2 Small Data Are Beautiful

The Introduction made a number of claims about the relevance of time-frequency
approaches in signal processing, sketching some kind of a program for the present
book. Let us start with three examples supporting those claims: one in physics, one in
bioacoustics, and one in mathematics.

2.1 Gravitational Waves

The first direct observation of a gravitational wave was reported in early 2016 [5]. Since
their prediction by Albert Einstein as a consequence of his theory of general relativ-
ity, proof of their existence had long been awaiting direct evidence, mostly because
the extremely tiny effects they induce on matter make their detection a formidable
challenge. The search for gravitational waves has therefore led to ambitious research
programs based on the development of giant interferometers. The rationale is that the
propagation of a gravitational wave essentially modifies the local structure of space-
time, with the consequence that its impinging on an interferometer produces a differen-
tial effect on the length of its arms, and hence an oscillation in the interference pattern.
Similarly to electromagnetic waves that result from accelerated charges, gravitational
waves result from accelerated masses and, to be detectable, only extreme astrophysical
events can be considered as candidates for producing gravitational waves. The preferred
scenarios are mergers of compact binaries made of neutron stars or black holes. Within
this picture of two very massive objects revolving around each other, the loss of energy
due to the hypothesized radiation of a gravitational wave is expected to make them get
closer and closer, hence causing them to revolve around each other at a faster and faster
pace for the sake of conservation of the angular momentum. The overall result is that
the signature of such a gravitational wave in the interferometric data takes the form of
a “chirp” (i.e., a transient waveform modulated in both amplitude and frequency), with
an increase in both amplitude and instantaneous frequency during the inspiral part that
precedes the coalescence.

The event corresponding to the first detection (referred to as GW150914) was pre-
cisely of this type. It consisted of the merger of two black holes (each of about 30 solar
masses), with an observation made of two transient signals of short duration (a fraction
of a second), which were detected by the two LIGO interferometers located in Hanford,
WA and Livingston, LA, respectively.
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Figure 2.1 Gravitational wave chirp 1. This figure plots the temporal signature of GW150914, as
it was recorded by the LIGO interferometer in Hanford, WA, and pre-processed for getting rid of
known perturbations due to the measurement system.

The temporal signature of GW150914, as it was recorded by the LIGO interferometer
in Hanford, WA, and pre-processed for getting rid of known perturbations due to the
measurement system, is plotted in Figure 2.1. This plot gives us an idea of the chirping
nature of the (noisy) waveform, but a much clearer picture of what happens is obtained
when we turn to the time-frequency plane, as shown in Figure 2.2.!

Gravitational waves offer an example of “small” signals (a few thousand samples
at most), with characteristics that convey physical information about the system
from which they originate.

Remark. Although “small,” gravitational wave signals result from a prototypical exam-
ple of “big science”: 45 years of efforts at the forefront of technology for developing
giant interferometers with arms 4 km long and a sensitivity of 1072, thousands of
researchers and engineers, more than 1,000 coauthors in the landmark publication [5] ...
Each data point, therefore, has an immense value, calling again for accurate methods of

! In this figure, as in most figures throughout the book, time is horizontal, frequency vertical, and the energy
content is coded in gray tones, ranging from white for the lower values to black for the maximum.
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Figure 2.2 Gravitational wave chirp 2. The waveform plotted in Figure 2.1 is displayed here as an
energy distribution in the time-frequency plane (namely, a “reassigned spectrogram,” which will
be introduced in Chapter 10). As compared to the time plot of the signal, this “musical score”
reveals in a much clearer way the inner structure of the waveform, namely the frequency
evolution of an ascending chirp. The energy scale is logarithmic, with a dynamic range of 24 dB.

analysis, in particular for comparing observation to theoretical models and confirming
the amazing agreement that has been obtained so far [5].

Detecting gravitational waves, de-noising the corresponding chirps, and extracting
physical information from them can take advantage of time-frequency approaches. We
will come back to this in Chapter 16.

