
Can. J. Math., Vol. XXXIX, No. 1, 1987, pp. 100-122 

DIRAC SYSTEMS WITH DISCRETE SPECTRA 

D. B. HINTON AND J. K. SHAW 

1. Introduction. In this paper we consider the one dimensional Dirac 
system 

r i n v, = ( P(x) X(Xi(x) + P2(x)\v 
K ) y \-\ax{x) -P](x) -p(x) F 

\y2 

where ak(x) > 0, X is a complex spectral parameter, and the remaining 
coefficients are suitably smooth and real valued. We regard (1.1) as regular 
at x = a but singular at x = b; in Section 4 we extend our result to 
problems having two singular endpoints. 

Equation (1.1) arises from the three dimensional Dirac equation with 
spherically symmetric potential, following a separation of variables. For 
the choicesp(x) = k/x, ak(x) = \,p2(x) = (z/x) + c,px(x) = (z/x) — c, 
and appropriate values of the constants, (1.1) is the radial wave equation 
in relativistic quantum mechanics for a particle in a field of potential 
V = z/x [17]. Such an equation was studied by Kalf [11] in the context of 
limit point-limit circle criteria, which is one of the matters we consider 
here. 

We will be concerned here generally with the bound energy states of 
(1.1). Specifically, our objective is to give sufficient conditions under 
which the self adjoint operators associated with (1.1) have purely discrete 
spectra; i.e., spectra which consist solely of isolated eigenvalues. In so 
doing, we will extend the results of Roos and Sangren [15] and the account 
of their work in the book of Levitan and Sargsjan [13]. These articles treat 
a simpler system 

(..2, /-(_x_°, lW * +
0 ^ V » ^ < -

in which the potential terms qk(x) are smooth and regularly growing. 
Their method is analogous to one of Titchmarsh [18, 19, 20] and involves 
the asymptotic form of solutions of (1.2) under hypotheses which 
guarantee absolute integrability of the quantity 
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DIRAC SYSTEMS 101 

<13> ' " - ( I r f f O " 4 

xd_ f (A + <72(x) )<?',(*) ~ ft + g i ( * ) # 2 ( * ) \ 
dx I (\ + qx(x)f\\ + q2(x))llA ) 

Levitan and Sargsjan assume conditions which yield P e L [0, oo), while 
[15] takes the condition P e L [0, oo) as a direct hypothesis. The most 
crucial conditions are that qx{x) —» zboo and #2(x) ~^ +°o, as x —» oo, and 
when these and the other hypotheses are satisfied the spectrum is purely 
discrete. The additional hypotheses are essentially that qk(x) and qk(x) be 
of one sign and satisfy 

lfc(*)l = 0{ |^(x) |c}, 0 < c < (3/2). 

Our results extend those of [13] and [15] to the extent that we allow 
main diagonal and weight terms in (1.1), we treat both one and two 
singular endpoint problems, and we require only that certain components 
of the potentials be of smoothly regular growth; our specific smoothness 
assumptions are much weaker than those of [13, 15]. We break down our 
presentation into two cases: (i)p(x) is the dominant term of (1.1), or (ii) 
the pk(x) are the dominant terms of (1.1). These cases occupy Sections 3 
and 2, respectively. Our basic hypothesis is that when the dominant term 
is factored out of the matrix in (1.1), the resulting entries are 
decomposable into long range, short range, and oscillating terms; we 
define these expressions precisely below. 

The authors used the same decomposition of potential terms in [8], 
where we studied smoothness of the spectral function throughout the 
continuous spectrum. But in the present paper the continuous spectrum is, 
of course, empty. 

When coupled with [8], our results here extend further the duality which 
exists between discrete and continuous spectral criteria of (1.1) when the 
termspk(x) are sufficiently dominant. The basic principle is that if px(x) 
and/>200 have the same sign the spectrum is absolutely continuous on the 
whole \-axis, and if their signs are opposite the spectrum is purely 
discrete; compare [13, pp. 228-230]. 

To study the spectrum of (1.1) we will derive the asymptotic form of its 
solutions. We generalize the technique used in [9], which dealt with a 
special case of (1.1) with singularity only at x = 0. 

In order to state our theorems, we require some terminology. 
Introducing the operator T, whose domain is defined below, by 

<-> *>-(%".£.){(? VV - ('; ;>}• 
we may express (1.1) in operator form Ty = Xy. We employ a boundary 
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102 D. B. HINTON AND J. K. SHAW 

condition at JC = a in the usual way by writing 

B(y) = sin fiyx(a) + cos fiy2(a), 

and we let La[a, b) denote the Hilbert space 

{> / > • 
|2 >y\y is measurable and / («ilj^J + a2\y2\ ) < oo 

Now let 

D(T) = {y e L^[a, b) \y is locally absolutely continuous, 

B(y) = 0 and Ty e L2
a[a, b) }. 

We know that Weyl's limit point-limit circle classification holds for Dirac 
systems [12]; i.e., either there is exactly one independent solution of (1.1) 
in La[a, b) for all non-real X (limit point case) or every solution lies in 
L^[a, b) for every X (limit circle case). If (1.1) lies in the limit point case, 
then T:D(T) —» L^[a, b) is a self adjoint operator; in the limit circle case a 
boundary condition must also be imposed at x = b [16, 21]. In the limit 
circle case, the spectrum of each self adjoint operator associated with (1.1) 
has discrete spectrum; see [10, 16] and remarks below linking the spectrum 
to the Titchmarsh-Weyl function. Hence there are two routes to proving 
discreteness of the spectrum of an operator arising from (1.1). We may 
either establish that (1.1) is of limit circle type, or we may prove directly 
that the spectrum of T is discrete if the limit point case holds. 

