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Introduction

The full transformation semigroup S~(X) is extremely important. As far back
as 1952, Malcev (1952) showed that its automorphism group consisted of mappings
of the form g~l • g, ge&(X). The present work is devoted to a generalization
of this result.

The semigroup we consider is F(X, Y),Y s X, comprised of those mappings
in y(X) whose range is contained in Y. To the extent that $~(X, X) =
we may count 3~(X, Y) a generalization of

We answer two questions:
A What are the automorphism of
B When are two F(X, Y) isomorphic?

For | Y\ > 2 the results are as one expects:
A The automorphism of 3~{X, Y) are "inner" induced by those permuta-

tions of X which are also permutations of Y.
B y~(X, Y) is determined by the cardinals | Y\ and \X\Y\. (Not |X | and

|y|:See§5).
It is when | Y | = 2 that the exceptions arise. In §2 we discuss this case and

show that there are many more automorphisms than inner automorphisms. We
characterize these "outer" automorphisms by means of class of permutations
of ^{X)* with pleasant properties.

In §1 we reduce the calculation of Aut FiX, Y) to determining a simpler
group which we denote by AutY^~(X, Y). It turns out that any element of
Auty^XX, Y) may also be considered as an automorphism of ^{X,2), where 2
is any doubleton subset of Y; and in §3 the results of §2 are used to determine

* The power set of X.
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414 J. S. V. Symons [2]

the general automorphism. Thus the case \Y\ = 2, far from being the low order
abberation to which one is accustomed, (c.f. automorphisms and normal subgroups
of rS{X). See Scott (1964) Chapter 11), is actually the cornerstone of the theory.

We'discuss some extensions in §4. In particular, we exhibit the automorphism
group of^(X, Y), a semigroup introduced by Magill (1966). It is to this end that
we prove rather more general results in §1 than seems warranted by our major
intentions.

In §5 we answer B by an examination of Auty^"(Z, Y). In the exceptional
case, \Y\ = 2, 9~{X,Y) is determined by 2 | J V | rather than \X\Y\.

1. Preliminaries; basic results

Our notation is that of Clifford and Preston (1967) with some additions and
departures. If X is a set then the full transformation semigroup on X will be
denoted by F(X). Also, if Y c X then

, Y) = {<x.e3T(X)\ Xa c Y}
and

where &(X) is the full permutation group on X.

If S ^ $~(X) ( " g " means "is subsemigroup of") then Snjf(X) (where
X~(X) is the set of transformations whose range has cardinality one: the constant
functions) will be abbreviated to JT(S). An element of Jf(X) with range a will
be written Ka, and, further

K(S) = {xeX:KxeS}.

The following result is fundamental: in spirit, it goes back to Malcev (1952).

THEOREM 1.1. If S, T ^ F{X) with Jf(S), 3f{T) # • and 4>: S-> T is an
isomorphism then

Jf(S)<j) =

and there exists a bijection g:K(S)-*K(T) such that

acc(j> = ag~lctg
for all aeK(T), a e S .

PROOF. Let Ka e jf(T), and a e S be such that a<p = Ka. Choose
Then Kba = KbxeS and (Kbx)<t> = Kb^a.(f> = Kb(j>Ka = Ka. Hence 3F(S)<j> ^

and by the dual result for c/r1 we have Jf(S)4> = X~(T).
We define g: K(S)^>K(T) by putting ag = b when Ka<j) = Kb. Clearly g is

bijective. Note that for a e K(T), ag "1 e K(S). Since K(S)a S K(S) for all a e S,
we have ag~1aeK(S) so that ag~iag is well denned.
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Moreover for a e S ,

Kagacj) = (Kaa)(j) = (Kaa)0 = Katg = Kagg~lag.

Hence agcccj) = agg~1ag and since g is onto K(S) we have the result. |
If S ^ &~(X), let Aut 5 be the group of automorphism of S and Inn S the

set of automorphisms of S of the form a-*g~1ag; oteS, for g e^{X).
Further, if Y e X let Inny S be those inner automorphisms of S induced

by <S{X, Y) and put

AutyS = {0eAutS; ya(j> = yen, for all cceS, yeY}

The following result reduces the calculation of Aut S to that of Auty S (for
certain semigroups).