2.2 Bats

By following the musical score analogy outlined previously, we can switch from music
to singing voice, and from singing voice to speech. All of these instances of audio signals
offer countless opportunities for a time-frequency analysis aimed at displaying inner
structures of sounds in a graphic, easily understandable way that matches perception.
And indeed, it is not by chance that one of the first books ever published on time-
frequency analysis [4] had the title Visible Speech!
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Figure 2.3 Two examples of bat echolocation calls 1. The two waveforms displayed in this figure
are part of a sequence that lasts for about 1 s and contains a few dozens of such calls, with a
structure (duration, spectrum, and modulations) that varies in between the beginning of the active
part (“approach”) and the end of the sequence (“‘attack’).

Those common situations enter what is essentially a framework of communication,
in which some “message” is sent by somebody, somewhere, to be received by some-
body else, elsewhere. We could comment further on specific features attached to such
audio signals but we will not here. We will, rather, choose as examples other types
of waveforms that share much with conventional audio signals, but which differ from
speech or music in at least two respects. First, whereas the transmission of a speech
message can be viewed as “active” by the speaker and “passive” by the listener, there
exist other situations where the system is doubly “active” in the sense that the emitter
is at the same time the receiver, and where the received information is not so much the
message itself as it is the modifications it may have experienced during its propaga-
tion. Second, although they are acoustic, the transmitted signals can have a frequency
content that lies outside of the audio range. These two ingredients are typical of the
echolocation system used by bats and, more generally, by other mammals such as
dolphins, or even by humans in detection systems such as radar, sonar, or nondestructive
evaluation.
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Figure 24 Two examples of bat echolocation calls 2. The two waveforms plotted in Figure 2.3 are
displayed here as energy distributions in the time-frequency plane. As compared to the time plots
of the signals, those “musical scores” reveal in a much clearer way the inner structure of the
waveforms, e.g., the nature of their frequency modulations. In both diagrams, the time span is as
in Figure 2.3, and the energy scale is logarithmic, with a dynamic range of 30 dB.

If we confine ourselves to bats, the story begins in 1794 when Lazzaro Spallanzani
first suggested — on the basis of crucial, yet cruel experiments — that bats should have
some specific sensorial capability for navigating in the dark [24]. It seemed to be related
to hearing rather than to sight, since it was altered when making the animal mute and/or
deaf, while making it blind was of no consequence on the flight. This question puzzled
physiologists for almost two centuries, until the zoologist Donald W. Griffin reopened
this mysterious case in 1938 together with the engineer George W. Pierce, who had
just developed a new kind of microphone that was sensitive to ultrasounds, i.e., sounds
whose frequency is above the upper limit of perception of the human ear (~ 20 kHz).
In this way they were able to prove that bats were indeed emitting ultrasounds [25],
and their study launched a fascinating area of research [26], with implications in both
biology and engineering.

Two typical bat echolocation calls, emitted by Myotis mystacinus when hunting and
recorded in the field, are plotted in Figure 2.3. The two waveforms are part of a sequence
that lasts for about 1s and contains a few dozen such calls, with a structure (duration,
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spectrum, and modulations) that varies in between the beginning of the active part (the
so-called “approach” phase, during which the bat manages to get closer to the target
it has identified as a potential prey item) and the end of the sequence (the “attack”
phase, which terminates with the actual catch). Thanks to the time-frequency methods
that will be described later in this book, we can get a much clearer picture of the inner
structure of those waveforms by drawing their “musical score” as shown in Figure 2.4
(in this figure, as in Figure 2.2, we made use of a “reassigned spectrogram”). As for
gravitational waves, they happen to be “chirps,” with characteristics that vary within a
sequence. From those diagrams, we can expect to extract more easily, and in a more
directly interpretable way, the necessary information about the why and how of the
observed signals in relation with a given task.

Bat echolocation calls are an example of “small” signals (a few hundred samples
at most), with a well-defined time-frequency structure whose fine characterization
calls for precise analysis tools.

As for gravitational waves, we will come back to this in Chapter 16.

2.3 Riemann-Like Special Functions

The third family of “small” signals we will mention as an example is somewhat different
since it concerns mathematics and, more precisely, some special functions.