We say that the complex valued function/(x) is of short range type if 
/ G L [a, b); i.e., fis measurable and 

\f(x) \dx < oo. 

A differentiable function f(x) w i t h / ' G Ll[a, b) a n d / ( x ) —» 0 (JC —» b) 
will be called a long range term. I f / (x) is conditionally integrable on [a, b) 
and if the function 

V(x) = fx f(s)ds 

lies in L [a, b), then we say that f(x) is of oscillatory type; a typical 
example is 

f(x) = x~ sin(x ) on [1, oo). 

We now state our principle result for the case in which the termspk(x) 
are the dominant ones in (1.1). 

THEOREM 1. Suppose that pk(x) = pkx(x) H- pk2(x), where pu(x) > 0 
andp2\{x) < 0. Assume that 

(-ak(x)/pk2(x)) = rk](x) + rk2(x) + rk3(x) and 

(-PklW/PkM)) = sk\(x) + ski(x) + ^ C * ) ' 

/ : 
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where rkx and skx are long range, Q(x)rk2(x) and Q(x)sk2(x) are oscillatory, 
and where Q(x)rk3(x) and Q(x)sk3(x) are short range, with 

Q(x) = (-Pu(x)p2,(x))m. 

Let 

A = (Pn\x)p'n(x) ~ P2\\x)p'2X{x) -p(x))/Q(x) 

= àx(x) -f A3(x), 

where Aj is long range and Q(x)k3(x) is short range. Letting 

** ( j c ) = J x Q^y^iOdt and Sk(x) = J x Q(t)sk2(t)dt 

(Rk, Sk G L [a, b) by definition) assume that all of the functions 

J x \K(t)u\t) \dt9 K(x)v(x) and v(x) J x \K(t)u\t) \dt 

lie in L [a, b), where K stands for either Rk or Sk, v stands for either Qr:2 or 
Qsj2, and where u stands for any one of rmh sml or Ax. Let 

/*0(x, X) = [(1 - rxx(x) - Xsxx(x))(\ - r2X(x) - Xs2X(x) ) 

+ A ^ ) ] 1 / 2 

and 

E(x, X) = exp J Ja ii0(t, X)Q(t)dt j . 

Then the condition 

(E2(x, 0) + E~\x, 0))( ax(x) p ^ 
7>ll(*) 

a2(x) )dx = oo 
P2\(x) ' 

is necessary and sufficient for (1.1) to be of limit point type. If the limit point 
case holds and 

/ : [-pu(x)p2](x)]U2 

then T has discrete spectrum. 

The main discrete spectrum result of [13, p. 230] is the special case 
of Theorem 1, in which ak = 1, pk2 = 0, skj = 0, rk2 = rk3 = 0, 
rkX = —\/pkx, Aj = A3 = 0. The hypotheses of [13] are easily seen to 
imply that rkx is a long range term. 

An interesting special case of Theorem 1 is the one in which (ak/pkX) is 
bounded for each k. In this situation, the condition 
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104 D. B. HINTON AND J. K. SHAW 

/ : -Pn(x)p2\(x)]U2dx < oo 

implies finiteness of (1.5) and so becomes a limit circle criterion. 
The dominance of thepk(x) terms overp(x) and the ock(x) is reflected in 

the assumptions on (ak(x)/pk](x) ) and A(x). 
The theorem may be illustrated using powers of x on 1 ^ x < oo 

if we take p(x) = x}\ a{(x) = xY, a2(x) = x , pu(x) = x , p2\(x) = 
-xn\ p22(x) = 0, pl2(x) = xA+asin(x4). Then for the hypoth
eses to be satisfied it is sufficient that y < k, 8 < ra, n < (m 4- k)/2, 
-1 < (m + fc)/2, and Â: + a < 1. 

We now require a brief discussion of the Titchmarsh-Weyl m-coefficient 
for (1.1). Let 0(x, A) and 0(JC, À) denote the solutions of (1.1) with initial 
values 

«••*>-(«$)• •<*«- ( _ r / ) - <»si><*> 
with the same 8̂ as introduced below (1.4). Since B($) = 0, then the 
eigenvalues of T are those real values of X for which $ G LJ#, />). In 
the limit point case for (1.1), the limits 

(1.6) m(X) = — lim —! = — lim - ^ 
x-*b Oj(x, A) JC-̂ /> 3>2(x, X) 

exist for lm(À) ^ 0, and define a function which is analytic in each half 
plane; see [4, 5]. The function m(X) is known as the Titchmarsh-Weyl 
coefficient. The real axis may comprise regular points, poles or other types 
of singularities of m(X). A complete characterization of the spectrum of 
T in terms of m (A) was given in [6], and in [7] for two singular end-
point problems. The only results we need here assert that a point A0 

is an isolated eigenvalue of T if and only if X0 is a simple pole of 
the m-coefficient, and A0 is in the resolvent set of T (i.e., is not in the 
spectrum) if and only if m(X) is analytic at A0. Consequently the spectrum 
of T is discrete if and only if m (A) is a meromorphic function, and the 
latter is what we will actually prove in all cases in this paper. 

Finally, we require a theorem on the asymptotic behavior of solutions of 
(1.1). Consider a system of the form 

(1.7) z\x) = [W(x)tt~\x) + B(x) + C(x)]z(x), a ^ x < b, 

where Q, is an n X n diagonal matrix whose entries are complex valued, 
locally absolutely continuous, nonvanishing functions, and B(x) and C(x) 
are n X n complex, locally integrable matrix functions. Assume that each 
term elk(x) = Çlu(x)Çl~]

kk(x) satisfies either 

(1.8) \eik(x)/elk(s) \ g M for x0 ^ s ^ x < b, lim elk(x) = 0 
x-*b 

or 
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(1.9) \elk(x)/elk(s) \ ^ M for x0 ^ x ^ s < b, 

for constants x0 and M > 0. In [3], condition (1.8) is called "essentially 
decreasing", (1.9) is called "essentially increasing", and the following 
theorem is proved. 