THEOREM 1.2. If S ^ 3T{X) and g~1Sg £ S for all ge&(X,K(S)) where

K(S) # • then

Aut S = AutK(S) S InnK(S) S.

PROOF. Let $ e A u t S . As in (1.1) we have

aoup = ag~1ag; aeK(S), cceS,

where g is a permutation of K(S). Extend g to a permutation of X so that
g e ̂ {X, K(S)), let ij/g denote the automorphism of S, a. -* g ~ 1txg and put £ = ^g-1.
Then CeAutS and <f> = Cfg- We show CeAutK(S)S. Let aeK(S), aeS. We
then have

a(aQ = a(a0^B-.)

= ag(g~1ixg)g~1 (Since ageK(S))

If S = ^"(Z, Y) then it is easy to see that S satisfies the hypotheses of (1.2)
with K(S) = Y. Hence we have a

COROLLARY. Aut.T(X, Y) = Auty^"(Z, Y) Inny^"(Z, Y).

We observe that \nnY&~{X,Y) consists of all the mappings g~x • g,
$(X,Y).
The following result sets out some simple properties of AutK(S) S.

LEMMA 1.3. If S ^ 3~{X) and 4>eAutK(S)S then

(i)
(ii) / / Xtx. E

(iii) If KEX(S) then K<f> = K.
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THEOREM 1.4. If3T{X) ^ S ^ F(X, Y) then Xa = Xafjor all aeF{X,Y),

PROOF. For a e 9~(X, Y) we construct BXX as follows

xeXa = x when x e Xa

= c for some c e l a , otherwise.

We note that eXx e S and xsXx = x if and only if x e Xa. Since Xa. £ X(S) and
aeXx = a we have

a<£ = (a£xa)<£ = a0£x«» bY (I-3)-

It follows that Xouj) £ Xa..
Conversely, if we define sXx<j> analogously to eXx we have by (1.3), parts (i)

and (ii),

a = cujxj)-1 = ( a ^ e ^ ^ " 1 = a^-leXatt. = aeXx<>.

Thus Xa £ Xa<j> and the result follows. |

2. Automorphisms of J {X, 2)

In this section we shall calculate the automorphism of &~{X,Y) when | Y\ = 2.
In §3 we shall use these results to calculate ^~{X, Y) for arbitrary Y.

Hence, for our present purposes, we identify Y with the set 2 = {0,1} and
abbreviate 3~(X, 2) to T. Moreover for a e T we shall write a = £A where
A = l a " 1 and £A is the characteristic function of A (i.e. x£A = 1, x e A; 0 other-
wise).

LEMMA 2.1. If A,B ^ X then

ZAZB = £t when l e B ,

= ^ wften l e B , OeB. |

(Note: when it is unambiguous we shall write A' for X\A).
We make two

DEFINITIONS, (i) If (peAutT we define n: &(X)-+&(X) by An = B, when
£A(p = £B. Clearly n is a permutation of

(ii) Let Z S X . A permutation of ^(.X), n, will be called Z-admissible
on 0>(X) if for all

(1) Xn = X,
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(2) A'n = An'

(3) ZnA = ZC\An.

It will be instructive to construct some Z-admissible permutations. Firstly,
call a partition on 0>(X) into two subsets, 0>x and ^>2, decisive if, for each A e 0>{X),
precisely one of A and A' belong to &x (equally, ^ 2 ) .

The following device (due to R. P. Sullivan) yields a supply of decisive par-
titions.

Let a 6 X. Define 0>
x by demanding —

Ae&>
l if and only if aeA

— and put 0>z - 0>(X)\0>
X. Then 0>x, 0>2 is the desired partition.

