satisfying the conditions (i), (ii) of Theorem 1 for m = 5 and
satisfying A/<0.

In Table 2 we have listed a few examples, including Artin's example.
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