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Abstract. Let / be a continuous map of degree one of the circle onto itself. We prove
that for every number a from the rotation interval of / there exists an invariant
closed set A consisting of points with rotation number a and such that / restricted
to A preserves the order. This result is analogous to the one in the case of a twist
map of an annulus.

0. Introduction
Let f:Sl^>S] be a continuous map of degree one of the circle onto itself and let
F: U -» U be its lifting. We denote by e: U -* Sl the natural projection (here S1 = R/Z).

Definition 1. We call a set Ac S1 a twist set (respectively an almost twist set) if F
restricted to e~\A) is increasing (respectively non-decreasing).

The reader should remember that 'increasing' means the same as 'preserving order'.
Notice that the above definition does not depend on the choice of F.

The notion of a twist set is a natural generalization of the notion of a twist periodic
orbit of Alseda and Llibre ([1], [2]). It happens sometimes that non-invertible maps
in one dimension have properties similar to those of invertible maps in two
dimensions. The twist sets studied here (or rather the mat sets see definition 3 below)
are similar to the Mather sets for twist maps (see [5]).

Definition 2. We call a point x e S ' a twist point (respectively, an almost twist point)

if its orbit {f(x)}™=0 is a twist set (respectively, an almost twist set).

We denote the set of all almost twist points of/ by AT (/). The standard proof of
the existence of a rotation number of a homeomorphism of the circle applies also
to / restricted to an almost twist set. Hence, if Ac S1 is an almost twist set, then
for every X e e~'(A) the limit

p{X) = \im-(F"(X)-X)
« n

exists and is independent of the choice of X. We call it a rotation number of A. We
also use the notation p(A) and p(x) (where x=e(X)). As always, the rotation
number depends on F; if we take F' = F + k, keZ, instead of F then k adds to the
rotation number.

The rotation numbers have also been defined for other than almost twist points
(see [7]), in particular for periodic points (cf. [3], [6]).

If/ has periodic points, denote by L the closure of the set of rotation numbers
of all periodic points. It is known ([7], [3]) that L is a closed interval (perhaps
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degenerated to one point). It is called the rotation interval of/ (or more precisely,
of F). If/ has no periodic points then the situation is very similar to the case of a
homeomorphism and every point has the same rotation number (cf. [6]). In this
case L consists of this number.

Definition 3. We shall call a set A c S1 a mat set ('mat' stands for 'minimal almost
twist') if A is non-empty, closed, invariant (i.e. / ( A ) c A), minimal (i.e. for every
xe A, its orbit {/"(x)}^=0 is dense in A) and an almost twist set.
The main result of this paper is the following theorem:

THEOREM A. Let f: S' -» S1 be a continuous map of degree one. Then for every a from

the rotation interval off there exists a mat set A with p(A) = a.

Theorem A can be easily deduced from the following theorem:

THEOREM B. Letf: S1 ̂  S1 be a continuous map of degree one. Then for every rational
a from the rotation interval of f there exists a periodic twist point x e S1 with p(x) = a.

The paper is organized as follows. In § 1 we prove some simple properties of twist
and almost twist points, deduce theorem A from theorem B and derive as a corollary
a result of Ito [4]. In § 2 we describe possible mat sets. In § 3 we prove theorem B.

We denote by Z+ the set of all positive integers and by N the set of all natural
numbers (i.e. non-negative integers).

1. Twist and almost twist points
We start by proving several lemmas.

LEMMA 1.1. The set AT (/) is invariant and closed.

Proof. It follows immediately from the definition that any subset of an almost twist
set is an almost twist set. Consequently, the image of an almost twist point is an
almost twist point. Hence, the set AT (/) is invariant.

Let limn xn = x0, xn e AT (/) for n € Z+. To prove that x0 e AT (/), we have to show
that if X < Y and e{X) =f(x0), e( Y) =/(x0) for some ije N, then F(X)<F( Y).
But for such X and Y there exist Xm Ym n e Z+, such that e(Xn)=f'(xn), e( Yn) =
f(xn) and limn Xn = X, limn Yn = Y. Since X < Y, we have Xn < Yn for n sufficiently
large. But since x n eAT( / ) , we have that F(Xn)< F(Yn). Since F is continuous,
we obtain F(X)<F(Y). Consequently, xoe AT(/) and hence AT(/) is closed.

•
LEMMA 1.2. Let X e e~'(AT (/)), p e Z, q e Z+. Then:

(a) ifF*(X)-X>p, thenp(X)>p/q; ifF«{X)-X<p, then p(X)^p/q;
(b) ifp(X)>p/q, then F"(X)-X>p; ifp(X)<p/q, then Fq(X)-X<p.

Proof. If F"{X) -X>p (respectively <) then by induction we obtain Fnq(X) -X>
np (respectively <) for all neZ + , and consequently p(X)>p/q (respectively ̂ ) .
This proves (a). Then (b) follows immediately. •

LEMMA 1.3. The function p: AT (/)-»R is continuous.
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Proof. Let xeAT(f) and a<p(x). We shall show that if yeAT(f) is sufficiently
close to x, then a<p(y). Take Xee~l(x). Since p(X)>a, there exists pel and
<?eZ+such that p(X)>p/q>a. By lemma 1.2(b), Fq(X)-X>p. If yeAT(f) is
sufficiently close to x, then there exists Yee'\y) such that F"(Y)-Y>p. By
lemma 1.2(a), we then have p(Y)zp/q, and hence p(y)> a.

