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Introduction 

Charged Particle Optics contains a lot of specific conservation laws most of which are absent in classical 

(light) optics: conservation of energy, conservation of momentum, conservation of phase space volume, 

scaling relations for coordinates, energies and voltages, symplectic relations for aberration coefficients, 

symmetry relations for aberration coefficients, Scherzer and Yakushev inequalities for plane and axially 

symmetrical systems with straight axis, illuminated area identity for the rigidity dispersion in magnetic 

and electrostatic sector fields, etc. [1–3]. 

 

Among these statements (which restrict greatly the characteristics of the CPO systems which can be 

achieved by electric and magnetic fields) there is the estimation for the quality of TOF systems 

suggested by Yu. K. Golikov [4]. Namely, if there is the periodical multi-cascade TOF system with the 

time-of-flight data measured along the path of the particle [5,6] there are two and only two possibilities: 

 

a) there is at least one nonzero time-to-energy aberration coefficient of some order and in this case the 

TOF system demonstrates the saturation effect — its resolution power limits to a fixed finite value even 

if the number of the cascades limits to infinity; 

 

b) all time-to-energy aberration coefficients of any order are exactly zero; hence this is an ideal TOF 

system where the resolution power limits to infinity with the increase of the number of the cascades. 

 

The absence of all time-to-energy aberrations results to the conclusion that systems [7] are the only 

candidates to TOF systems without the saturation effect. Manual verification proves immediately that 

for [7] all time-of-flight aberrations are zero and hence [7] are the only systems with no saturation. 

Further we will call such N -cascade systems as the ideal TOF systems. 

 

The original rough estimation [4] is analyzed here with better mathematical rigor hoping to find new 

classes of the ideal TOF systems. The basic theorem proposed by Yu. K. Golikov is proved here with 

greater degree of generality and new candidates to the ideal TOF systems are introduced. 

 

Problem specification 

Suppose there is a periodical multi-cascade TOF system like in ref. [5,6]. The resolution R  of a single 

cascade is defined by the expression 
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where R  in the reference mass, m  is the minimal distance between two neighboring mass peaks which 

can be resolved, T  is the time of flight value, T  is the time peak width, t  is the initial time spread, 

T  is the aberrational time spread due to deviations of the beam parameters with respect to energy, 
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angles and coordinates [3]. The resolution NR  of the N -cascade system is defined by the expression 
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where TNTN   is the time of flight value for the N -cascade system and TNTN    is the 

accumulated aberrational time spread for the N -cascade system. 

 

It can be seen from Eq. (2) that for N  the resolution NR  limits to a finite value TT 2  while we 

could expect that it limits to infinity. The restriction of the initial beam spreads in energy, angles and 

coordinates can improve T  and the same can be achieved by careful and highly professional 

optimization of the aberrational properties for a single cascade. However, even in this case the 

multiplying of the cascades can do only one thing: that is, to cancel the influence of the initial time 

spread of the beam. This well known effect is called the saturation of the resolution for the N -cascade 

TOF systems [3,4]. 

 

However, the patent [7] introduces specific time-of-flight mass spectrometers called 2Z -TOF systems 

which are free from the saturation effect. That is, the greater is the number of passes the greater is the 

resolution which is strictly proportional to the number of passes (cascades) for these systems. The 

question is: how fundamental is the restriction in Eq. (2) and are there some other ideal TOF systems 

which do not suffer from it? 

 

Primary analysis of the problem and Golikov corollary 

The intrinsic mechanism of the limitation (2) is the assumption that the aberrational time spreads kT  

gained by the particle when it passes through the cascade k  are added over the cascades. Strictly saying, 

this is not so. Namely, angles and coordinates of the particle at the exit from some cascade are not the 

same as that at the entry to this cascade. Since the output coordinates and angles are the input 

coordinates and angles for the next cascade, time of flight values kT  are different for different cascades 

and hence can compensate each other at least partially. That is, the cascades are identical electrically but 

fragments of the trajectory of the particle inside each cascade are different. Hence the values kT  of the 

aberrational time increments inside each cascade can be different as well and there is a chance that the 

rough estimation 



Nk

k TNT
,1

~   is not true any more for some specific cases.  

 

However, the following simple consideration by Yu. Golikov shows that in typical cases this should not 

happen. Let us consider the aberrational representation of the time of flight value  byaxET  ,,,,  

inside a single cascade with respect to the variation of the initial energy E , initial coordinates yx  ,  

and initial angles ba  , :  
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Here n  is the order of the aberration coefficients, 
byaxE kkkkkC ,,,,  are the values of the aberration 

coefficients,           byaxE

byaxE

kkkkk

kkkkk byaxEEC ,,,,  is the aberrational magnitude corresponding to 

the aberration coefficient 
byaxE kkkkkC ,,,, , byaxE kkkkk ,,,,  are the indices of the aberration coefficients and, 
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simultaneously, the powers of individual terms inside the aberrational magnitudes.  