THEOREM A ( [3] ). Suppose in addition to (1.8) and (1.9) that 

fb 
B0(x) = J B(s)ds exists, 

J a \\C(s)\\ds < oo 

(where ||-|| is the matrix operator norm) and 

J a \\G(s)\\ds < oo, 

where G = - £ n 2 _ 1 5 0 + B02'2~l + B0B. Then there is a fundamental 
matrix Z a/* (1.7) such that 

(1.10) lim Z(x)Sl~](x) = L 

We are now ready to prove Theorem 1, the /^-dominant case of (1.1). 
The/?(x)-dominant case will be considered in Section 3. 

2. Proof of theorem 1. We begin by removing the/?(x) terms from (1.1) 
by letting 

F(x) = exp J ap(s)ds 

and introducing a new dependent variable w(x), where 

, , (F(x) 0 \ , . 

so that w(x) satisfies 

<2» " w - ( - ^ 1 + , l ) *"*"$+*>)*<* « * * < » • 

A further change of dependent variable will "equalize" the magnitudes of 
the dominant terms in (2.1). Let 

7lx(x) = F-l(x)(~p2l(x)/pu(x))l/\ V2(x) = \/V](x) 

and define z(x) by 

Then a calculation shows that z(x) satisfies 
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106 D. B. HINTON AND J. K. SHAW 

(2-2) * ' ( * ) = ( , - 2 ^ i . ( ^ / r > " 2 ( ^ + ^ ) z ( J c ) , 

a â x < />. 

Recall thatpk(x) = pkl(x) + pk2(x) and note that 

(-p2X/r)]F2) = ^ F 2 p n = ( - j P l l j p 2 1 ) , / 2 = g . 

Substituting this into (2.2) and factoring out the term Q(x)7 we obtain 

-v'AviQ) - 1 - ^ 2 - c ^ -
/>21 />21 

(2.3) z'(.x) = 6 (x ) | \z(x). 

- i - ^ i - ^ -V(U2<2) 

Recalling the notation from the statement of Theorem 1, and intro
ducing 

akj{x9 X) = rkj(x) + \skj{x)9 

(2.3) may be written as 

z\x) = Q(x)l , ̂  Al 1 A3 , 
^ v 7 V - 1 + au + fl12 + A13 

- 1 + fl21 + tf22 + «23 V 
-A! - A3 rxh 

which we decompose as 

,2.4, ^ ) - { « . ) ( _ / ; a„ -'_;"") + < "o2) 

= {Q(x)Dl(x9 X) + e(x)Z)2(x, X) + Q(x)D3(x, X) }z(x), 

with obvious notation. 
Our approach will be to diagonalize the leading term in (2.4) and apply 

Theorem A to the resulting system. To this end we compute the 
eigenvalues of the first matrix in (2.4) by solving the determinant 
equation 

""(r:^, U î , , ) - ' , - A Î - ( , - a " x l - "" ) -
The roots are \x = ±/x0, where 

(2.5) H(x, A) = [(1 - au(x, A))(l - a2l(x, A)) + A, (*) ] l / 2 , 

taking the principal branch of the square root. Note that /x0(x, X) —» 1 as 
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x—>b, uniformly on compact X sets, since ak] and Aj are long range terms. 
By redefining, if necessary, the long and short range parts of (2.4), we may 
assume without loss of generality that ju0 ¥= 0 and a2\ ¥= 1. The matrix of 
eigenvectors 

s = ( l ~ a2\ 1 ~ a2\ ) 
V - ^ o + A! /x0 + tixr 

diagonalizes D] in (2.4) in that 

S'^D^ Vo - H ) -
Following the usual procedure let £ = S z, so that (2.4) is equivalent 
to 

(2.6) i'(x) = { e ^ o _° ) + S~]QD2S + S~]QD3S 

- S~xS'\((x), a^ x < b. 

Let 

0 , , . / £ ( J C , X ) 0 \ 

ii(x, X) = [ Q 1/£(jtj X) j 
where E(x, X) is defined above (1.5), so that 

Œ'Œ-1 = Q VO - a J ' 

and put 

5 = S~lQD2S, C = S~lQD3S - S~lS'. 

We wish to apply the asymptotics of Theorem A to (2.6), and so we must 
show that its hypotheses are satisfied. 

Starting with the term S~]S\ note that 

2<r1(*,A)^(j 1
1), x->b, 

uniformly on compact X sets. Now S' contains the terms a2l and à\ which 
are long range by assumption. As for the term ju0, we have 

Hi = (1 - fl„Xl - *2l) + 4 

which implies 

2 ^ = (1 - a 2 1 ) ( -a 2 1 ) + 0 ~ «2iX-a'n) + 2A,A'„ 
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108 D. B. HINTON AND J. K. SHAW 

and so it follows that /AQ e L][a, b) and then that S~xSf e Ll[a, b). Since 
S~x and S approach constant matrices, S~lQD3S consists entirely of 
Lx[a, b) terms by assumption. Therefore the matrix C(x, À) has absolutely 
integrable entries, so 

Cb 
\\C(s) \\ds < oo. / : 

Turning now to conditions (1.8) and (1.9) we have eu = e22 = 1 and 
eX2 = E , e2\ = E~ . Considering e21, note that 