Analogously, if b> p(x), then for all yeAl(f) sufficiently close to x, we have
b>p(y). The continuity of p follows from these two properties. •

LEMMA 1.4. Assume that f has no periodic points. Then every point ofSx is a twist point.

Proof. Suppose that xe S1 is not a twist point. Then there exist X, YeR such that
e(X) =f(x), e( Y) =f(x) for some i, j e N, X < Y and F(X) ^F(Y). Assume that
i < j ( if _ / < i t h e n t h e p r o o f is s i m i l a r ) . T h e n Y = Fk(X) + n f o r s o m e n e Z a n d
k-j — ieN. We have

F( Y) = F(Fk(X) + n) = Ffc(F(X)) + n.

The map G = Fk + n is a lifting of / \ We have G(X) = Y> X and

Therefore G has a fixed point. This contradicts the assumption that /has no periodic
points. •

Remark. It is not true in general that if / has no periodic points then the whole
circle is a twist set.

Now we assume that theorem B holds and prove theorem A.

Proof of theorem A. Let aeL. If / has no periodic points, then L = {a}, and by
lemma 1.4 there exists a twist point x with p(x) = a. Assume now that / has a
periodic point. Then there exists a sequence of rational numbers (an)*=, such that
limn an = a and ane L for all neZ+. By theorem B, for every neZ+ there exists a
twist point xn with p(xn) = an. The sequence (xn)^=1 has a subsequence converging
to some xe S1. Since AT(/) is closed, xe AT(/). By lemma 1.3, we obtain p(x) = a.

Hence in all cases there exists an almost twist point x with p(x) = a. By continuity
of F, the closure of the set {/"(x)}"=0 is an almost twist set. Its rotation number is
a. By Zorn's lemma, it contains a mat set (minimality as denned here is the same
as the minimality in the family of non-empty invariant closed subsets of a given
set, ordered by inclusion). •

COROLLARY 1.5 (cf. [4]). For every aeL there exists XeK such that

2. Mat sets
In this section we investigate more closely the mat sets. The results are similar to
those obtained in the case of homeomorphisms.

PROPOSITION 2.1. If A is a mat set and p(A) is rational, then A is a periodic orbit.

Proof. We shall show that A contains a periodic point. Then, by the minimality of
A, it will follow that A is equal to the orbit of this point. Take X e e~\A). Let
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p(A)=p/q, pel, qeZ+. If F"(X)-p = X, then e(X) is periodic. Suppose that
Fq(X)-p> X (the proof in the case Fq{X)-p<X is similar). Then, since A is
invariant and almost twist, we have

Fq(X)-p<F2q(X)-2p<F3q(X)-3p<- • •

and the points F"q(X)-np, neZ+, belong to e~[(A). Since for every nel+ we
have p(A)<(np+ \)/nq, then by lemma 1.2(b), we have

Fnq(X)-np<X + l.

Therefore the limit

Y = \\m{Fnq{X)-np)
n

exists. Since A is closed, Ye e~\A). By continuity of F, we have Fq(Y)-p= Y,
and hence e( Y) is periodic. •

The following fact is obvious:

LEMMA 2.2. If A is a periodic orbit, then the following properties are equivalent:
(i) A is a twist set;
(ii) A is an almost twist set;
(iii) A is a mat set.

We shall call a periodic orbit which is a twist set, a twist periodic orbit (this definition
coincides with the one in [2] and is slightly different from the one in [1]). Now we
have to describe the dynamics on a twist periodic orbit (with respect to the ordering
of points of the orbit).

PROPOSITION 2.3. Let Abe a twist periodic orbit with p{A)= p/q, p e Z, q e Z+, p and
q coprime. Let

• • •<X_2<X_,<X0<X,<X2<- • •

all be elements ofe~l(A). Then for all i,jeZ we have

Xi+qj = Xi+j and

Proof Since p(A) = p/q and p and q are coprime, the period of A is nq for some
«eZ + and Fnq(Xi) = Xi + np for all ieZ. Therefore for all fceZ the number of
elements of e~\A)r\[Xk, Xk + 1) is nq, and hence Xk+nq = Xk + 1. From this it
follows easily that Xi+nqj = X, +j for all i, j e Z. Since A is a twist set and a periodic
orbit, the map

is an order preserving bijection. Hence, there exists meZ such that F(X,) =
for all i e Z. Since

we obtain m = np.
Now to finish the proof it is enough to show that n = \. Since A is a periodic

orbit and Xo, X, e e~\A), for some keN and IeZ we have Fk(X0) = X, + /. There-
fore X^p = X|+mj(, and hence 1 = n(kp-ql). Consequently, n = \. •
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COROLLARY 2.4. A twist periodic orbit as defined here is also a twist periodic orbit in
the sense of [1].

