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TANGENT SPACES OF A NORMAL SURFACE WITH 
HYPERELLIPTIC SECTIONS 

W. L. EDGE 

1. Introduction. A rational normal curve C of order n in [n] has, at each 
point P, a nest of osculating spaces 

[0], [1], [2] , [/t-2], [ n - 1]; 

as P moves on C the [n — 2] generates a primal Dn-\ of order In —2. 

Hilbert [3] found the multiplicities on Dn-\ not only of the F^+i 
generated by D^ for each lesser value of \x but also those of all 
submanifolds common to these various D^. 

A surface $ in higher space has, as explained [4] by del Pezzo, a nest of 
tangent spaces 

Ù2Q, iù2-> " 5 ? ""95 • • • 

of respective dimensions 

0, 2, 5, 9, . . . ,KA:-l)(A: + 2), . . . ; 

they raise the problem of finding the orders of manifolds generated by 
them and the multiplicity of each on the higher manifolds to which it 
belongs: the task does not seem to have been attempted, but it may well be 
eased if <I> is rational and normal. It was however noted, in a recent 
encounter [2] with these Œ, that, contrary to the circumstances for a curve, 
for some surfaces the nest may grow more slowly. Indeed this possibility, 
with £25 collapsing to 124, was envisaged [5] by Corrado Segre; with him 0 
need not even be algebraic, let alone rational. This collapse was decreed by 
Segre as a requirement; but in [2] Castelnuovo's rational normal surface <I>, 
in [3/7 + 5] with hyperelliptic sections of genus/?, presented of itself the 
nest 

ÙIQ C Ù&2 —̂ *«5 ^ «2g C . . . C *li)p + 2 —̂ "'3/7 + 4 

where the dimension rises by 3 at each move save the first and last. 
Henceforth O denotes Castelnuovo's surface. 
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132 W. L. EDGE 

0 is rational, being mapped [1, p. 199] on a plane IT by curves of order 
p + 3 with two fixed multiple base points: a node Y and a point X of 
multiplicity p+ 1. There are, as the mapping makes clear, two pencils of 
rational curves on 0; one of conies y mapped by the lines through X, the 
other of curves 8 of order p +1 mapped by the lines through Y. Through 
any point ? on $ pass a single y and a single ô; every y meets every S 
once. 

The geometry of 0 in relation to its ambient space has not, apparently, 
been studied save in a lecture [2] at a Toronto symposium in 1979, where 
some remarks were made about the nests of tangent spaces. It is, as was 
then said, sufficient if detailed scrutiny is restricted to the case when p = 
2; at each point P of 0, now belonging to an [11], there is a nest 

p = s0 c a2 c a5 c B8 c a10 

of spaces, any primes through them cutting $ in curves with multiplicities 
at least 1, 2, 3, 4, 5 at P. Œ2 contains the tangent lines, Œ5 the osculating 
planes, £28 the osculating solids at P of branches of all curves on 0 through 
P. As P varies over 0 Î28 generates a primal M whose equation is [2, p. 338] 
obtainable by eliminating a certain three variables from three equations. 
This elimination will be carried through in Section 4, where it will be 
found that M can be given by equating to zero a ten-rowed determinant A 
whose elements, when not identically zero, are quadratic in the twelve 
homogeneous coordinates. A evolves by Sylvester's process of dialytic 
elimination between two quintic polynomials which happen to be first 
polars of a sextic @; A need not be displayed in full, but its rank under 
certain specialisations of @ can be calculated. These ranks enable one to 
give, if not the actual multiplicities themselves of various submanifolds on 
M, at least lower bounds for them. 

An alternative procedure for finding A uses the null polarity TV wherein 
[2 p.338] the polar primes of the points of $ are its osculating primes S210; 
this is outlined in Section 11. 