(2Re/^/ i 0 ( / )G(0^) , k1200 | = exp 

so that \en(x) I is actually monotone for sufficiently large x since /x0 

and 2 ( 0 > 0, and similarly for e2l(x). 
Next we will show that 

B0(x) = fx B{t)dt 

satisfies the hypotheses of Theorem A. By a routine calculation, 

, 1 7 ) , _ < » • « ( • - < * > ( - • - i ) 

iy£/„ i - I ' 2 ^ A 2 ' " ^ A ^ 

Û 9 i ) V 

6*22 ( " M o + Af ( M 0 + A, ) z 

^2 . 2 _ A 2 2ji0(l - a2l) V-0* o - A,)2 Mo - A 

and this term is required to be conditionally integrable. Looking at the 
first scalar term on the right of (2.7), let us introduce Vk(x) = Rk(x) + 
XSk(x) and then write 

A g a 1 2 ( l - a 2 1 ) = _ A yl / ( l - a 2 , ) \ 
•'« Mo •/fl ' ^ J"o ' 

(2.8) =p0-«2.>|-
L Mo J " 

+ / ~ x
V | ^ o ( - 4 i ) - ( i - ^ i ) M 0 y 

Since F,, a21 "^ 0 a n d Mo ~^ 1 t n e fifSt t e r m o n t n e right of (2.8) converges 
(to 0) as x —» 6. As for the integral on the right of (2.8), we know a2X and /x0 

are long range terms and so the integral converges absolutely as x —-> 6. 
Hence the first term on the right of (2.7) is conditionally integrable. 
Turning to the second term in (2.7) consider first the expression 

Qa22(fi
2
0 - A 2 ) / ( j u 0 ( l - a2l)X 
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which occurs on the main diagonal; proofs for the other entries will be 
similar. Proceeding as above, 

.2 _ *2x rr I / . .2 _ A2x 
( 2 9 ) F QfhM - *f) _ F ( Qig - Af) \ 

J- H{\ - a 2 1 ) J" 2VMo(i - an)> 

L 2V^0(1 - 02,)/J« 

+ r ( (^ - A?) y 

where the differentiated expression contains in each term a long range 
function. Thus the right side of (2.9) converges as x —> oo, and this 
completes the proof that B(t) is conditionally integrable. 

Lastly, we come to the function G of Theorem A, where we are required 
to prove G e Ll(a, oo). Write B0(x) = f/(x) + W(x\ where t /and Ware 
integrals of the respective terms in (2.7). Then by definition of G, 

and we will now show that U2l, Ul2, W2\, Wl2, B0B e Lx[a, b). Working 
first with U2X = — f/12, by (2.8) we see that 

= F,(l - a21) p ( W ~ 4 i ) - (1 - Q 2 I )M6\ 

By hypothesis, Fj = 1^ + AS*! e ^ [ ^ )̂> an<^ furthermore 

/

oo /*oo 

x F,a21 = Jx (/?, + X5,)(r21 + A4,) e £,'[0, ft). 
Since 

2/x0^ = (1 - au)(-a'2X) + (1 - a2 i)(-*{i) + 2AiA'i> 

the hypotheses also imply 

/ 
F2 j^ e Ll[a, b\ 

and so we now know that Un and U2X are in L 1 ^ , 6). For WX2 (and 
similarly for W2X) a calculation such as (2.9) brings 

. , ! . . -r z_i^2 r h ' ' » -L- A ^ 2 

Wo = V+ 
0*0 + Al> 

vX2 = K 2 

2/z0(l - a2x)
 J x v2fi0(l - a2l) 

To begin with, V2 e L 1 ^ , &) by hypothesis. After taking the indicated 
derivative in the integral and expanding, we find that the crucial terms 
are 

j l ^ i i . / I ^ 2 1 and f"xV2A\, 
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110 D. B. HINTON AND J. K. SHAW 

all of which belong to L][a, b) because V2 = R2 + AS2 and akl = rk] + 
\skx. Hence Wn e Ll[a, b). 

To show G e L [#, 6) it remains now only to prove B0B e L [A, 6). 
However, J5Q = — B = U' + W , and so it is sufficient to prove that 

(2.10) (£/ 4- JTXl/' + »") e L 1 ^ , b). 

We will look at the four resulting products, but the first one, UU' = 0 
(zero matrix) because the matrix 

= 0. (v v)1 
Looking next at UW, this involves apart from terms which tend to 
constants simply 

Qa22 J Qan(\ - fl21)//i0 

or by (2.8) 

[Qa22V2(l - a2l)/,0] + Qa22 j[ V ^ ^ O ~ d - « 2 1 K ) 

Now 

0*22*2 = e ( r 2 2 + As22)(/?2 + XS2), 

and these cross products are absolutely integrable by hypothesis. The 
crucial terms in the integral expression are Qa22 multiplied by either 

/ ! > , « 2 „ l\vxa\x, or / V , A ' „ 

and these products likewise are assumed to lie in L [a, b). Consequently 
UW e L . The proofs for the other products in (2.10) are similar and will 
be omitted. This now completes the proof that system (2.6) satisfies the 
hypotheses of Theorem A. 