Now we start to investigate mat sets with irrational rotation number. Nevertheless,
the following lemma applies to all mat sets (in fact, to all minimal closed invariant
sets).

LEMMA 2.5. If A is a mat set then f (A) = A.

Proof. Since A is invariant,/(A) c A. Since A is minimal,/(A) is dense in A. But
A is compact, and so is f{A). Therefore f{A) = A. •

PROPOSITION 2.6. Let A be a mat set with p(A) irrational. Then:
(a) either A = S1 or A is homeomorphic to the Cantor set;
(b) ifx e A is an endpoint of an interval disjoint from A, then there exists a unique

ye A with f(y) = x; this y is also an endpoint of an interval disjoint from A;
(c) if x e A, then either there exists a unique ye A with f(y) = x, or there are two

such points; in this case they are the endpoints of some interval disjoint from A.

Proof. To prove (a), assume that A^S1. From the minimality of A and lack of
periodic points in A it follows that A has no isolated points.

Suppose that A contains an interval. Take a maximal such interval K. Let x be
an interior point of K. By the minimality of A, there exists n eZ+ such that f"(x)e K.
By the maximality of K, we have/"(/£)<= K. Hence, there is a fixed point of/" in
K. This contradicts the assumption that p(A) is irrational. Hence, A does not contain
any interval.

Since A is a closed non-empty subset of 5' without isolated points and nowhere
dense, it is homeomorphic to the Cantor set. This proves (a).

Now we prove (b). Let xe A be an endpoint of an interval disjoint from A. By
lemma 2.5, there exists ye A such that /(>>) = x. Suppose also that for some z e A,
z ̂  y, we have /(z) = x. By the minimality of A, there exist sequences (yn)^=i and
(zn)^=i such that for every n we have yn =f'(x), zn =f(x) for some i, jeZ+, and
limn_yn = y, limnzn = z. Since A is invariant, yn, zne A for all n. There exist X, Y, Z,

F(Z) = X, limn Yn=Y and limn Zn = Z. Since y * z, we have Y^Z.We may assume
that Y<Z. If m, n are sufficiently large, then Ym <Zn, and consequently F(Vm)<
F(Zn). Since limm F(Ym) = F(Y) = X and limn F(Zn) = F(Z) = X, we have
F(Ym)s X < F(Zn) for m, n sufficiently large. But e(Ym) and e(Zn) are images of
x under some iterates of/ Since p{A) is irrational, we obtain F( Ym) < X < F(Zn).
This contradicts the assumption that JC is an endpoint of an interval disjoint from
A. Consequently, a point z with the described properties does not exist. This proves
that y is the unique element of Anf~[(x).

If y is not an endpoint of an interval disjoint from A, then we can use very similar
arguments to obtain a contradiction. This ends the proof of (b).

To prove (c), we assume that there are y and z as in the proof of (b) and we
make the same construction. If there is Te A with Y<T<Z and F(T) = X, then
we obtain, as for Y and Z, a sequence (Tn)^=i of elements of e~'(A) such that

https://doi.org/10.1017/S0143385700002534 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002534


396 M. Misiurewicz

limn F(Tn) = X, F(Tn)*X for all n and F{Ym)<F{Tk)<F(Zn) for m, k, n
sufficiently large. This is impossible and hence the set Anf~\x) cannot contain
three different points. Moreover, if it contains two different points, they are the
endpoints of an interval disjoint from A. This proves (c). •

COROLLARY 2.7. If A is a mat set and p{A) is irrational, then the system (A, f\A)
arises from (S1, rotation by p(A)) by 'blowing up' at most a countable number of
two-sided orbits and/or negative semi-orbits (from every 'blown up' interval we leave
only its endpoints).

3. Proof of theorem B
We have to prove the existence of a twist periodic orbit with a given rotation number
p/q from the rotation interval of/ (where peZ, <jeZ+, p and q coprime). It is
known that if p/ q belongs to the rotation interval and p and q are coprime, then
there exists a periodic orbit of period q and rotation number p/q (see [7], [3]). We
denote this orbit by A.

If q = 1, then A is a twist orbit. If not, then by taking a different lifting if necessary,
we can reduce the problem to the case 0<p<q.

Hence, in the sequel we shall assume that 0 <p < q. The set e~\A) divides R into
a countable number of intervals. We denote them, from left to right,

. . . , 1-2, J_i, Io, I\, I2, • • • •

Clearly, we have I]+iq = 7, +i for all i,je Z. For ke Z we define a(k) <= Z as follows:

a(fc) = {i€Z:F(inf/j)<inf/k, F(sup 7,)>sup 4}.