2. Castelnuovo's normal surface of order 12 and the primal M generated 
by its tangent spaces S28. $ is mapped on ir by the quintics with a fixed 
triple point X and a fixed node Y. If X, Y are two of the vertices of the 
triangle of reference for homogeneous coordinates (£, 17, f) the parametric 
form of O is [2, p.336] 

x0 = £v, X] = sy?, x2 = f v , x3 = e? 
(2.1) y0 = &3f, yx = èn2S2

9 y2 = &?3 , ^3 = & 
z0 = T ^ 2 , z, = u2£3 , z2 = irf4 , z3 = S5 
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The conies y are mapped by the lines TJ = /} f ; the plane of such a conic 
consists of those points obtained by varying a, b, c in 

aft3 af? aP a 

(2.2) bfi bp2 bp b 
c/33 cP2

 cp c 

and these planes generate, when P varies, a threefold whose order is the 
number of its intersections with an arbitrary [8]. But this [8] is identified 
by three linearly independent linear equations in the coordinates; 
determinantal elimination of a, b, c from these gives an equation of degree 
9 in P; the planes of the conies y generate a V3. This was proved, though 
in a less elementary way, by Castelnuovo who appealed to a theorem of 
Segre on the normal space of a planar threefold. 

The cubics 8 are mapped by the lines £ = aÇ; the solid containing such a 
cubic consists of those points obtained by varying a, b, c, d in 

act2 ba2 ca2 da2 

(2.3) aa ba ca da 
a b e d 

and these solids generate, when a varies, a fourfold whose order is the 
number of its intersections with an arbitrary [7]. But this [7] is identified 
by four linearly independent linear equations in the coordinates; 
determinantal elimination of a, b, c, d from these gives an equation of 
degree 8 in a; the solids of the cubics 8 generate a vA. 

Both v\ and F3 have parts to play in the geometry. 

3. All sections of O by primes through £28(P) include [2, p.338] both the 
y and the 8 that pass through P. Suppose, then, that A and B are any two 
points of 0 neither on the same y nor on the same 8; if P is the intersection 
of yA and 8B, Q that of yB and 8A, both A and B, and so the whole chord 
AB, are in both £28(P) and ŒsCÔ)- So the fivefold generated by the chords 
of 0 is, at least, nodal on M. The multiplicity is indeed higher, as will be 
seen below. Had A and B been on the same y then AB would have lain, 
with A and B, in an infinity of spaces £28, namely those whose contacts are 
on y; likewise had A and B been on the same 8. This shows both V% and V\ 
to be multiple loci on Af, as will also be corroborated below. 

4. Now for the elimination: one has [2, p.338] to eject £r, ?]', f from 

i for - vm? - m l 
for - v'M I = o for - T»'o2«r - m 
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these being the equations, in 77, of the maps of the sections of $ by three 
linearly independent primes through fig(£', K]\ f')• It is understood that the 
quintic monomials in £, 77, f would, if the three products were multiplied 
out, be replaced from (2.1), so one must refrain from any cancellations of 
these three unprimed letters. 

It economises to replace £'Vf, TJVT by a, /?; one has then to eliminate a, 
/? between 

(TJ - am - «n 
(v - m 
ci - « w 

(r, - ^>2(ê - «o 

which are equivalent to any three of 

(4.i) (T, - ^ ) 2 ( i - « 0 

0, 

(v - PM 
(v - m 
G - «^ 

= 0. 

The first two of these four equations give 

(tj " /??)¥ = a(r, - #)3& = a\i) - fltf?-

whence, using (2.1), 

oc:a:\ = x0 - 3£x, + 3/?2x2 - ft3xy.y0 - 3#yi 

- ^ 3 : z 0 " 3jBz, + 3/?2z2 - £3z3 

= SC:<&:&, say, 

so that, whenever (4.1) are satisfied 

© = %ec - ¥• = o. 

One now handles the other two equations (4.1). 
If 

(É " of)2(TJ - j8f)2T| = 0, 

(£2 - 2af| + «2r2)(rj3 - 2/?r,2f + fa?) = 0, 

then, by (2.1), 

XQ 

Wyi 

2/3X] + filx2 - 2a(^0 - 2j8y, + fy2) 
+ a2(z0 - 2£z, + /32z2) = 0, 

so that 
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qx ^ &(x0 - ipXl + Fx2) - W{y, ~ 2Pyx + py2) 
+ I(z0 - 2$zx + P2z2) = 0, 

a quintic equation for /}. Likewise ( | - a£)2(r] - fâ)2Ç = 0 leads to 

q2 = S(xx - 2/ix2 + fix3) - W(yx - 2py2 + fi2y3) 
+ %(z\ - 2/3z2 + fi2z3) = 0, 

and now one has only to eliminate ft between the quintics qx and q2 by 
Sylvester's dialytic process. 