By Theorem A there is a fundamental matrix solution T(x) of (2.6) such 
that 

r w o - w - ( • + •• ,;> ), 
where ek(x) —> 0 as x —» b. Tracing back through the substitutions, it 
follows that there is a fundamental matrix solution Y(x, À), an entire 
function of X, of (1.1) such that 

<2,„ *-(<*?-' „ » > - ' - ( • ; « • l5 J 
recalling that i\2 = T)X~X. But i)xF = (—P2\/P\\)l/4, a n d s o (2-11) is 
equivalent to 
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(2.12) Y 
21 121> 

^-Px\/Pi\)VAE(-H + A,X1 + £7) 

(-P2\fP\\Y E '(1 - a21Xl + £5) 

( " / ' n ^ 2 i ) ' / 4 ^ l ( M o + A,)(l + e8)< 

where the £A —» 0. Therefore 

(2.13) (a , | y n | 2 + a2|721|2) + (a , | r i 2 |2 + a2|722|2) 

= ax(-p2x/pxx)
u2E2(l - a2X)\\ + Hf 

+ a2(-pn/p2X)V2E2(-H + A,)2(l + <7)
2 

+ ax(-p2{/pu)
v2E-\\ - a2X)\\ + c6)

2 

+ a2(-pxx/p2X)U2E-2{H + A,)2(l + €8)
2. 

Since 1 — a2x, 1 + ek, and /x0 ± Ax all approach 1 as x —> b (for all A) then 
the right side of (2.13) for X = 0 is bounded both above and below by 
constant multiples of the expression under the integral in (1.5). 
Consequently, the integral 

fb 

/ : {(«ll^lll2 + «2^2l|2) + («ll^!2|2 + *2\Y22\
2)} 

is infinite for X = 0 if and only if the integral in (1.5) is infinite, and 
obviously these statements are equivalent to both columns of Y(x, 0) 
belonging to LJa, b\. Since the limit point-limit circle classification is 
independent of A, (1.5) is necessary and sufficient for (1.1) to be in the 
limit point case. 

To complete the proof of Theorem 1, there remains only to establish 
discreteness of the spectrum in the limit point case under the condition 
that 

/ : -Pu(t)p2\{t)\V2dt = oo. 

The fundamental matrix [0, O] defined above (1.6) is related to Y(x) in 
(2.12) by 

[0, <&](x, A) = Y(x, A)C(A), 

where C(A) is a 2 X 2 matrix with entries which are entire functions, so 
that 

0 , = YUCU + YX2C2X, $ , = YXXCX2 + YX2C22. 

Forming the quotient in (1.6) from the terms in (2.12), we see that the 
factor (— P2\/P\\)l/4 cancels out. Also E(x, X) —> oo as x —» b, for each À, 
since 
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fh 

fi0(x, X) -» 1 and / Q{t)dt = oo. 
Therefore we have m(X) = — Cx X(X)/CX2(X), lm(À) ¥= 0 (in Section 4 below 
we give a proof that CX2 does not vanish identically). But this formula 
provides the analytic continuation of m(X) onto the real axis save for zeros 
of C12(X); i.e., m(X) must be meromorphic. By the result of [6] quoted after 
(1.6), the spectrum is discrete. This completes the proof of Theorem 1. 

3. The diagonally dominant case. This section takes up the case of ( 1.1 ) 
in which no larger terms appear than p(x). Specifically we suppose that 
p(x) ¥= 0 andpk(x) = akp(x) + qk(x), where the ak are real constants, 
axa2 ¥= 1, 

(qk(x)/p(x)) = qkX(x) + qk2(x) + qk3(x) 

is a resolution of qkp~X such that qkx is long range, pqk2 is oscillatory and 
pqk3 is short range (using the same definitions as in Section 2) and 

(ak(x)/p(x)) = akl(x) + ak3(x) 

with akx long range and/?a^3 short range. Additional assumptions will be 
made concerning the coefficients. 

In its presently constituted form (1.1) may be written 

a2 + (X^^) 

-a, - ( X a i + g 2 ) 
(3.1) y=p(x)[ , , ,_ , P ) j , 

a = x <. b = oo. 

Introducing the notation Tk(x) = Xakl(x) + ^ ^ x ) for the combined long 
range parts, (3.1) may be written 

M /-^){U1 '-r1 ' ,-.r 2) + (4^) 
+ f ° 023 + ^23) \ 

= {p(x)Dl(x) + p(x)D2(x) + ^(x)Z>3(x) }^, 

with obvious notation. 
We cannot proceed as in Section 2 with diagonalizing (3.2) unless 

axa2 ¥= 1, for a degeneracy arises in the excluded case axa2 = 1 inasmuch 
as the lead term in (3.2) approaches a singular matrix as x —» 00. In the 
following we state and prove an analogue of Theorem 1, for axa2 < 1. 
Then we give some partial results for the degenerate case. If axa2 > 1, then 
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the asymptotic solutions of (3.1) are oscillatory, which typically leads to 
continuous spectrum. 

Thus assume axa2 < 1, let 

H(x, A) = [1 - axa2 - (a2Tx + axT2 + r , r 2 ) ] 1 / 2 , 

let 

H-oo = 0 - axa2)
xn = lim ju0 # o, 

and define 

«i + r , 
l + fi0 

a2 + T2 

1 + nQ 

we may assume without loss of generality that 1 + ju0 ¥* 0, a tk x < b. 
The square root defining /x0 will be one with 0 ^ arg /x0 < TT. Putting 
y(x) = S(x)z(x), we may calculate that 

(3.3) z' = [p(^ _° ) +pS-lD2S +pS~lD3S - S~lS'}z, 

fx 
and if E(x, X) = exp / ji0(t)p(t)dt, 

£(jt) = pS~lD2S, C(x) = pS~]D3S - S~lS\ then (3.3) is of the form 
(1.7). Conditional integrability of B(x) and absolute integrability of C(x) 
follow from the long and short range hypotheses given at the beginning of 
this section. To apply Theorem A, we need that 

G = -WlB0 + B0Q'Q~l + B0B 

be absolutely integrable. Following the lead of Theorem 1, we could write 
down conditions on the ak- and qk: which would insure that G e L1, but it 
will be much simpler to take this as a direct hypothesis. 