Clearly, a(j + iq) = a(j) + iq for all i, jeZ.
We consider a family 9 of all maps <p:Z-*Z such that

(i) <p(k)ea(k) forallfceZ;
(ii) <p(j + iq) = <p(j) + iq for all i, je Z,
(iii) if k<j, then (p(k)<(p(j), (i.e. <p is non-decreasing).
By (ii), for every k 6 Z there exist n, s € Z+ and r € Z such that (p*+n(k) = cp"(k) + rq

(factorizing «p mod q gives a map of a finite set into itself). Then for all m 2 n we
have <ps+m(k) = <pm(k) + rq, and we obtain

l i m — <psm(j)=- foTJ = <p"{k).
m smq s

By (iii), we obtain from this

lim — (p'(j) = - forall/£Z.
' Iq s

We shall call r/s the rotation number of <p and denote it by p(<p). Notice, that since
<p goes 'backwards' with respect to F, the rotation numbers of elements of 9
considered here will usually be negative.

Now we shall prove several lemmas.

LEMMA 3.1. If <p, ij/eSP and <p^<p, then

https://doi.org/10.1017/S0143385700002534 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002534


Twist sets 397

Proof. Let fceZ, neZ+. We have

Hence,

D

We define maps (p and <p by

<p(fc) = min a(k), (p~(k) = max a(k) forfceZ.

LEMMA 3.2. The maps <p and ip~ belong to 9 and we have p(<p) < — piq < p(<p).

Proof. The condition (i) of the definition of 9 is satisfied for <p and ip by their
definition.

The condition (ii) is satisfied, since a(j + iq) = a(j) + iq. To show that the condi-
tion (iii) is satisfied, we have to use the definition of a. Since linix.,.^ F(X) = -oo
and limx^+co F(X) = +oo, F(e~'(A)) = e~\A) and F is continuous, we have

<p(l) = min {i e Z: F(sup /,) > sup //}

and

: F(inf/,)

From this (iii) follows.
Since A is a periodic orbit, for every keZ there exists a unique ieZ such that

F(sup h) = sup Jfc. Denote this i by x(k). Since the rotation number of A is equal
to piq, we have xq(k) = k-pq. Clearly, <p <#. In the same way as in the proof of
lemma 3.1, we can show that <p" < ^" for all n e Z+. Hence, p((p) < -/>/^. Analogously
(taking inf instead of sup and > instead of ^ ) we obtain p((p~) > -p/9 . •

LEMMA 3.3. Letk<j, l(k)ea(k), l(j)ea(j), l(k)<l(j). Then there exist l(k +1)€
a(k + \),..., l(j- I) e a(j- I) such that

Proof. Set

/(i) = min {t e Z: t > /(fc), F(sup /,) > sup /J for 1 = k + 1 , . . . , j - 1.

We have inf/, = sup/,_,, and hence from the definition of a(i), in view of the
inequality

F(inf/ / ( f c ))<inf4<inf4

we obtain l(i)e a(i). From the definition of l(i) it follows that

/(fc)=s/(fc + l ) s - • • £ / ( . / - 1 ) .

Since F(sup 7,,̂ )) > sup Ij > sup 7,-_i, we obtain /(j - 1) < /(_/). •

L E M M A 3.4. Assume that(pt, <p2£ SP, <f>\ ^ <p2, <P\ — fi and that there is no ip with tfi^ <p,,

<A ^ <p2, <P\ — *l> — fi- Then there exists a unique me{0,...,q — l} such that <Pi(m) #

<p2(m).
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Proof. Since p, and (p2 satisfy the condition (ii) of the definition of 9 and <pt ^ <p2,
such an m exists. Set

j = min {i'eZ: i> m, <pl(i)>(p2(m)},

fc = max {ieZ: i<7, <P2(')s <p,0)}

(see figure 1). Clearly, m<k<j.

Suppose that j > fc + 1. I f j < fc+g, we define ip as follows: for i = k + l,...,j-l

we set i//(i) = l(i), where l(i), i = fc + 1 , . . . ,j- 1, are the numbers from lemma 3.3,

o b t a i n e d for /(fc) = <p2(fc), l(j) = (p\(j); for i=j,...,k+q we set ij/(i) = <pi(i); if
t = i + nq for some ie{fc + l , . . . , k + q}, neZ, then i/»(f) = \p{i) + ru/. It is easy to

see that ipeP (to check that <A(fc)s ip(k + \), notice that we have i/Kfc) = (?,(fc)<

<p2(fc) = / ( f c )< / ( f c+ l ) = tMfc+l)) . For i=j,...,k + q we have iA(0 = <p,(j)< <p2(0-

For i' = fc + 1 , . . . , j - 1 by the definition of j we have <p(i)><p2(k)> (p2(m)> <p,(i)

and by the definition of fc we have ip(i)<(pl(j)<<p2(i). Hence, <p,< i/f< ip2. Since

fc + 1 <j, the set {fc + 1 , . . . , j - 1} is non-empty. For i from this set we have <p,(i) <

I/*(I) < cp2(i), and hence tyi. {(px, <p2}. This contradicts our assumptions.

If j> k + q, we define ip as follows: for i = fc + 1 , . . . , k + q- 1 we set iA(0 = ' ( ' )

from lemma 3.3 (as before) and we set i/»(fc+q) = (p2(k+q). We extend ip to the

whole of Z as before. To show that </>e 9 it is enough to check that ijj(k + q— 1 )<

<p2(fc + g) (the rest of the checking is trivial). But, as before, we have <Pi(i)< <P(i)<

cp2(i) for i = fc + 1 , . . . , k + q — 1, so in particular ip(k+q — \)<<p2(k + q— l ) s

(p2(k + q). Again we obtain <p, < i/f < <p2and i/> £{<p\, <p2}. This contradicts our assump-

tions. Consequently the supposition that j > fc + 1 was false.

