TYPICALLY-REAL FUNCTIONS

RICHARD K. BROWN

1. Introduction. A function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

 a_n real, is called typically-real of order one in the closed region $|z| \leq R$ if it satisfies the following conditions (6).

(1) f(z) is regular in $|z| \leq R$.

(2) $\mathscr{I}{f(z)} > 0$ if and only if $\mathscr{I}{z} > 0$.

The same function is called typically-real of order p, p a positive integer greater than one, if it satisfies condition (1) above and in addition the following condition (4; 5):

(2') there exists a constant ρ , $0 < \rho < R$, such that on every circle |z| = r, $\rho < r < R$, $\mathscr{I}{f(z)}$ changes sign exactly 2p times.

We shall denote the class of functions which are typically-real of order p in the open disc |z| < R by $T_p^*(R)$ while those which are typically-real of order p in the closed disc $|z| \leq R$ will be denoted by $T_p(R)$.

In the proofs which follow we assume that all functions belong to $T_p(1)$. The results will remain valid for the larger class $T_p^*(1)$ by noting that if $f(z) \in T_p^*(1)$ then $f(rz)/r \in T_p(1)$ for all $\rho < r < 1$ (2).

The problem to be considered in this paper is that of determining a positive expression R_p depending upon the first p coefficients of f(z) with the following property:

$$f(\mathbf{z}) \in T_p(1) \Rightarrow f(\mathbf{z}) \in T_1(R_p).$$

In §§ 3 and 4 we will develop a recursion relationship for R_p , p = 1, 2, 3, ..., and in § 6 we will show that our definition of R_p is sharp for the class of functions, $\bigcup_p T_p(1)$ in the sense that for p = 2 it is the best possible bound.

2. A Representation theorem. We shall first develop an integral representation for functions of class $T_p(1)$, p > 1.

THEOREM 2.1. If there exists a function R_{p-1} $(c_2, c_3, \ldots, c_{p-1}) > 0$ with the property that for any function

$$g(z) = z + \sum_{n=2}^{\infty} c_n z^n \in T_{p-1}(1)$$

we have $g(z) \in T_1(R_{p-1})$, then given an arbitrary function

Received April 24, 1958.

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in T_p(1)$$

we can write

(2.1)
$$f(R_{p-1}\omega) = \frac{2}{\pi} \int_0^{\pi} P(\omega, \nu, \phi) \, d\alpha(\phi), \qquad |\omega| < 1$$

where

$$P(\omega, \nu, \phi) = \frac{\omega^3 + (R_{p-1}b_1 - 2\cos\phi)\omega^2 + \omega}{(1 - 2\omega\cos\phi + \omega^2)(1 - 2R_{p-1}\omega\cos\nu + R_{p-1}^2\omega^2)},$$

 $b_1 = a_2 - 2\cos\nu \neq 0, \ 0 < \nu < \pi, \ c_1, \ldots, \ c_{p-1}$ are given by (2.2), and $d\alpha(\phi) > 0$ for $0 < \phi < \pi$.

Proof. Since $f(z) \in T_p(1)$ we have from (3) that

(2.2)
$$g(z) = \frac{1 - 2z \cos \nu + z^2}{b_1 z} f(z) - \frac{1}{b_1} = z + \sum_{n=2}^{\infty} c_n z^n \in T_{p-1}(1),$$

where ν is chosen subject to the following conditions:

- (1) $0 < \nu < \pi$.
- (2) $\mathscr{I}{f(z)}$ changes sign at $z = e^{i\nu}$.
- (3) $b_1 = a_2 2\cos\nu \neq 0.$
- (4) $b_1 > 0$ if p = 2.

It follows then from the hypotheses of Theorem 2.1 that $g(z) \in T_1(R_{p-1})$. It should also be noted that from (2.2) it follows that the R_{p-1} of Theorem 2.1 is a function of a_2, \ldots, a_p and ν .

Let us now compute the coefficients c_n of g(z) by integrating over the path C: $|z| = R_{p-1}$. This yields

(2.3)
$$c_{n} = \frac{1}{2\pi i} \int_{C} \frac{g(z)}{z^{n+1}} dz$$
$$= \frac{1}{2\pi R_{p-1}^{n}} \int_{0}^{2\pi} g(R_{p-1}e^{i\phi})e^{-in\phi} d\phi \qquad \text{where } z = \rho e^{i\phi}.$$

Adding to (2.3) the expression

$$\frac{1}{2\pi R_{p-1}^n} \int_0^{2\pi} g(R_{p-1}e^{i\phi})e^{in\phi} d\phi = 0$$

we obtain

(2.4)
$$c_n = \frac{-i}{\pi R_{p-1}^n} \int_0^{2\pi} g(R_{p-1}e^{i\phi}) \sin n\phi \, d\phi.$$

If we now let $g(R_{p-1}e^{i\phi}) = u(R_{p-1}e^{i\phi}) + iv(R_{p-1}e^{i\phi})$ we have, since the c_n are real,

(2.5)
$$c_{\pi} = \frac{1}{\pi R_{p-1}^{n}} \int_{0}^{\cdot 2\pi} v(R_{p-1}e^{i\phi}) \sin n\phi \, d\phi.$$

Since, however, $v(R_{p-1}e^{i\phi}) > 0$ for all $0 < \phi < \pi$ and since $v(R_{p-1}e^{i\phi}) = -v(R_{p-1}e^{-i\phi})$ we have

123

$$c_n = \frac{2}{\pi R_{p-1}^n} \int_0^{t\pi} v(R_{p-1}e^{i\phi}) \sin n\phi \, d\phi$$

where

(2.6)
$$\frac{2}{\pi R_{p-1}} \int_{\pi}^{0} v(R_{p-1}e^{i\phi}) \sin \phi \, d\phi = 1.$$