THEOREM 2. Suppose for system (3.1) that the integrability conditions of 
Theorem A hold, where B, C, and G are as above. Then (3.1) is limit point at 
x = b if 

fa
h{E\x,0)(a (3.4) / i E\x, 0) a,(x) + a2(x) a 

1 + M J > 

+ E~\x, 0)(a , (x) —-!^L-- + a2(x)) }dx = oo, 
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and is limit circle at x — b if 

(3.5) J a (ax(x) + a2(x) )(E2(x, 0) + E~\x, 0) )dx < oo. 

If the limit point case holds and 

fb 
\p(x) \dx = oo, / : 

then T has discrete spectrum. 

Proof. The proof that the entries eik = Q^-fl^ satisfy either (1.8) or 
(1.9) is similar to the corresponding one for Theorem 1 above (2.7). Then 
for (3.3), Theorem A asserts that there is a fundamental matrix Z(x, X) 
such that Z Ï Ï - —> 1, x —» b. The corresponding fundamental matrix 
Y = SZ of (3.1) then satisfies 

(3.6) 
w 2 1 j l 22 / 

E(\ + € l ) E'x-^^(-\ + e2) 
1 + Moo 

) ( - l + *3) E~\\ + U) 
1 + Mc 

where ek(x, X) —» 0 as x —> 6; A is any complex number. Summing down the 
columns of Y against the weights ak(x) and taking X = 0, the quantity 

a,(x) |F n(x, 0) |2 + a2(x) |721(x, 0) |2 + «,(*) |r12(x, 0) |2 

+ <*2(x)|722(x,0)|2 

is bounded below by a multiple of the integrand in (3.4), and above by 
a multiple of that of (3.5). Then both columns of Y(x, 0) belong to 
La[a, b) if (3.5) holds, and at most one lies in L2[a, b) in the case of (3.4). 
Since the limit point-limit circle classification is independent of X, the first 
conclusion of the theorem follows. 

As for discreteness of the spectrum, we begin by noting that either 
E(x, X) —> oo or E~l(x, X) —> oo, x —> b, for each X. The first alternative 
holds if p(x) > 0, and the second if p(x) < 0; recall that p(x) ¥= 0. 
Suppose E(x, X) —> oo. Writing [0, &](x) = Y(x)C(X) as in the proof of 
Theorem 1 and computing m(X) by (1.6), we have by (3.6) 

_ 0 , = YnCu + 712C2I ^ C„(A) 

* i YuCl2 + YnC2] C12(X)" 

If E~ (x, X) —> oo instead, we use the second components, 

_ © 2 = _ ^ 2 1 C U + 7 22 C 21 _ ^ Q l < A ) 

^ 2 * 2 l Q l + ^22^22 C2 2(A) 
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by (3.6) again. In either case m(X) is meromorphic, being the quotient of 
two entire functions. See Section 4 for a proof that CX2 and C22 do not 
vanish identically. This completes the proof of Theorem 2. 

To illustrate the theorem, let us take p(x) = xn, px(x) = ±xk, 
p2(x) = ±xm, ax(x) = xy and a2(x) = xS. Then if k = n we take 
ax = ± 1 and qx — 0; if k = n — 1 we have ax = 0, qx = px and 
qxx = x~ , qX2 = qXi = 0; if k < n — 1 then ax = 0 and we could have 
either qxx = x or qX3 = x ~n. Similar decompositions can be worked 
out for/?2(x), ax(x), and oc2(x). If n > —1 then 

|£(JC, 0) | S £ exp(x" + 1/(w 4- 1) ) for some e > 0, 

and thus 

r E2ax 

for any choice of y; i.e., we are in the limit point case, by (3.4). When 
n = — 1, \E(x, 0) | ^ €JC and so the limit point prevails if, say, y ^ — 3, 
but by (3.5) max{y, a} < — 3 implies the limit circle case. Finally, n < 
— 1 implies that E(x, 0) tends to a constant, and so we have the limit circle 
case if max{y, a} < — 1. 

Theorem 2 can be extended to the point where \p(x) | dominates in
stead the geometric mean of the terms \pjc{x) |; we will briefly sketch 
the idea and illustrate it with an example. Suppose pk(x) ¥= 0, let 
7] = \p2/px\ ' and change dependent variables in (3.1) by the formula 

, x (v(x) 0 \ 
y(x) = \ 0 -^-\x)Hx)' 

Then z(x) satisfies the system 

(3.7) - W ^ ^ - s . g n ^ ^ ^ l ^ . x ^ 

(sign/72) Ii7ljp2|1/2 + Xa2V~2\z(x) 

-p + (T/VTJ) / 

Now (3.1) is limit point if and only if (3.7) is limit point, relative to the 
weights axt] and a2i\~ . Furthermore, the m(X) function for (3.1) agrees 
with the one for (3.7) because the common term TJ(JC) cancels when the 
quotient (1.6) is formed. Thus we may apply Theorem 2 to system (3.7) 
to obtain limit point-limit circle and discrete spectrum criteria for (3.1). 
As an example let p(x) = xn, px(x) = ztxk, p2(x) = ±xm, ax(x) = xy 

and OL2(X) = x as above and assume « > —l, y < k, a < m but 
n > (m + k)/2. Then (3.1) is limit point and the spectrum is discrete. 

As a final example, consider the example (3.1) where 

https://doi.org/10.4153/CJM-1987-006-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-006-0


116 D. B. HINTON AND J. K. SHAW 

p(x) = ax + bx , 

P\(x) = Pi(x) = c + dx~\d * 0), 

«i (*) = «2(*)> 

/ ax(t)dt < oo and 0 < x ^ 1. 