Thus, we have j=k + \. This means that <p2(fc)< <p,(fc + l ) . Suppose that there

exist i, le {fc + 1 , . . . , fc +q} such that i < Z and <Pi(i) < <p2(i), <Pi(0 < <p2(0- Then we

set i/<(() = <Pi(t) for f = fc + l , . . . , i ; i / / ( f ) = <P2(O for t = i + 1 , . . . , fc + g, and we extend

\p to the whole of Z as before. It is easy to see that \\i e &. Clearly, we have <p, < i/» < <p2.

Since i/>(i) = <Pi(i) ^ <p2(i) and i//(/) = <p2(/) ^ <P\(l), we have ip ^ <P\ and </* ^ <p2. This

contradicts our assumptions.

Hence, there exists at most one ie {fc + 1 , . . . , fc +q] such that <pi(i) ̂  <p2(0- Since

<P\ and <p2 satisfy condition (ii) of the definition of 9, this ends the proof. •

L E M M A 3.5. There exist <pu <p2e$P such that (px<<p2, p( (p , )< -p/q^ p{<p2) and for

at most one me{0,...,q-l} we have <Pi(m)^ <p2(m).

Proof. Since p ( ip )< —p/q and the family 0* is finite, then there exists <pi e & such

that p{<px)<-pl q and for every </>e 9? with i ^ s ^ , and </f# <p,, wehavep( i /*)> -
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If p(<Pi) = -piq, then we can take <p2 = <Pi- If not, since <p > ipu p(<p)& -pi q and SP
is finite, then there exists (p2e 0* such that <p2><pu <P2^ <Pi and for every if/eSP with
<p, < t/> s (p2 we have either tp = (p{ or *jf = <p2. By lemma 3.4, we then have <Pi(w) ^
<p2(»i) for a unique m e { 0 , . . . , q- 1}. D

For every pair (k, i) such that i e a(fc), we define a map <I>(fc, i): Ik -» /, by the formula

This map can be discontinuous. Clearly, we have F\,.°<t>(k, i) = id/t. If X, Zelk

and X < Z, then in view of the (in)equalities F(inf /,) < inf Ik and F ( $ ( fc, i)(Z)) = Z,
there exists Y such that inf Ik< Y<<P(k, i)(Z) and F(V) = X. Hence,

This proves that <l>(fc, i) is increasing.
If there exists i p £ ^ such that p(<p) — -plq, then we consider the map

* 0 = *(*)«-1(0), <p"(0))°- • •<.*(?«)), «p2(0))°<D(0, «p(0)).

This map is increasing and maps Io into /̂ «(o) = I-pq- Hence, the map 4>o+P is
increasing and maps Io into itself. Therefore it has a fixed point Xo (it is easy to
see that sup {X e Io: <f>0(X) + p < X } is such point). Every element of
e"'({/"(e(X0))}~=0) belongs to some interval /, with i = <p}:(0) + kq, j e { 0 , . . . , q- 1},
/CGZ. TWO different elements cannot belong to the same interval, since then the
denominator of p(<p) would be smaller than q. Therefore it follows from the
properties of <p that e(X0) is a periodic point of period q and rotation number p/q
and its orbit is a twist set.

Thus, to complete the proof of theorem B, it is enough to consider the case of
p((p\) < -p/q < p(<p2), where <p, and <p2 are from lemma 3.5. Without any loss of
generality, we may assume that m=Q. Then we have <p,(fc) = (p2(k) if q does not
divide k and (pt(k)<<p2(k) if q divides k. We make these assumptions for the rest
of the proof.

We have p((pj) = r{/st, where r, and s, are coprime, for i = l, 2. By the above
assumptions, r]/s,<-p/q<r2/s2.

LEMMA 3.6. (a) We have <pH0) = M Sor ' = 1,2.
(b) The numbers <pJj(O) for j = 1 , . . . , s{ — 1 (i = 1, 2) are not divisible by q.

Proof. If (a) is not true, then we have <pf'(/c) = k + rtq for some / e {1, 2} and k e Z,
where none of the numbers <p\(k) (j = 0 , . . . , st — 1) is divisible by q. But then <p,
and <p2 attain the same values at these numbers, and consequently p(«p,) = p(<p2),
which contradicts our assumptions.

If (b) is not true, then we have <pJi(O)=tq for some ie{i,2}, teZ and je
{ 1 , . . . , st — 1}. Then p(<pj) = t/j. Since 0<j<st, this contradicts our assumption that
r, and s, are coprime. •

LEMMA 3.7. We have s, r2 - s2r, = 1.