Now take Z £ X, put W = X\Z, and let ^x,^2 be a decisive partition of
0>(W), with D e # i . The mapping0>

x -• ^>2 8
i v e n by 4 -•• .4'; .4 e ^ , is a bijec-

tion, so that | &x | — j ^ 2 1 • It follows that if J(x, J?2 is another decisive parti-
tion then \^i\ = | ^ i | . Let D ^ ^ i and ^:^*1->^#1 be any bijection such
that •* : = • • Extend rc to ^*(W) by defining, for Ae^t, A'n = (An)'. The
construction is completed by writing, for each

An = (A\Z)

where the n on the right is that of the previous sentence.
Then n is Z-admissible on <?(X).
The following two results indicate the connections between Definitions (i)

and (ii).

LEMMA 2.2. / / $eAut2 T and n is defined as in definition (i) then n is
2-admissible.

PROOF. We show n has properties (1), (2) and (3) of Definition (ii). Now
K0 = £Q andKt = t;x- Since 0eAut2 T property (1) follows easily from (1.3) (iii).
Let A, B s X and put UB=ZC By (1.3) (ii) ^<KB=Cctf>so that £A. iB=^Cn. If
we take B such that 1<£B, OeB we have, by (2.1), £r = £A£B = ^-,sothat^C n = £A-%.
On the other hand £AK£BK~ ^A'* S O £A'* — ̂ n'» a n ( i the second property follows.

To see (3) we note that a 12 = a$ 12. Hence x£A = x£,A for x = 0 ,1 ; and
all A G 3?{X). It suffices to observe that x£A = 0 or 1 according as x $ A or
xeA. ||

We also have the converse:

LEMMA 2.3. / / n is 2-admissible on 0>(X) and

U> = <U for all A^X,

then <j>ekut2T.
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PROOF. With $ as in the statement of the Lemma, it is clear that (j) is bijective
— since n is a permutation of 3P{X).

It only remains to demonstrate that

ZAH*$ = {ZAZM and £ > [ 2 = £ i | 2 ; for all A,B <= X.

The second equatily is clear from (3). Then £A<l>£B<j) = ^.A^B SO we show

Now i f l ^ B , 0 ^ B o r i f l e B , 0 e 5 then property (1) and an application of (2.1)
give the result. If 1 e B , 0$B then £A£B = t;A by the same Lemma and

Finally if 1 £ B , QeB t hen^£ B = ^ , ; A £ X, (again by (2.1)) and {ZAZBW

= ( k ' W = ^-« = U ' , by property (2). Hence (MM> = U' = ZA«ZB = ZAMB-

Finally if 1 £ B, 0 e B then ^ B = ^ M s X , (again by (2.1)) and {^B)4> = ( ^ , ) ^
= SA; = ^ « - . by property (2). Hence (ZAZBW = ZA.- = ZA*ZB = ZA4>Z, • ||

Denote the set of automorphisms of T induced by 2-admissible permuta-
tions of 0>(X) by Tap T. From the previous two Lemmas and the Corollary
to (1.2) we have
(*) AutT = Tap T Inn2 T

Let x be the 2-cycle on X which permutes 0 and 1. All elements of @(X,2) are
of the form gz"; n = 1 or 2 where g\l = v2 (the identity of ^"(2)). It follows
from (*) that Aut T is just the mappings of the form

ZA4> = •?9~XZA£* where g\l = i2.

Now ff"1^^^ = £4*90 = £^9 and it is straightforward to show that A-^Ang
is 2-admissible when g 12 = i 2 . Hence all automorphisms have the form

where n is 2-admissible. Hence each </>eAutT may be written as a product

cp = pi- (n = 0,1)

where p e Tap T and t = i • t e Aut T.

THEOREM 2.5. AutT s Z2 x H n 2 ( Z ) , the semi-direct product of the group
of integers modulo 2 and the group of 2-admissible permutations of ^(X), with
connectiog homomorphism H: Z2 -> Aut U2(X) given by

n(nH) = x-nz".