Replacing x by — x through the transformation £(X) = ^( —x), we obtain 
a system 

(3.8) {(*) - V-Xa^jc) + c ~ dx~l -ax~x + &c"2 I 

- 1 ^ x < 0, 

which is regular at x = — 1 and singular at the right endpoint x = 0 and 
where ak(x) = —ak(—x). We assume that the ak can be so defined. This 
system is a generalization of one used in [1] to model a relativistic electron 
in a Coulomb field with anomalous magnetic moment; in [1] the weights 
were set to unity. For (3.8) we see that 

Pki-xVPi-x) = 4k\(x) = °(x)> * ^ 0 > 
is purely long range and that ak( — x)/p( — x) = otkl>(x) is purely short 
range. In the notation of (3.2), for (3.8) 

ax = a2 = 0, r f o ) = r|(jc) 

= (- ;c) 2[(d - cx)/(b - ax)]2, 

p0(x) = [1 - r f c ) ] 1 / 2 = 1 + T2(x) • 0(1), and 

JX_l (~as~] 4- &s"2)(l + T2
](s))ds 

= -a l n ( - * ) - bx~x + C + 0(1), 

where C is constant. Therefore the E function for (3.8) satisfies 

E(x9 X) = (~xyaQxp(-b/x)[K + 0(1)], 

where AT is a constant. Replacing JC by —x, it follows via (1.10) that (3.1) 
for this example (in which x = 0 is the singular point) has a fundamental 
matrix 

+ o(\) \ 

(E(-x9\) 0 \ 
V 0 E~\-x, X)J 

(3.9) Y(x9 X) = i 
T}(-x) 

1 + p0(-x) 

1 + n0(-x) 

1 
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/ 1 + o(l) [ -2 + o(\)]x2(d/b)2\ 
~ \[-2 + o(l)]x\d/b)2 1 + o(l) / 

v UK + o(l) )x-"eb/x 0 \ 
V o (K + o(i)ylxa

e-
b/x) 

as x —» 0; compare equation (2.11). One of the exponential terms e±b/x 

will dominate (3.9), depending on the sign of b, as x • -» 0. Clearly, the limit 
point case holds if, say 

/ , 0 a(s)S-
2ae2b/sds = oo 

or 

/ , 0 a ( s > 2 ^ _ 2 ^ - oo, 

and the spectrum is discrete in any event. 
Finally, consider the degenerate case axa2 = 1. We will give only a brief 

discussion of this case, stopping short of the most general results. Thus let 
ax = a, a2 = a~ and write (3.1) as 

(3,0, /W={,W(_L, _",) + (-X^-„A"20+,2)W 
For definiteness we will suppose p(x) > 0, so that its antiderivative 

is strictly increasing. Let us further assume that/? e L [a, b), and also the 
strong conditions Pak, Pqk e Ll[a, b). 

THEOREM 3. Under the above assumptions, (3.10) is limit point if and 
only if 

(3.11) j h
a («,(0 + <x2(t) )P\t)dt = oo, 

and the spectrum of T is discrete in this case. 

Proof. First let 

andjy = Tz, so that z(x) is a solution of 

z'(x) = (p(°0 I) + T-{QT)Z(X) 

where Q(x) stands for the second matrix in (3.10). Following a variable 
change suggested in [2, p. 91] let 
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Z(X) = (J P-\X))W(X)> 

and note that w(x) satisfies 

(3.12) w'(x) = | (J p,°/p) + M- 'eMJ^) , 

where 

« - Hi />) 
if 

then (3.12) becomes 

w'(x) = [SH2-1 4- C]w9 

where C = M~XQM. The entries of C(x) are all bounded above by 
constant multiples of either P\Xa2 + g2\ or PlAc^ + qx\9 and these lie in 
L[a,b) by hypothesis. Hence so does C(x), and this means that Theorem 
A may be brought to bear on (3.13). In fact, there is a fundamental matrix 
W(x, A) such that 

W(x,\) = [1 + 0(X)](J °), 

and tracing back to (3.10) we find a fundamental matrix Y(x, A) such 
that 

Y(x Xï - la(1 + £ > > aP(1 + €A ï(x,A) - ^_j + £ 3 P{y+U)) 

where tk(X) —* 0, x —» 6. Thus 

/ ^ (a .17 , ,1 2 + a2|712|2) < oo 

because «^ e L1, but as for the second column 

/ " ( a , | 7 1 2 | 2 + a2|722|2) = co 

if and only if (3.11) holds. Hence (3.11) is necessary and sufficient for the 
limit point case. 

Writing [0, O] = YC(X) as in the proof of Theorem 1, and looking at 
the quotient in (1.6), 

e ^ x , A) a(\ + €l)Cu + aP(\ + c2)C21 

*i(x, A) ~ £i(l 4- €!)C12 + A P ( 1 + €2)C22 
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and the condition P(x) —» oo (which follows from/? £ L [a, b) ) implies 
that m(X) = — C21(À)/C22(À). This represents m(X) as a quotient of entire 
functions, meaning that m(X) is meromorphic and the spectrum is discrete. 
See Section 4 for the proof that C22(A) does not vanish identically. This 
completes the proof. 

4. Remarks. We comment now on various ways in which some of the 
foregoing results may be extended. 

(1) The assumption that the coefficients in (1.1) be real is to assure that 
the operator T be self adjoint. However, our asymptotic form of solutions 
persists, with some qualifications, even in the presence of complex valued 
coefficients. If the/?^ are real, then the estimate (2.12) is still valid with 
complex coefficients. The factors Q^Q^. are essentially increasing or 
essentially decreasing because JLI0 —> 1, even though it is complex valued. 
The situation is different with the corresponding /x0 of Section 3 for 

Mo "> (1 - axa2)
U2 

which could be purely imaginary. It would be possible even with realp(x) 
for 

Re j a HP 
to oscillate in such a way that neither (1.8) or (1.9) could hold. 