Proof The set {<p"(iq): n e N, i e Z} is of the form {..., fc_2, /c_i, /c0, fei, k2,...}, where
• • • < k_2 < fc_i < k0 < /c, < fc2 < • • • and fc0 = 0. By lemma 3.6 we have kiS2 = iq for all
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i e Z and no other fc, is divisible by q. Since <p2 is non-decreasing, it is increasing
on the above set (otherwise the denominator of p(<p2) would be smaller than s2),
and consequently (p2(fc,) = ki+r2 for all i e Z .

Let us take i, j e Z such that j > fc,. If q does not divide j , then

If q divides j , then we distinguish two cases. The first case is s2> 1. Then q does
not divide fc,_,, and hence

<P\U) - <Pi(fe.-i) = <Pi(ki-x) = fc,+r2+i.

The second case is s2 = 1. Then

7 - 1 > j - q > fc,i - q = iq - q = fc,_,.

Since q^2, we have <Pi(j—l) = <P2(j—l), and hence

Vl(j) ^ <P 1 (J — 1) = <P2(j - 1) S <P2(ki-l) = fcj+^-1-

In both cases when q divides 7, we obtain <pi(7")sfcj+r2_,.
By lemma 3.6, only one of the numbers cp'i(O), 1 = 0 , . . . , s, - 1, is divisible by q.

Therefore we obtain

But <pf'(O) = rxq = kr<S2. Hence, rls2^slr2-l. Since r,/*, <r2/s2, we have r1s2<-sir2,
and therefore r, s2 = s, r2 - 1. •

Set n, = s2/> + r2q, n2 = -sxp-rxq.

LEMMA 3.8. We have:

(a) Mi, n 2 >0 , «i +«2— >̂ "i a " ^ "2 a r e coprime;
(b) nxrx+n2r2 = —p, nxsx+n2s2 = q.

Proof. From the inequaltiy r,/^! < - p / g < r2 / i 2 it follows that nx and n2 are positive.
From the definition of nx and n2 and from lemma 3.7 it follows by a direct
computation that (b) holds. Since p and q are coprime, we obtain from (b) that nx

and n2 are coprime. Since 5,, s2> 1, we have n, + / i 2 s n ^ +«2
S2 = <?• D

Now we go back to the maps O(fe, i).

LEMMA 3.9. Let ie{l ,2};7, fceZ; X e Ij, Yelk and X < Y. Then

Proof. If (p.O') < (p,(fc) then the conclusion is obvious (we cannot have the equality
of these points since then X = Y). If <Pi(j) = <p,(fc), then the definitions of $(7, ^,-(7))
and 4>(fc, <Pi(k)) are the same and the conclusion follows in the same way as the
monotonicity of <£ (see the proof following the definition of <3>(fc, i)). If <p,(_/) > <p,(fe),
then 7" > k, which contradicts the assumption X < Y. Hence this case cannot occur.

•
For i e{ l ,2} write

<&,=<I>(<Pr1(0),<pH0))°- • •°<&(<pI(0),<

The map <!>; maps Io into Ir.q and is increasing.
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LEMMA 3.10. Let X,, X 2 e /„. Then $2(X2)-r2<<I>1(X1)-r1 .
Proof. For i = 1, 2 we have

Assume that s,<s2. Since p(<p2)> rjsu we have <p|'(—r^)>0, and hence

By lemma 3.6(b), we have

<psi'(<P2
2~s'(-r2q)) = <psA<p22'2'(-r2q)) = ( ^ ( - ^ g ) = 0 = cpj'(-r,g).

Using lemma 3.9 5, times, we obtain consecutively

FS'-'(<D2(X2) - r2) < F ' I - ' ^ ^ X . ) - r , ) , . . . , <D2(X2) - r2< * , (X. ) - r,.

Analogously, if 52<s, , then -r2<7<<p*'~S2(-''i<?),
X2) - r2) < F ^ . C X . ) - r,),

and we also obtain
4>2(X2)-r2< <*>,(*.)-r,-

Assume that s, = i2- Then we have -r2<-ru Using the notation from the proof of
lemma 3.7, we have -r2q = fe-r2S2 and -r,q = fc_riJ2. Thus, by the inequality obtained
in the proof of lemma 3.7, we have (f\{-rxq)> fc_riS2+r2_i. Since -rxs2- 1 ^ - f 2 5 2 ,
we obtain

<Pi(-riq) s fc_r2i2+r2 = <p2(fc_r2l2) = cp2(-r2q).

If <p2(-r2q) < <Pi(-rl(j), then

FS'-'(<I>2(X2) - r2)< F^ 'C^.CX,) - r,).

If <Pi{-r2q) = <P\(-rxq) then the definitions of <J>(-r,q, (p,(-r,q)) and
^K-^tf, <P2(~'-29)) are the same and the inequality

F*<-\4>2(X2) - r2) < F*'-'(<i>1(X1) - r,)

follows from X2 — r2 < X, — rx (which is true since X2 — r2 e l-riq and X, — r, € / - r , , )
in the same way as the monotonicity of 4>. In both cases we obtain

FS.-'(4>2(X2) - r J s F ' - ' C & . f X , ) - r,).