PROOF. Let D be the group consisting of the identity automorphsim and J.
By the above
(*) AutT = Tap T • D = D • TapT.
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Now for all A £ X,

Hence f^TapT since A->{Az)' is not 2-admissible (consider (2r)'), so that
D h Tap T is trivial. From (*), if p e Tap T then pf = p' or tp', for some p' e TapT.
Since f^TapT we may exclude the former. Hence tpt = t2p' = p 'eTapT. It
follows that Tap T is normal in Aut T.

From these remarks we may conclude Aut T is a semi-direct product of D
and Tap T and the map

fp-*{n,n)

(where peTapT is induced by n) is bijective and induces a group operation
on Z2 x H2{X). Moreover

t ptt Pi — I t Pyl p2,

where nu n2 e Z 2 , pu p2 e Tap T. If p t and p2 are induced by 71! and n2 respect-
ively, then it is easy to see that f"2p1t"2eTapr is induced by iP^nz"2. It follows
that

{nit %) " («2> ^2) = («1 + "2. t"2n1T"27t2) = (/Jj + n2 , 7C1(n2H)7T2) . I

NOTE. It is easy to see that the inner automorphisms of T have the form
£4 -> T " ^ T " where g e ^ ( Z ) , g |2 = i 2 . It follows that Aut r > Inn T when we
may find a 2-admissible permutation not of the form A -* Ag, g as above. This
is the case when | X | > 2 . For example, take X = {0,1, x} and let n be the mapping

Then 7t is 2-admissible — but it does not preserve cardinality.

3. Automorphisms of J {X, Y), \ Y\ ^ 3

As in Clifford and Preston (1957), (Vol. 2, page 241), we shall use the notation

• - 0
to mean that ae^~{X) has range {yt; i e /} and X-t = yjx'1.

In this section we shall consider the automorphisms of ^{X, Y) for | Y | ^ 3.
Choose a subset of Y containing precisely two elements 0 and 1, and denote it
by 2.

The following theorem enables us to determine the action of automorphisms
on 3~{X,7).
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THEOREM 3.1. If 4>ekuXYJ'(X,Y) then

PROOF. By (1.4) <j> | 3~{X, 2): ST{X, 2) -» F{X, 2). If a e ^ ( J f , 2 ) then
a^" 1 e^"(X, 2), by (1.3) and another application of (1.4); and since a = a^" 1 ^
we have that <b\2T{X, 2) is onto.

Now it is clear that (p 13~{X, 2) is a monomorphism so it remains only to
show that

ytx<j> = yet; for all ye2, <xe$~(X, 2 ) .

But 2 £ y and the above formula follows from the definition of katY^~)X, y). |
As in §2 we may regard F{X, 2) as consisting of characteristic functions,

l;A, A £ X. By the above result and Lemma (2.2) we have £A<f> = £4, where
is 2-admissible.

THEOREM 3.2. If <f>eA\itY$~(X, Y) and 2 is any doubleton subset of Y then

where n is 2-admissible.

PROOF. Let ae^"(X, Y), a = ( ' j . If A £ X it is easily seen that

= ^ - , . Hence ^ W ) - i = ouj>^A = (a^J^> = (ZAx-i)<t> = ^«-««- It follows that
^ ( a ^ ) " 1 = yla"1^ for all A c x, 0Le^{X,Y). Choosing, for fixed iel,
A = {yt} we have

Aa~ln = XjTi = yi{a.<t>)~1

and since Xa = Xoc<f> (by (1.4)) the result follows. |

COROLLARY.

LEMMA 3.3./ / <^eAutŷ "(X, y) and i , B E i with AHB = Q
= • and

04 U B)?t = y47t U BTT.

where C = X p u B ) . Clearly a £ f(X, Y). We define s e ST{X, Y) as follows

xs = 0; xe2\j(X\Y)

XE = x; otherwise

- t h e n a £ = ( J
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Moreover (oce)<£ = a^e and so

/(AvJB)n Cn\ _ (An Bn Cn\ _ (/

I o t)-\* i t r~ [
/AnUBn Or
[ 0 t

LEMMA 3.4. If aeX then \{a}n\ = 1.