 

While the mixed aberrational magnitudes           byaxE

byaxE

kkkkk

kkkkk byaxEEC ,,,,  can (in principle) 

compensate each other when the charge particle passes through different cascades the purely chromatic 

aberrational magnitudes   E

E

k

k EEC 0,0,0,0,  cannot do it: the energy deviation E  and the basic energy 

E  are the same at the input and at the output of each cascade. Hence the magnitudes   E

E

k

k EEC 0,0,0,0,  

should be always accumulated and the only chance not to have the saturation effect (2) is to have all 

chromatic aberrational coefficients 0,0,0,0,EkC  to be equal to zero exactly. 

 

Fortunately this exotic case is not a rare beast in our optical jungles. That is, there are the one-

dimensional potential wells  zU0  where the charged particle oscillates with the same period regardless 

its initial kinetic energy [8–10]; the latter is equivalent to the requirement that all chromatic time 

aberrations 0,0,0,0,EkC  are exactly zeroes. All such potential well profiles can be represented in parametric 

form as 
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where   is the dimensionless parameter,  F  is an arbitrary smooth function, 0z  is the center of the 

potential well, L  is the scaling parameter along the axis OZ , 
LU  is the scaling parameter of the 

potential (see [10], however, in [11] this formula is considered as an expression which is well known 

long before). The explicit dependence  zUU 0  can be derived by excluding the parameter   from the 

equations (4) but this can be finalized in analytical form only for just a few functions  F .  

 

Suppose the charged particle makes isochronous oscillations along the axis OZ  in its vicinity. The 

initial conditions     000  yx  and     000  yx   are necessary to move the particle exactly along 

the axis OZ . The requirement 0: 0,0,0,0, 
EkE Ck  means that the one-dimensional profile 

   zUzU ,0,00   of electrostatic potential should be consistent with parameterization (4) for some 

properly selected function  F . The period of oscillations along the axis OZ  should be also 

independent from the variations of the initial coordinates x  and y  and the velocities xv  and yv . To get 

this feature it is necessary to represent the electric potential  zyxU ,,  as      zUyxUzyxU D 02 ,,,   

where  zU0  is some isochronous potential distribution taken from Eq. (4) and  yxU D ,2  is an arbitrary 

function of two variables; otherwise the equation of motion 
 

z

zyxU

m

q
z




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,,
  depends on yx, . It can 

be verified that for such potential the particle really performs strictly isochronous oscillations along the 

axis OZ  regardless its initial energy E , initial coordinates zyx ,,  and initial angles projected to the axes 

OX  and OY . Moreover, the requirement that the oscillations take place in the vicinity of the axis OZ  is 

not necessary any more for this potential; the motions along the axis OZ  and along the plane OXY  are 

absolutely independent. 

 

It can be verified easily that the only functions  zyxU ,,  which can be represented like 
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     zUyxUzyxU D 02 ,,,   and which satisfy the Laplace equation 0
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with  yxU D ,2
 satisfying the 2D Poisson equation 
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UzU L  with 0LU  are in agreement with the parameterization (4) if   0F  and 

hence these functions are isochronous (well known result for harmonic oscillators [8,9]). Unfortunately 

this is the only case where we have isochronous oscillations along the axis OZ  and can satisfy the 

Laplace equation. The systems with such electrostatic potentials are called the 2Z -TOF systems in [7]. 

 

Thus there is the following Golikov’s corollary: 

 

1) only the systems which are chromatically ideal (isochronous) can demonstrate the ideal TOF 

properties; 

 

2) 2Z -TOF systems are the only ones which are chromatically isochronous and simultaneously satisfy 

the Laplace equation; 

 

3) it can be verified directly that for 2Z -TOF systems all time of flight aberrations are exactly zero, not 

only the chromatic ones; 

 

4) hence 2Z -TOF systems are the only systems with ideal TOF properties. 

 

Clarification of Golikov corollary 

However, there is a small gap in these considerations. Namely, in Eq. (3) it is possible that not only the 

chromatic magnitudes are proportional to the number N  of the cascades but that some geometrical or 

mixed aberrational magnitudes           byaxE

byaxE

kkkkk

kkkkk byaxEEC ,,,,  are proportional to the 

number of the cascades as well. As a result the chromatic aberrations can be partially compensated by 

the geometrical and mixed aberrations (explicit formulas for first order N -cascade aberrations are in 

[12]) and the strict theory becomes more complicated.  