If «i = 1, then the proof is complete. If s{ > 1, then we proceed as for the case s{ ^ s2

(use lemma 3.6(b) and then lemma 3.9 s, - 1 times) and we obtain

*2(X2)-r2£ *,(*,)-r,. D

LEMMA 3.11. Fori = 0,..., «i - 1 we have i - sxp = (n2 + i) + riq, andsx is the smallest
positive k such that i-kp= I (mod q) for some I e { 0 , . . . , «, + n2 -1}.

Fori= « , , . . . , « , +n2- 1 we have i - s2p = (i - n^ + r2q and s2 is the smallest positive
k such that i — kp= I (mod q) for some I € { 0 , . . . , «( + n2 — 1}.

Proof. The equalities i - s x p = (n2 + i) + rxq and i - s2p = (i - «,) + r2q follow directly
from the definitions of n, and n2. We can restate these equalities as follows. Let
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ij:{0,...,q-l}-*{0,...,q-l} be given by £ ( / ) = t-p (mod q), and let

£ : { 0 , . . . , M, + n2- l } - » { 0 , . . . , n{ + n2- 1} be given by £(t)=t + n2 (mod M , + « 2 ) .

Since p and q are coprime and n, and n2 are coprime (see lemma 3.8(a)), both £

and £ are cyclic permutations. By lemma 3.8(a), we have { 0 , . . . , n, + n2- 1}<=

0, . . . , q i - l } . Write

[2 if i G { n , , . . . , n , + n 2 - l } .

Then for all i e { 0 , . . . , n, + n2- 1} we have £s<(0(i) = £(»)• Hence, for a fixed / e

{ 0 , . . . , n, +n2- 1}, we have

{ 0 , . . . , n, + n 2 - 1} = {i, £{i),..., r i + " 2 " ' ( ' ) } = {', ffc<I)(i), • • • , ^ ( " ' + " ^ ' ' ( ( ) } ,

where b(t) = s e 0 ) + s e ( f ( 0 ) + • • • + seU'-\t)). Since the elements i, £(i) , • • • , £ ' ' ( ' ) are

mutually distinct, we have b(t)< /i ,^, + n 2 i 2 . Hence, by lemma 3.8(b), we obtain

b(t)<q for f = 1 , . . . , n, + n 2 - 1. There are only n, + n 2 numbers fce{0,. . . , < ? - 1}

such that gk{i)e{0,..., n, + n 2 - 1 } . Thus they are the numbers 0,

fe(l),..., fo(«i + n2— 1). The smallest positive one among them is b{l) = s f ( 0 . This

completes the proof. •

We define a sequence (c,-)/=0 as follows:

(1°) co = 0;

(2°) if - j p = i (mod q) for some i e { 0 , . . . , M , - 1}, then cJ+l = <Pi(c,); if not, then

Cj + l = <p2{Cj).

LEMMA 3.12. We have:

(a) q divides Cj if and only if —jp= i (mod q) for some i e { 0 , . . . , n, +n2— 1};

(b) cq = -pq.

Proof. Assume that for some j e { 0 , . . . , q - 1}, i" e { 0 , . . . , n, + n2 - 1} and fc e {1, 2}

we have —jp = i (mod q), q divides c,, and cJ+1 = <pk(cj). Then by lemma 3.6, g does

not divide c , + 1 , . . . , CJ+J,,-, and q divides cj+Sk (remember that <Pi(/) = <p2(') if q does

not divide /). By lemma 3.11, for t=j + l,... ,j + sk-l there is no le

{ 0 , . . . , « , + n 2 - 1} such that -tp = /(mod q) and for t=j+sk such an /exists. Hence

(a) follows by induction.

When j varies from 0 to q — 1, then it happens n, times that —jp = i (mod q) for

some i € { 0 , . . . . «i - 1} and then

and it happens n2 times that —jp= i (mod q) for some ie{n{,..., nt+n2— 1} and then

Hence, cq = 0 + nlrlq + n2r2q = -pq. D

We define a map 4>0 by

4>0 = O(c,_1 , cq)o- • - ^ ( c , , c 2 ) °$(c 0 , c,).

L E M M A 3.13. 77ie map O 0 / sa composition of maps <I>, — Cj/ q for those j t { 0 , . . . , q— 1}

/ o r which q divides Cj, where i = 1 i / —jp = / (mod g) for some I e { 0 , . . . , n{ — 1} and1

i = 2 if —jp = I (mod q) for some / e { « 1 , . . . , n 1 + n 2 — 1 } . The map <J>0 maps h into I-pq.
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Proof. The above properties of <J>0 follow immediately from the definitions of <&,
(i = 0, 1,2) and the sequence (c^jLo and from lemma 3.12 and its proof. •

LEMMA 3.14. (a) We have -\<rl/sl and r2/s2sO.
(b) For all ie{l,2},jeZ and keN we have

Proof. Since r2/s2> -p/q> - 1 , rjsi< -p/q<0 and r2s] - r,s2= 1, we have -s1s2<
s,r2 = r,s2 + l and 0> r,s2 = r2s, - 1. Hence -sls2^ris2 and 0>r2i , . Consequently
- s , s r, and 0> r2. This proves (a).