Interest in the complementary descriptions of special functions beyond the mere
inspection of their analytical formulation has been raised, e.g., by Michael V. Berry,
who has suggested transforming such functions into sounds and listening to them [27].
The examples he chose are related to Riemann’s zeta function, an analytic function of
the complex variable z € C which reads

!
(&= @.1)
n=1

and admits the equivalent representation (Euler product):

1
(@=1] 22)

pEP 1- P

where P stands for the set of all prime numbers. The distribution of primes turns out
to be connected with that of the zeros of the zeta function and, since a spectrum can
be attached to this distribution [28], this paves the way for giving a real existence to a
“music of primes” that had previously been evoked as an allegory.

Of course, in parallel to the hearing of this music, we can naturally think of
seeing it by writing down its “musical score” thanks again to some time-frequency
analysis.
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Figure 25 Zeta function 1. For a sampling rate fixed to 32 kHz, this figure plots the first 2
seconds of the (real part of) the waveform Z(¢) defined in (2.3), which essentially describes {(z)
as a function of its imaginary part Im{z} = 7 for the fixed value of its real part Re{z} = 1/2.

Following [27], we can consider the function

Z(t) = £ (4 +it)exp (i (1)} , (2.3)
with
0(f) = Im {r(% (% + it))} — (tlogm)/2. (2.4)

This function is of special importance with respect to the so-called Riemann
hypothesis, which stipulates that all zeros of the zeta function that fall within the strip
0 < Ref{z} < 1 are aligned along the only line given by Re(z) = 1/2. A plot of the first
2 seconds of the function Z(¢), sampled at 32 kHz [27], is given in Figure 2.5. It rather
looks like noise, and gives few insights into the spectral structure, if any. In contrast, the
time-frequency image given in Figure 2.6 evidences a fairly well-structured organization
in terms of up-going chirps, that calls for explanations. In this case, the chosen time-
frequency representation is an “ordinary” spectrogram, so as to put emphasis on the
crystal-like structure of zeros in the time-frequency plane.
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Figure 2.6 Zeta function 2. The waveform plotted in Figure 2.5 is displayed here as an energy
distribution in the time-frequency plane (spectrogram). As compared to the time history of the
signal, this “musical score” reveals in a much clearer way the inner structure of the waveform,
namely the existence of ascending chirps. The energy scale is logarithmic, with a dynamic range
of 15 dB.

As for bats and gravitational waves, we will come back to this in Chapter 16, together
with some other examples of special functions (like Weierstrass’s function) that admit
natural time-frequency interpretations.

24 Chirps (Everywhere)

The three (families of) signals considered so far are just examples, and we are far
from exhausting the number of situations where waveforms of a similar nature are
encountered. If we consider their structure, they all share the common property of being
(possibly multicomponent) “chirps.” In other words, they are basically characterized
by a well-defined structure that takes the form of time-frequency trajectories which
reflect the existence of sweeping frequencies. This phenomenological description calls
for considering what being a “chirp” means, in more mathematical terms.

The concept of frequency is indeed closely related to notions such as oscillations
or cycles — which are ubiquitous in nature and technology, from the motion of celestial
objects to atomic descriptions — via biological rhythms or rotating machinery. Therefore:
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Chirps appear essentially as transient time-dependent variations on sustained har-
monic oscillations, whence their ubiquity.

In order to make this point clearer, consider a simple pendulum of length Ly in the
usual gravity field. In the approximation of small oscillations, it is well-known that the
angle (¢) is governed by the equation

d%o g

— () +=6()=0, 2.5

rrlORS 0 2.5)
where g stands for the acceleration of gravity. Up to some pure phase term, the solution
of (2.5) is simply

6(t) = 6y cos wyt, (2.6)

with 6y the maximum amplitude of the oscillation, wy = +/g/Lg its (angular) frequency,
and T = 2/ wy its period.

Let us then make the pendulum length become a slowly varying function of time (by
imposing, e.g., Ly to be transformed into L(¢) = Ly (1 + £¢), with € > 0 small enough to
keep the length variation small at the scale of one oscillation). This results in oscillations
that become time-dependent, with an “instantaneous” frequency that is almost “frozen”
on a short-term basis, yet in the longer term undergoes the evolution w(t) ~ +/g/L(?),
which is progressively slowed down as the pendulum length is increased. If we further
include viscous damping, the actual amplitude of the oscillations becomes time-varying,
with an exponential decay. To summarize, combining both effects transforms a sine
wave into a chirp!