 

To analyze this case the specific mathematical approach called in classical mechanics the “action and 

angle variables” can be used [13-15]. Namely, the Liouville’s theorem states that for the analytical 

mechanical system which performs the motion in a restricted area of the phase space some specific 

substitution of variables always exists [13,14]. That is, there is always the transformation from the 

coordinates zyx ,,  and momenta zyx ppp ,,  into the “angles”  
zyx pppzyx ,,,,, , 

 
zyx pppzyx ,,,,, ,  zyx pppzyx ,,,,,  and the “actions”  

zyx pppzyxI ,,,,, ,  zyx pppzyxJ ,,,,, , 

 zyx pppzyxK ,,,,,  which: a) transforms the Hamiltonian equations into new Hamiltonian equations, 

173

https://doi.org/10.1017/S143192761501332X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761501332X


b) the Hamiltonian function  zyx pppzyxH ,,,,,  written in new variables depends on “actions” but not 

on “angles”.  

 

It can be proved that the analytical Hamiltonian system (in particular, the system which describes the 

motion of charged particles in electrostatic field) is the ideal TOF system if and only if it is represented 

in action and angle variables like 

 KJGICH ,  (6) 

where I  is the leading action corresponding to the motion in isochronous direction, KJ ,  are the 

complementary actions, C  is the constant and  KJG ,  is an arbitrary function [4]. The relation (6) is 

very close to the relation (5) for the isochronous electrostatic potential for the 2Z -TOF systems; 

however, it is not exactly equivalent to it. 

 

The requirement that some Hamiltonian system is the analytical one (that is, that two perturbed phase 

space trajectories are globally close to each other at infinite interval of time) is a very strong requirement 

[14]. However, typically we can assume that at least the linearized Hamiltonian system is analytical and 

hence that for the linearized Hamiltonian system the angle/action substitutions exist. It can be shown [4] 

that if nonlinear Hamiltonian system can be considered as a regular perturbation of its linearized version 

and if the linearized version is the ideal TOF system which is represented like in Eq. (6) then the source 

nonlinear Hamiltonian system is also free from the saturation effect of Eq. (2). This statement works in 

both directions: if the linearized Hamiltonian system is not the ideal one, cannot be represented as in Eq. 

(6) and hence suffer from the saturation effect of Eq. (2) then the source nonlinear Hamiltonian system 

suffer from the saturation effect of Eq. (2) as well; see [4] for the details. However, the criterion (6) does 

not work for exotic cases like bifurcations, non-linear Hamiltonian resonances, etc. — here the nonlinear 

Hamiltonian is not the regular perturbation of its linearized version. Fortunately the regularly perturbed 

systems cover 99% of the possible Hamiltonian systems. 

 

Now we are ready to formulate the Golikov theorem as a set of strict and correct corollaries: 

 

1) analytical Hamiltonian system is the ideal TOF system if and only if the Hamiltonian is represented as 

   KJGICKJIH ,,,   in its angle/action coordinates (strict proof can be produced using the 

technique [4]); 

 

2) nonlinear Hamiltonian system which is a regular perturbation of some analytical Hamiltonian system 

is the ideal TOF system if and only if the Hamiltonian of this analytical system is represented as 

   KJGICKJIH ,,,   in its angle/action coordinates (this statement is the analog of the similar 

statement for the linearized Hamiltonian systems in [4] and the typical case of the analytical 

Hamiltonian system used for the comparison with the nonlinear Hamiltonian system is the linearized 

version of the nonlinear Hamiltonian system to be investigated); 

 

3) 2Z -TOF systems [7] are the only regular electrostatic systems with the ideal TOF properties and with 

the straight line for time-of-flight oscillations;  

 

4) the existence of ideal TOF systems with curvilinear and 3D motion which can be derived from the 

relation    KJGICKJIH ,,,   for Hamiltonian functions or for the linearized Hamiltonian 
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functions, should be investigated separately; 

 

5) it is possible that some strongly non-analytical systems (bifurcations, resonances, etc.) with ideal TOF 

properties can exist in addition to analytical and nearly analytical TOF systems defined by the relation 

   KJGICKJIH ,,,   for the Hamiltonian function (see [4] for the particular example). 

 

Conclusion 

The statement considered in this paper is mainly of academic interest and importance. Like other general 

conservation laws specific for Charged Particle Optics it rather describes what cannot be achieved by the 

CPO systems than suggests the concrete ways how to solve the problem under consideration. However, 

it seems that the basic relation    KJGICKJIH ,,,   is not as “abstract” as it looks like from the 

first view. It can be used as the basis to derive new sets of the ideal Hamiltonian time of flight systems 

and some of them can be of real practical importance like it happens with [7]. However, the calculations 

necessary to do it are really huge and time consuming. This work is just started now but we hope that in 

some time there will be an effective and practical output from these academic investigations [16]. 
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