It profits to observe that qx and q2 are polars of the sextic @: where 
polarisation is involved one regards a polynomial in /} as homogenised, /? 
having been replaced by / V f e a n ( l polarises with respect to fî\ and ^2-
Non-zero constant multipliers happening to obtrude can be discarded as 
irrelevant. Of course each of qx = 0, q2 = 0 is a consequence of the other 
when (5 = 0. The condition for qx and #2 t 0 share a zero is therefore that 
@ has a repeated zero, and it may not be necessary to parade the 
ten-rowed determinant A that emerges from the elimination between qx = 
0 and q2 = 0. But, as each element of A is quadratic in the coordinates, the 
oo2 spaces S28 generate a primal M of order 20. 

The calculation of multiplicities of sub-manifolds on M is eased by M 
having a determinantal equation. For the first partial derivatives of A are 
linear combinations of its first minors, the second partial derivatives of its 
second minors, and so on. Thus if the coordinates of a point, when 
substituted in A, produce a determinant of rank p the multiplicity of the 
point on M is, at least, 10 — p. 

5. Submanifolds on M. © is identically zero at every point of <î>; it is, 
perhaps less to be expected that, as (2.3) shows, it is identically zero at 
every point of V% So, on V% both qx and q2 have every coefficient zero; A 
becomes the determinant of the zero matrix and has rank 0, so that V\ has 
multiplicity at least ten on M. This implies that if a chord of V% does not 
lie wholly on M it meets M only at the two points of V\ that it joins. Such 
lines, not wholly on M, do exist: the join of 

Oo, xh x2, x3; 0, 0, 0, 0; 0, 0, 0, 0) 

in that solid (2.3) having a = oo to 

(0, 0, 0, 0; 0, 0, 0, 0; z0, zu z2, z3) 

in that solid (2.3) having a = 0 contains 

(*o, x\, x2, x3\ 0, 0, 0, 0; z0, zh z2, z3) 
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and here the x, and z, need not be such as to endow @ with a repeated 
zero. The multiplicity of V\ on M is exactly ten. 

6. Those chords of v\ which do lie on M can be identified precisely; 
they compose two distinct 8-dimensional manifolds. 

Any chord of v\ consists, by (2.3), of points 

2 2 2 2 2 2 2 2 

\aa\ + na'a2 XboLi + iib'a2 Xca\ + \ic'a2 Xda\ + ixd'a2 

Xaa\ + \ia'a2 Xba\ + fibfa2 Xca\ + \LC'OL2 Xda.\ + \id'a2 

Xa 4- \ia' Xb + fib' Xc + \id Xd + \xd 

the ratio A:/i varying along the chord. These coordinates produce, on 
substitution in ©, 

X/i(«i - <*2)2(tf - 36/3 + 3 ^ 2 - ^3)(^ r - 3b'P + 3c'02 

- <f j83). 

The sextic has a double zero if either of its two factors does; this happens 

if either (a, 6, c, </) is on a tangent of the cubic 8 or (a\ b\ c\ d) is on a 

tangent of the cubic 8'. Thus the cone of [5]'s joining any generating solid 
of K4 to the tangents of the 8 in which any other such solid cuts 0 lies 
wholly on M. 

The sextic also has a double zero when the two cubics have a common 
zero. The interpretation of this is that if A, A' are points in the solids 
spanned by 8, 8', AA' is on M when there is an osculating plane of 8 
through A and one of 8' through A' whose contacts are on the same y. In 
other words: the [5] spanned by planes that osculate any two 8 at their 
intersections with the same y lies wholly on M. 

7. If, in (2.2), ft is replaced momentarily by some other letter, say ^, 
substitution in @ gives (ac — b2)(\p — /?)6. When ac = b2 (2.2) is on O and 
© identically zero; otherwise, for a point in the plane of a conic y but not 
on y itself, qx and q2 are both multiples of (^ — /?)5, the rows of A are 
identical in pairs and p = 5. The V3 generated by the planes of the 
conies y has multiplicity (at least) 5 on M. 