This very simple example of a damped pendulum with time-varying length illus-
trates what we understand when adding “instantaneous” to words such as amplitude
or frequency. In the nominal situation of a pure harmonic oscillation y(¢), there is no
ambiguity in writing

¥(t) = a cos wt 2.7

and in considering that a is its amplitude and w its frequency. When accepting some
possible time dependencies, it is tempting to generalize (2.7) by writing

x(t) = a(t) cos (1), (2.8)

letting @ become a (nonnegative) function of time a(f), and replacing wt with a phase
term ¢(¢) undergoing some possibly nonlinear evolution.

Unfortunately, there is no unique way of expressing a given observation x(f) € Rin a
form such as (2.8). The usual way out is to come back to (2.7) and write x(r) = Re{z.(#)},
i.e., to consider that y(¢) is the real part of some complex-valued signal z,(f), thus calling
for a decision on what the imaginary part should be. A “natural” choice is to complement
the cosinusoidal real part with a sinusoidal imaginary part, so that

2(t) = a expfiwt). 2.9)
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This is the classic “Fresnel” (or “Argand”) representation of a monochromatic wave,
whose interpretation in the complex plane is particularly appealing. Indeed, as param-
eterized by time ¢, the complex-valued signal z,(¢) in (2.9) can be seen as a rotating
vector — with real and imaginary parts as coordinates — whose extremity describes a
circle with a constant angular speed. The amplitude a is precisely the modulus |z,(?)],
whereas the angular speed, which is the time derivative of the phase wt, is identified
with the frequency.

Given this interpretation, extending to time-varying situations is fairly obvious. It
amounts to adding an imaginary part to the real-valued observation x(¢#) € R. Since
there is no unicity for such an extension, the most “natural” one consists in mimicking
the relationship that exists between a cosine and a sine in a complex exponential. As it
can be easily established, the linear filter which turns a cosine into a sine (with the exact
same amplitude and frequency) has for transfer function H(w) = —isgn w. In the time
domain, this corresponds to the Hilbert transform H such that:

Hx)(1) = %p.v. foo % ds, (2.10)

where “p.v.” indicates that the integral has to be computed as a “principal value” in

Cauchy’s sense, i.e., as
00 —€ +00
p.V.f = lir%[f +f ] (2.11)

Applying the above recipe for the complexification of the real-valued signal x(¢) thus
leads to the well-known solution of the so-called analytic signal which reads [29, 30]:

() = x(®) + 1 (Hx)(®). (2.12)

The “real/imaginary” expression (2.12) admits the equivalent “modulus/phase” rep-
resentation:

z2x(7) = a(r) explip(1)} (2.13)

which is now unique and from which an “instantaneous amplitude” a(f) > 0 and an
“instantaneous frequency” w(?) can be derived as in the purely harmonic case, mutatis
mutandis:

d
a(®) =lex(®] ;W) = Farglz(n} (2.14)

Generalizing upon the pendulum example, “slowly-varying” conditions are often
assumed for chirps. Usual heuristic conditions assume that |a(f)/a(?)| < |¢(2), i.e., that
the amplitude is almost constant at the scale of one pseudo-period 7'(¢) = 2n/|¢(¢)|, and
that |(r) /cpz(t)l < 1, i.e., that the pseudo-period T(¢) is itself slowly varying from one
oscillation to the next [31, 32].

Remark. Although “classic” and the most used one, the definition of “instantaneous
frequency” on the preceding page may lead to some paradoxes and present difficulties in
its physical interpretation. It can, for instance, attain negative values, or have excursions
outside of a frequency band in which the signal spectrum is supposed to be limited [22].
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One can argue, however, that such unexpected behaviors apply to situations that can be
considered as departing from the assumed model. This is especially the case when more
than one chirp component is present at a given time, a situation in which one would
normally expect two values; of course, this is impossible with the definition of a mono-
valued function. Without having recourse to time-frequency analysis (which will prove
to be a better approach), alternative definitions — with their own pros and cons — have
been proposed. These will not be discussed here; for more information, refer to [33].