The conditions 

JaQ = oo and Jb \p\ = oo 

in Theorems 1 and 2, respectively, are needed to guarantee that either 
E ^> oo or E~ —> oo; these conditions are used to determine m(X) from 
(1.6). But even if neither of E, E~l —* oo holds, the asymptotic estimates 
in the theorems are still valid. 

(2) Clearly the conditions pu > 0 and p2\ < 0 in Theorem 1 can be 
reversed without altering its conclusions. We have said that continuous 
spectrum is to be expected in the event of same signs, P\\P2\ > 0, but 
there are exceptions. If in the proof of Theorem 1 we assume pu > 0, 
p2\ > 0 and replace — p2\ by /?21, then we find that the same type of 
asymptotic estimate (2.12) holds. As the proof shows, suitably small ak 

then leads to the limit circle case, and hence a discrete spectrum. 

(3) All the above results may be placed in a two singular endpoint 
context. If (1.1) is singular and of limit point type at each end of (a, b), 
then a self adjoint operator T0 may be introduced as in (1.4) except that no 
boundary condition at x = a is needed [16, 21]. Letting ma(k) and mh(X) 
denote the Titchmarsh-Weyl coefficients for the two endpoints, the 
corresponding m-function for T0 is [5, 7] 
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(4.1) M0(X) = K - ^ r 1 ( , J ... K + «*)/2V 

This matrix Titchmarsh-Weyl coefficient bears the same relation to T0 as 
m(X) does to T [7]. Obviously M0 is meromorphic if ma and m^ are, and so 
if we impose discrete spectrum criteria at both endpoints of (<?, b) then the 
spectrum of T0 will be discrete. If one of the endpoints, say x = b9 gives 
rise to a X-interval I of continuous spectrum of T, then mh(X) is not 
meromorphic; in fact it will have nonreal limits at each point X0 e / . Now 
ma(X0) is either real-valued or infinite, and if infinite then the pole at X0 

cancels in (4.1). Either way, M0(X) persists in having nonreal limits over /, 
so that T0 has continuous spectrum there; see [8] for a fuller discussion of 
this phenomenon. In summary, the discrete spectrum criteria given above 
may be viewed as conditions at an endpoint which insures that singular 
behavior of (1.1) at that endpoint does not contribute to the continuous 
spectrum of T0. 

(4) It is possible to weaken the assumptions of [3], and thus Theorem A, 
by iterating the method through integration by parts of an oscillatory 
term; see [3]. What we can do is assume only that G(x) in Theorem A is 
conditionally integrable, but let 

/*oo 

G0(x) = J x G(t)dt 

and then assume that the matrix function 

H = -Q'Q-lG0 + GQQ'Q" 1 + G0G 

belongs to L [a, b). Then the conclusion of Theorem A continues to hold. 
In certain examples, this allows one to relax growth conditions on the 
oscillatory components of a.k/pk\ andpk2/pk\. In the example cited after 
Theorem 1, if we suppose that k = m, y = o and y < k — 1, then we can 
replace the requirement k 4- a < l b y & - h a < 2 . 

(5) Now we turn to the proof that the matrix C(X), in the relation 

[0, $](JC, X) = Y{x9 X)C(X) 

in all three theorems above, has entries C12 and C22 not identically 
vanishing. Since [©, 0] and Y are fundamental matrices, the determinant 
C\\Ci2 — C2\Cn is never zero. Suppose, by way of contradiction, that 
C12(X) is identically zero. Then neither CU(X) nor C22(X) can be identically 
zero. We have 

(4 2) @1 = r , l C n + YxlClX9 0 l = YuC]2 JrYxlCl1 

®2 = ^21^11 + *22Ql> ^ 2 = *21C12 + ^22^22 

and in all the cases considered we had either Yn—* oo and y22 —> oo. Also 
the limit point case prevailed in all relevant cases. With ft fixed, we 
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consider /? = ft — (77/2) and construct the functions 0 and 0 with ini
tial data governed by /?. Calling these © and <I>, clearly we have 0 = $ 
and O = 0 . If m(X) is the m-coefficient corresponding to /?, then 
m(X) = \/m(X); we know that m(X) is zero-free for Im X ¥* 0, and in 
fact 

Im m(X) • Im X > 0 [5]. 

If it is Yu that becomes unbounded we compute m(X) by (1.6) and (4.2) 
to be 

m(X) = -Cn(X)/Cu(X) 

at any X for which Cu ¥= 0. If instead Yl2 and Y22 are unbounded, we use 
the second components in (1.6) and (4.2) to compute ra(A), not ra(A), to 
be 

m(X) = -C21(A)/C22(A). 

Since m and m are analytic and zero-free for Im(À) ^ 0, it cannot be that 
any entry of C(X) can vanish identically, contradicting C12 = 0. Similarly 
c22 m 0. 

(6) Our theorems may be viewed as limit point-limit circle criteria, and 
in fact Theorem 2 includes the result of Kalf in [11]. Setting a2 = 0 
and/7 = 0 makes (1.1) equivalent to 

— ( (l/p2)u'Y — P\U = Xa{u, 

and since the asymptotic formulas of Theorem 1 continue to hold in this 
case, we obtain limit point-limit circle for Sturm-Liouville equations. For 
example, (1.5) is analogous to a condition of T. T. Read [14]. 
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