8. Suppose now that (£j, TJI, l\) and (£2, V2> £2) a r e t w o points on O 
neither on the same y nor on the same 8; %\$2 ¥= £2fb V\^2 ^ ViZi- The 
points on their join occur on varying À, /1 in 

• • • *1 = M\V\S\ + /^2^2?2 . . . ^ 3 = ^ 1 + j^2 
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and so make 

<3f=uuv\ - MÛ3 + faUm - m\ 
@ = MUh. - k*i)2(ih - ft\)\m - Kif-

The non-zero factors may be dropped, leaving 

(v - fti)\m ~ Kif 

and now polarisation allows us to take 

4, = (7), - j8?,)2(u2 - &-2)
2{2TJIT)2 ~ Mmh + Tfefi) }. 

q2 = (T,, - ^,)2(r)2 - j8f2)
2{i,,r2 + TJ2£, - 2f,?2j8}. 

These quintics share two zeros, both repeated; they do not share the 
remaining one unless 

2T|17|2/(T|lf2 + mU) = (T|l?2 + *»?2?l)/2fif2 

ftl?2 - î?2fl)2 = 0, 

and this has been forestalled. The same prohibition debars both qx and q2 

from having a triple zero. 
The rank of A for two quintics so related is 6, as can be tested by writing 

out A for, say, the pair of binary quintics 

x2y\axx + bxy\ x2y2(a2x + b?y)\ axa2bxb2(axb2 - a2bx) ¥= 0. 

Hence the fivefold of chords of 0 is (at least) quadruple on M. 

9. Analogous proceedings serve to calculate multiplicities, or at least 
lower bounds for them, of other manifolds on M. 

Take the fourfold generated by the tangent planes £22- The coordinates 
of any point of such a plane result from applying the differential operator 
XDX + [xD2 + vD3 to those of its contact, and the form of @ at such a 
point can be calculated. It is already known that @ will be identically zero 
along the line in £22(P) that is the tangent at P of the 8 passing through P, 
since this tangent is on v\. But removal of this factor leaves an @, not 
involving the multipliers À, /x, *>, which can be interpreted with its polars in 
the usual way. 

Since, at the point (£, 77, f) on 0, 

9 = tt(u - # ) 3 
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its value at a point of Î22(€, rj, f) is, applying \D\ + JXD2 + vD^, 

= (H + I*)(TJ - £f)3 + 3&(M " vpKr, - M)2. 

Similarly 

S= 2^(r, - 0£)3 + 3f2(M - ^XTJ - # ) 2 , 

3T = 2A£(r, - fitf + 3è2([i - vpXrt ~ PS)\ 

so that 

@ = -(Xf - ?£)2(TJ " j8f)6. 

The line of points in £22 (£> i?> £) along which Àf = p| will be the tangent 
of 5 at (£, TJ, f); so, as anticipated, drop this multiplier and use 

@ - (TJ - M 6 . 

The situation is the same as with V3 in Section 7; the fourfold of tangent 
planes of $ is (at least) quintuple on M. 

In order to identify the linear constraint on X, /i, J> that confines a point 
of Œ2(£, rç» £) t o trie tangent of S one has only to take the intersection of the 
tangent plane with the solid containing 8. But this solid, by (2.3), is 

(9.1) f2x0 = f&o = iW foi = ?ô>i = É2z,, 

f2*2 = f&2 = ^ 2 , £2*3 = f€V3 - ^ 3 -

The first of these four pairs of equations requires 

S2(\ . 2tf + /i . 3«V) = S&\v3S + V- • 3frj2£ + rev3) 

= è2(H- 3r,2f2 + v . 2i,3f) 

or, omitting 3ju£27j2f2 from all these numbers, 

which hold when Af = *>£. The same constraint is found to satisfy the other 
three pairs of equations in (9.1). 

10. While the operator XD\ + \iD2 + vD3 serves to identify points 
spanning S22 one has to use 

aDu + BD22 + cD33 + 2dD23 + 2eD3] + 2/2) 12 

to identify points spanning £25. Substitution in @ will, after some 
calculations, give information relevant to the multiplicity of 125 on M. But 
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there are, in fi5, two notable planes: the osculating plane of S and the 
plane of y; to lie in either of these planes imposes three linear constraints 
on a, b, c, d, e, f. 