In retrospect, it is clear that the examples considered in Sections 2.1-2.3 of this
chapter can be reasonably considered as multicomponent chirps (also known as mul-
ticomponent AM-FM (Amplitude Modulated — Frequency Modulated) signals), all of
which accept a model of the form

K

x(7) = Z ar(t) cos gi(t). (2.15)

k=1

We confine ourselves here to (and will discuss further in Chapter 16) a few such
signals, but it is worth stressing that waveforms of a very similar nature can be found in
many domains. The following list shows a few of the possibilities one can mention:

. Birdsongs — This is of course the first instance, and the one from which the name
“chirp” comes from since, according to Webster’s 1913 Dictionary, a chirp is “a
sharp sound made by small birds or insects.”

o Animal vocalizations — Besides birds (and bats), many animals make use of tran-
sient chirps or longer AM-FM signals, mostly for communication purposes: short
chirps by frogs, longer vocalizations by whales (listen, e.g., to the many sound
files available at http://cis.whoi.edu/science/B/whalesounds/index.cfm).

. Audio, speech, and music — Audio is a rich source of chirping waveforms: singing
voice, vibrato, glissando . .. Several examples have been exhibited since the early
days of time-frequency analysis [4].

. Dispersive media — A brief pulse can be idealized as the coherent superposition
of “all” possible frequencies. If such a waveform is sent through a dispersive
medium for which the group velocity is frequency-dependent, the different fre-
quency components travel at different speeds, resulting in a distortion that, in
time, spreads the highly localized pulse and transforms it into a chirp. This can
be observed, e.g., in the backscattering from simply shaped elastic objects in
underwater acoustics [34].

. Whistling atmospherics — A companion example where chirps are due to disper-
sion is to found in geophysics, with low-frequency “whistlers” that can follow
impulsive atmospherics (such as lightning strokes) after propagation in the outer
ionosphere [35].

. Turbulence — Turbulent flows can be given both statistical and geometrical
descriptions. In 2D, disorder can be modeled via some random distribution
of spiraling coherent structures, namely vortices (e.g., the swirls that can be
observed in rivers downstream from a bridge). Intersecting such a 2D vortex
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results in a 1D profile taking the form of a “singular” core surrounded by a
chirp [36].

. Warping — In a natural generalization of the pendulum example, oscillations of
moving sources lead to chirping behaviors. This was noticed for gravitational
waves, but this also applies to Doppler effect, where a pure tone emitted by
a moving source in its own referential ends up with a modulated wave that is
perceived by a receiver as compressed or stretched when it passes by. Similarly,
acceleration warps the characteristic rotation frequencies of an engine.

. Electrophysiological signals — When recording electroencephalograpic (EEG)
signals to monitor brain activity, it turns out that the abnormal neural synchrony
attached to epilepsy has a chirp signature [37]. In a different context, uterine
electromyographic (EMG) signals do chirp too during contraction episodes, with
a bell-shaped ascending/descending narrowband frequency component [38].

. Critical phenomena — Oscillations that accelerate when approaching a singular-
ity are in some sense “universal” [39]. This has been advocated for identifying
precursors in domains as diverse as earthquakes or financial crashes.

. Man-made sounders — Mimicking the echolocation principle used by bats or
dolphins, some human-made systems make use of chirp-like signals for sounding
their environment. One can cite the field of “fisheries acoustics” where FM signals
are used by broadband sounders [40]. Another key example is vibroseismics,
where sweeping frequencies are sent through the ground in a particular area —
for the sake of oil exploration — by means of specially equipped trucks [41].

We could provide many more such examples, but we will stop here. One more good
reason for closing the list with vibroseismics is that it is emblematic of the way science
can be driven by applied problems. Indeed, it is no exaggeration to say that the whole
field of wavelet analysis — which can be viewed as a twin sister to the time-frequency
analysis on which this book is primarily focused — originated from Morlet’s concerns
to improve upon “classic” Fourier-based vibroseismic signal analysis. When based on
solid mathematical grounds and equipped with efficient algorithms, the roads Morlet
started to explore led to unexpected “hot spots” with new perspectives far beyond the
initial problem and its original time-frequency flavor.
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