For i = 2, (b) follows from the arguments used in the beginning of the proof of
lemma 3.7 and the fact that r2<0. To prove (b) for i = 1, we use similar arguments.

•
The map <$>0+p: Io-+ Io is increasing, and hence it has a fixed point. We call this
point Xo. The rotation number of Xo is p/q, and since p and q are coprime, the
period of e(X0) is q (it is clear that e(X0) is periodic).

LEMMA 3.15. The orbit of e(X0) is a twist set.

Proof. Write B = e'[({f"(e(X0))}^=0). The set B consists of points of the form
F'(X0)+j> ieN,jel. Let us assume that X, Y e B and X < Y. We have to show
that F{X) < F( Y). Let F(X) e /,, F( Y) e Ik. We can choose j and k in such a way
that they are of the form (p"(0) +mq (of course, we have a choice only if F(X) or
F(Y) is an endpoint of the corresponding interval; but as yet we have not excluded
this possibility).

If j < k then clearly F(X) s F( Y). But since B is a lifting of a periodic orbit, we
cannot have F(X) = F{ Y), and hence F(X) < F( Y).

Assume that j s k If there exists ie{l,2} such that X e IV[iJ) and Y e IVt(k), then
F(X)<F{Y) (we cannot in this case have F(X)> F(Y), since then, by lemma
3.9, X> Y). Assume that such an i does not exist. Then q divides bothy and k. If
j>k, then X&IVx{j) and YeIV2ik). By lemma 3.14(b), <p2(/c)<fc, and we have
<p,(j)s k<j-q. Consequently, p((p,)< - 1 , and by lemma 3.14(a), r,/s, = - 1 . Then
X e Ik, and thus Ye Ik. Therefore p((p2) = 0 and hence r2/.s2 = 0. Thus we obtain in
the case of j > k that X = 0>,(F(X) -j/q) + k/qandY = <I>2(F( Y) - k/q) + fc/q. By
lemma 3.10, we obtain Y<X, which contradicts our assumptions.

We are left with the case of j = fc, q divides j . Without any loss of generality we
may assume that 7 = 0. Recall the situation: F{X), F(Y)eI0, X, YeB,
X = $(0, <p,(0))(F(X)), Y = <J>(0, (p2(O))(F(Y)), and we want to prove that
F(X)<F(Y).

Consider the set B n Io. By Lemma 3.13 we have B n / o c f i | U B2, where B, = B n
(4>,(J0)-ri) and B2= Bn(4>2(/0)-r2). By lemma 3.10, all points of B2 lie to the
left of all points of Bu except perhaps one common point. But for this common
point Z we would have Fs'(Z)eI^rtq and F'2(Z)e/_r,q. Either s, > s2, but then

(p^~s2(_riq)^ -r2q; or s, < s2, but then <p2
2~Sl(-r2q)# - r ,q ; or s, = s2, but then

-rxq^ -r2q. In all cases the only possibility is that either FS*(Z) is an endpoint of
I-riq or FSl(Z) is an endpoint of /_r2q. But then the orbit of e(X0) is equal to A
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(recall that A was the orbit chosen at the very beginning of the proof of theorem
B). This contradicts the fact that Z is an interior point of Io (which follows from
the definition of Z and lemma 3.10). Hence Blr\B2 = 0.

By the arguments from the previous part of this proof, the maps FS'\B. (i= 1,2)
are increasing. Since F5 '(B,)+ /-,<= Bnlo and FS2{B2) + r 2 c Bn 70, we can define
by induction for every Te Bn Io a sequence (e n (T))^ = 0 as follows:

Vrlt

where t = seoiT) + - • • +sEn_i(r), /= reo(T) + - • • +rEn_l(T). By lemmas 3.11,3.12 and 3.13,
if T-Fm(X0)+u for some meM, weZ and mp=k (mod q) with fce
{ 0 , . . . , M , + M 2 - 1 } , then

if k +pt = v for some v e {n2,..., M, + n2 - 1}
iffc+/>f=i> for some u e { 0 , . . . , n 2 - 1 } ,

where f is defined as before (notice that here we have the maps which are inverses
of the maps from the proof of lemma 3.11).

Since FS||B. (i = 1,2) are increasing, we have F{X)<F(Y) if and only if
(en(F(X)))^= ooc(gn(F( Y)))"=o, where oc is the lexicographical order induced by
the order 2oc 1. But it is easy to see (look at the map t^t — n2(mod nt +n2)) that
we have (en(F(X)))?=0oc (en(F( Y)))?_o if and only if k(F(X)) < k(F( Y)), where
k(F(X)) and fc(F( Y)) are defined as k above for T= F(X) and T=F(Y) respec-
tively. Since X = $(0, cp,(0))(F(X)) and Y = <I>(0, <p2(0))(F( Y)), we have
k(F(X)) e { 0 , . . . , « , - 1} and fc(F( Y)) e { « , , . . . , n, + n 2 - 1}. Therefore fc(F(X)) <
/c(F( Y)), and consequently F(X) < F( Y). D

Now the proof of theorem B is complete.
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