The osculating plane is the intersection of S25 and the solid containing ô, 

and (9.1) are ready to hand. The last pair demands that 

S2(2aS3 + 6c^S + Ueg2) = ft(12c&2 + 8tf3) = |220cf3 

which are satisfied when aS2 = eÇi; = et;2. The other pairs make their 
demands too, and it transpires that the conditions for a point of fi5 to lie 
in the osculating plane of 8 are 

(10.1) a$2 = ett = c£2
9 d£=ft. 

When these hold © will be identically zero. 
The calculations show that one may take 

© = (ac - e2)(j] - pSf 

+ 6{ (cf - de)i + (ad - ef)S - (ac - e2)PS}(^ ~ PS)5 

+ 3(b - 2dP + cP2)(c? - 2e& + aS2)(v ~ PO* 

- 9{ (cP - d)£ - (eP - f)S}2(v ~ Ptf 

which does vanish identically when all of (10.1) hold. 
The equations of the plane of y are, by (2.2), 

?3*o = y£2x\ = T\2$X2 = T?3X3, 

$ \ = rt2y\ = iïtyi = tfyii 

f3*o = i)ï2z\ = v2^2 = v3^ 

and are found to require of a point in £25 

H2 = dï]Ç = cq2, ei) = ft. 

These restrictions imply that cf = de so that the multiplier of (r\ — PS)5 

above becomes six times 

a(d- cp)S ~ e(f- eP)S 

= ac(V - PS) - e2(<q - PS) = (ac - e2)^ - PS). 

The multiplier of (17 — PS)4 is the product of 3f ~2 and 

eft - PS)\ci2 - 2eSè + aS2) - 3{cft - p& - e(1 - pS)S}2 

= (V~ M?{ (ac - e2)S2 ~ 2(c£ - eS)2} 
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so that (3 becomes 

{I0(ac - e2) - 6(c^ - e)2}(V - M)\ 

a form which Section 7 leads one to expect. 
When a, b, c, d, e, f are free from restriction both polars of £ are 

quintics having (17 — /J£)3 for factor: they share a triple root. The rank p of 
A can then be found by using 

x\ax2 + 2hxy + by1) and x\a'x2 + Ih'xy + b'y\ aa'bb' ± 0, 

the two quadratics not having a common zero; p = 7. The manifold 
generated by 125 is (at least) triple on M. 

11. The null polarity. It is perhaps worth while to outline a procedure 
alternative to the elimination in Section 4; it relies on Œ8 and Œ2 being 
polars of each other in the null polarity TV [2, p.338], so that the polar 
primes of three linearly independent points of Q2 contain, and determine, 
fig. The equation of M will be the outcome of eliminating £, TJ, f from three 
such equations. 

Now, on differentiating (2.1), it appears that Œ2 is spanned by the points 
whose coordinate vectors are the three left-hand columns C\, C2, C3 in 

2£T,3 3*V 
2èn2S 2 ^ *V ÉV 
2inS2 

n2 2 ^ 2|2rjf 
2&3 3 |¥ 3 | 2 ? 2 

u3f 3frft *»3 ft3 

rô2 2£rf2 2tfl fcl2? &fr 
if3 tf 3£rf2 frrf2 2&rf2 

f4 4tf3 If3 3 ^ 3 

3ift2 2rj3f 2r/3f 
2rtf3 3ift2 2r,2f2 ift2 

f4 4rtf3 2rtf3 2rtf3 

5 ^ 2 ^ 3 ^ 

The fourth column C4 is 2(TJC2 + f C3) — %CX with 5f cancelled; the fifth 
is C3 —C4. 

The premultiplication of any of these columns by the row [2, p. 338] 

z3, - 3z2, 3zb - z0; - 2 j 3 , 6y2, - 6yh 2y0; x3, 
— 3x2, 3x\, — XQ 
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gives a prime containing fi8. Two such products, using C\ and C4, yield 

z£ = n Yi = x$ 

where 

X = x3V
3 - 3x2vH + 3 x ^ 2 - *0?3 , 

Y = y3V
3 ~ 3y2ift + 3y1rtf

2 - j,0f
3, 

Z = Z37]3 - 3z2T}2£ + 3z!T]f2 - Z0f3, 

so that 

(11.1) t2:&$2:X:Y:Z. 