PROOF. Let aeX and take de{a}n. Choose C s X, C # D , such that
Or = {6} s {a}?t. Now n"1 corresponds to the automorphism 4>~1, and it fol-
lows readily from (3.3) that n'1 preserves set containment. Hence Cnn~x

£ {ajTtTt"1, so that C = {a}. |
Define g:X->X by putting xg = y when {x}n = {y}. Since n is a permuta-

tion of ^(X), g is one to one.

LEMMA 3.5. n is Y-admissible.

PROOF. Clearly we need only prove that

Y r\A = Y (~\An.

Let D be a subset of Y, \D | = 2, and let a be the D-admissible permutation of X

corresponding to D. If a e 3~(X, Y), a = I ' I, then
\.Vi/

It follows that n = a so we have

D(~\An = DnA for all D £ y with | D | = 2,

and the result is now immediate.

By putting A = {y} (where y e Y) in (*) we obtain

COROLLARY, yg = y for all yeT. |j

The job is finished by

LEMMA 3.6. An = Ag{= {ag; as A)}); A^X>

PROOF. Let A £ x . If a e A then

An = ((A\a) U {a})n = (A\a)n U {a};:, by (3.3).

Since {a}n = {ag}, Ag £ An.
On the other hand if x e An then Arc = {x} U An \{x}. Since n is onto we

may take {x} = Bn, An\{x} = Orc where B and C are non-empty disjoint subsets
ofX. From the preceding result Bn = {x} 2 Bg and since # is one to one B = {b}
where bg = x. Moreover,
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A = Ann*1 = (Bn U Cn)*'1 = B U C

since B%C\Cn = • • Hence A 2 B = {b} and x = bg where be.4. |
We may now deduce that g e ̂ {X, Y). For, by the above result, X = Xn

= Xg, so that g is onto, and by the corollary to (3.5) g \ Y =
The main result of this paper is

THEOREM 3.7. / / | Y | ^ 3 then

,Y) = {g-l-g:ge#(X,Y)}.

PROOF. If ^eAuty^"(Z,Y) and ae3r{X,Y), a. = P ' ) then by the fore-

going a0 = I 'g\ = g'H ') = g~loig (since yg = y; yeY). Hence
\yi 1 \yii

Autr^(X, Y) s I n n y ^ Z , Y) and (1.2) gives the result. |

COROLLARY. / / \Y\ ^ 3,

Aut^"(Z,y) s 9{X,Y).
4. Extensions

These results may be extended slightly to include (a class of) transformation
semigroups which contain &~(X, Y), | Y | > 2.

If S is a transformation semigroup then we shall call S Y-complete if $~{X)
^ S ^ ^"(X, Y) and K(S) = Y.

If S is such a semigroup, then $~(X, Y) is a left ideal of S. By (1.4) and (1.3X0

AutyS [ T(X, Y) s Auty^X, Y)

and by (3.7) any automorphism of &~{X, Y) is inner, induced by some g e &(X, Y).
Hence if <j>eAutyS, fleS, and ae^"(X, Y) we have

where g e ̂ (X, Y). Hence

It follows that

j50a = 5 ~ x ^ a for all a e .T(X, Y).

Since we may separate any two elements of X by mappings in $~{X, Y) we have
P<j> = g~xPg. We have proved

THEOREM 4.1. / / S is Y-complete with Y j > 2 (/ien AutyS = InnrS. ||

By (1.2) we have
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COROLLARY. If S is as above and g~1Sg £ s for all ge@(X, Y) then

AutS = I n n r S ^ <$(X, Y). \

Magill (1966) has studied the semigroup

y(X,Y) = (aeJ(I); Yoc s Y}.