Now premultiply C2; the product lacks xQ, yQ, z0 and after £ is 
eliminated from it by using (11.1) the outcome is seen to be a first polar, 
the partial derivative with respect to TJ, of 

@ = ZX - Y2. 

In like manner premultiplication of C5 gives the other first polar, so one 
has to eliminate TJ/£ between these two quintics just as in Section 4. 

12. The general situation in [3p + 5]. If p > 2 the normal surface 0 is of 
order 4/?+ 4 in [3/?+ 5] and, as remarked elsewhere [2, p.342], the 
rectangular array (2.1) is enlarged to one of three rows and/?+ 2 columns, 
the members of the respective rows being, for / = 0, 1, 2, . . . , / ? , / ?+ 1, 

The points obtained by varying a, 6, c in 

a$P+\ a$P, . . . a 

cj8' + 1, cj#\ . . . c 

are those of a plane meeting $ in a conic y mapped on 77 by 17 = fiÇ; the 
threefold generated by these planes meets an arbitrary [3/?+ 2] given by 
three linearly independent linear equations in 3/?+ 3 points, each 
corresponding to a zero /} of a three-rowed determinant with elements of 
degree p + 1 in /?. The planes of the y generate, as Castelnuovo knew, a 

vf+3. 
The points obtained by varying ao, a\, . . . . ap + \ in 

a0a
2, a\a2, . . . ap+\a2 

(12.1) a^a , a\a , . . . tf^ + ia 
a0 , «! , . . . flp + i 
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are those of a [/? + 1] meeting 0 in a rational normal curve 8 mapped on IT 
by £ = a$\ the (/? + 2)-fold generated by these [/?+1] meets an arbitrary 
[2/? + 3] given by/?+ 2 linearly independent linear equations in 2(/? + 2) 
points, each corresponding to a zero a of a (/? + 2)-rowed determinant with 
elements quadratic in a. The ambient spaces of the 5 generate 

2/? + 4 

13. The nest of tangent spaces is [2, p.342] 

Q0 c S22 c S25 c . . . c ft3/) + 2 c Œ3/)+4 

and one is concerned with the primal M generated by Qip+2(P) when P 
traces $ . So one eliminates £', TJ', f from what (4.1) become when (ij — 
j8f) is replaced by (TJ — ̂ ) / ? , and obtains 

a2:a:\ = J : 

where 

p + i 
S^l^xt-Pf, 

9=pii(py)yt-rt, 

tipVh-v-
/ = 0 

/?+l 

/ = 0 

Dialytic elimination of /? between first polars q\, #2 of 

@ = S9C - ^ 2 

yields a determinant A of 2(2/?+1) rows with elements (those other than 
zeros) quadratic in the 3/? + 6 coordinates. 

The spaces 123/7+2 generate a primal M of order 4(2/?+ 1). This can also 
be established by the method of Section 11, using the fact that &3p + 2(è, TJ, 
f) and £22(£, ?7, f) are polar spaces in a null polarity if/? is even, in a quadric 
if/? is odd [2, p.342]. 

It is manifest from (12.1) that @ is identically zero, as therefore are 
q\ and g2>

 a t every point of K ^ 2 > which is thus of multiplicity 4/?+ 2 on 
M. The multiplicity does not exceed 4/?+ 2 because there are chords of 
Vp

p+2 which do not lie wholly on M. It appears, just as in Section 6, that 
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those chords which do lie on M fill two separate manifolds of dimension 
2p + 4. These are composed of 

(a) those [2p +1] that join [/?]'s osculating two 8 at points on the same 

y; 
(b) those [2/?+l] that join the ambient [p-\-1] of any 8 to the osculating 

[p— l]'s of any other 8. 

14. Other matters also run in close analogy to the situation when/? = 2. 
For example: at a point on the join of (£i, 171, fj) and (£2, ^2, li) on $ 

z = xrfft! - PW+* + tfl(n2 - #2)'+1 

One is led, instead of to two quintics with a pair of repeated roots, to two 
(2p + l)-ics with a pair of p-îo\d roots; A has rank 2p + 2 and the fivefold of 
chords of O has multiplicity (at least) 2p on M. And so on. 
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