It is easy to see that S ^ 3T(X) is Y-complete if and only if ̂ {X, Y) ^ S

Since g'^X, Y)g s Sf(X, Y) for all g e &(X, Y) we have from the coroll-
ary to (4.1)

THEOREM. 4.2 If \Y\> 2 then

", Y) = lnnYy(X, Y) ^ &(X, Y). fl

5. Isomorphisms of S (X, Y)

Let X1 and X2 be sets with Ym <= xm for m = 1 and 2. Denote ^(X"1, Y"1)
by Tm. The result of this section is

THEOREM. 5.1 / / T1 ^ T2 then | Y1 \ = | Y2 \. Moreover,

if | y11 = | Y2 | = 1 f/ien T1 s T2

,/ | y i | = | y 2 | = 2 then T1 s T2 »/ and on/y i/2|X'VYI1 = 2 ^ y 2 l and

if | y11 = | Y2 | > 2 r/ien T1 s T 2 i/ and on/y i/ | X1 \ 7 1 | = | X2 \Y2 |.

PROOF. The first assertion is a consequence of (1.1) while the second is trivial.

To see sufficiency in the final case, let gt and g2 be bijections,

gt: Y' -> Y2 and ff2: X
1 \Y1 -• Z 2 \Y2.

Define g: X1 -> Z 2 by demanding that o | Y1 = ^t and g \X1 \Y1 = g2. Clearly
a.^yg~1ixg: txeT1 is the required isomorphism. Note we have made no use of
| Y m | > 2 .

Now assume 2l*n i"1 = 21*^1'21 and set Ym = 0m, lm} for m = 1 and 2 . We
may immediately dismiss the possibility \Xm | < oo for then | X1 \Y11 = | X2 \Y2 j
and we are in the case discussed above: henceforth we assume that | Xm | (and
hence |ATra\Ym|) is infinite.

Form decisive partitions of 0>{Xm\Ym): 0^,0*1 for m = 1 and 2 . Now
. (Since \ | |

It follows that \0\\ = \0>\\ and we may choose a bijection, T t : ^ } ^ - ^ 2 . The
The construction is now a slight extension of one used in §2. Assume n fixes Q .
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One extends n to a bijection from 0>(Xl) to ^(X2) with the properties

(1) Un = D

(2) (X^A)-* = X2\An

(3) 01 e A if and only if 02 e Arc

and lx6y4 if and only if l2eAn.

It is now possible to prove that ^ e l 1 - * £Ane T2 is an isomorphism by the
methods of Lemma (2.3).

This completes the proof of sufficiency in the third assertion of the theorem.
To see necessity it suffices to note that | Tm \ = 21*"1' for m = 1, 2.

It only remains to prove necessity in the final case. Let <j>: T1 -» T2 be an
isomorphism with | Ym | > 2. By §3, Autym Tm consists of mappings of the form
/T 1 • h where he&(Xm) and h | Ym = iym. Hence AutYmTm s &(Xm\Ym), so that
it is sufiicient to show AutrlT ^ Auty2T2 to have I z ^ ^ 1 1 = |X2\y2 |. (By
a well known property of the symmetric group: See Scott (1964).)

The required isomorphism is

This mapping is clearly a monomorphism so we need only show

Let y e Y2, a e T2, and £ e Autri T
1. Taking £ in the form indicated above and

using the expression for yfi<t>, peT1, obtained in (1.1), it is easy to see that

y W 1 (,<!>) = ycc.

Hence c^Auty iTV ^ Auty2T2 and the dual result for <f>~1: T2-+Tl com-
pletes the proof. ||

NOTE. Whether 2A = 2B implies A = B; A,B infinite cardinals, is an un-
solved problem. It is true under the assumption of the Generalized Continuum
Hypothesis. See Sierpinski (1958), page 155.

Many classes of transformation semigroups are determined by the cardinality
of the underlying sets. For example two full symmetric groups are isomorphic
if and only if the sets for which they are defined have the same cardinality. Theorem
(5.1) shows, however, that ^(X, Y) is not determined by the cardinals \x\ and
| Y |. As an example, let N be the set of natural numbers and N ^ ^ ) be those
natural numbers greater than 1(2). Then |NX | = [N2 | = Xo. However, |N\Nj |
^ |N\N2| SO that ^-(N,]^) is not isomorphic to .T(N,N2).
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