Thus

$$g(z) = \sum_{n=1}^{\infty} \left[\frac{2}{\pi R_{p-1}^{n}} \int_{0}^{\pi} v(R_{p-1}e^{i\phi}) \sin \phi \, d\phi \right] z^{n}.$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \left[v(R_{p-1}e^{i\phi}) \sin \phi \, \sum_{n=1}^{\infty} \frac{\sin n\phi}{\sin \phi} \left(\frac{z}{R_{p-1}} \right)^{n} \right] d\phi$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{R_{p-1}z \, v(R_{p-1}e^{i\phi}) \sin \phi \, d\phi}{R_{p-1}^{2} - 2R_{p-1}z \cos \phi + z^{2}}, \qquad |z| < R_{p-1}.$$

Thus

(2.7)
$$f(z) = \frac{2}{\pi} \int_{0}^{\pi} \frac{b_1 R_{p-1} z^2 d\alpha(\phi)}{(R_{p-1}^2 - 2R_{p-1} z \cos \phi + z^2)(1 - 2z \cos \nu + z^2)} + \frac{z}{1 - 2z \cos \nu + z^2}$$

where $d\alpha(\phi) \equiv v(R_{p-1}e^{i\phi}) \sin \phi > 0$ for all $0 < \phi < \pi$. Using (2.6) we can rewrite (2.7) in the form

(2.8)
$$f(z) = \frac{2}{\pi R_{p-1}} \int_0^{\pi} \frac{[z^3 + R_{p-1}(R_{p-1}b_1 - 2\cos\phi)z^2 + R_{p-1}^2z]}{(R_{p-1}^2 - 2R_{p-1}z\cos\phi + z^2)(1 - 2z\cos\nu + z^2)} d\alpha(\phi),$$
$$|z| < R_{p-1}$$

The transformation of variable $z = R_{p-1}\omega$ now gives (2.1).

From (2.1) it follows that

(2.9)
$$\mathscr{I}{P} = 4r^3(1 - r^2R_{p-1})^2 \cdot D^{-2} \cdot \sin\theta (\cos^2\theta + B\cos\theta + C)$$

where $\omega = re^{i\theta}$,

(2.10)
$$D^{2} \equiv D^{2}(a_{2}, \dots, a_{p}; r, \nu, \phi)$$
$$= |(1 - 2\omega \cos \phi + \omega^{2}) (1 - 2R_{p-1}\omega \cos \nu + R_{p-1}^{2}\omega^{2})|^{2} > 0$$

for all $R_{p-1} < 1$, $|\omega| < 1$,

(2.11)
$$B \equiv B(a_2, \dots, a_p; r, \nu, \phi)$$

= $\frac{K(1+r^2)(1-r^2R_{p-1}^2) - b_1r^2R_{p-1}(1-R_{p-1}^2)}{2r(1-r^2R_{p-1}^2)}$

$$(2.12) \quad C \equiv C(a_2, \dots, a_p; r, \nu, \phi) = - R_{p-1}^2 r^6 + [KR_{p-1}^3b_1 - K^2R_{p-1}^2 + 2R_{p-1}^2 + 2b_1R_{p-1}^2\cos\nu + 1]r^4 - [Kb_1R_{p-1} - K^2 + R_{p-1}^2 + 2b_1R_{p-1}^2\cos\nu + 2]r^2 + 1 4r^2(1 - r^2R_{p-1}^2)$$

and

(2.13)
$$K \equiv K(a_2, \ldots, a_p; r, \nu, \phi) = R_{p-1}b_1 - 2\cos\phi.$$

3. Definition of $\vec{R}_n(a_2, \ldots, a_p)$, p > 1. Given any function of the class $T_p(1)$ consider the equation

(3.1)
$$\frac{\partial P}{\partial \omega} \equiv P'(\omega) = 0 \qquad (a_2, \ldots, a_p \text{ fixed.})$$

Find all of the real roots $\omega_1(\nu, \phi)$, $\omega_2(\nu, \phi)$, ..., $\omega_k(\nu, \phi)$, $1 \le k \le 6$ of (3.1). We then define

(3.2)
$$\widetilde{R}_{p} \equiv \widetilde{R}_{p}(a_{2},\ldots,a_{p}) = \min_{\gamma,\phi} |\omega_{i}(\nu,\phi)|, \qquad i = 1,\ldots,k,$$

where the minimum is taken over all ν , ϕ satisfying $0 \le \phi \le \pi$, $0 \le \nu \le \pi$. We note here that P'(0) = 1,

(3.3)
$$P'(1) = \frac{[R_{p-1}b_1 + 2(1 - \cos\phi)](R_{p-1}^2 - 4R_{p-1}\cos\nu + 3)}{2(1 - \cos\phi)(1 - 2R_{p-1}\cos\nu + R_{p-1}^2)^2},$$

and

(3.4)
$$P'(-1) = \frac{[-R_{p-1}b_1 + 2(1 - \cos\phi)](1 - R_{p-1}^2)}{2(1 + \cos\phi)(1 + 2R_{p-1}\cos\nu + R_{p-1}^2)^2}.$$

It is clear then that for $0 < R_{p-1} < 1$ if $R_1b_1 > 0$ then there exists a ϕ such that P'(-1) < 0 while if $R_1b_1 < 0$ then there exists a ν and ϕ such that P'(1) < 0. Thus if $0 < R_{p-1} < 1$

4. The main theorem. From our definition of P in (2.1) and from (2.9) and (2.10) it is clear that any variation in the sign of $\mathscr{I}{P}$ for $0 < \theta < \pi$ must result from a variation in the sign of the factor $(\cos^2\theta + B\cos\theta + C)$. Thus, for any $0 \leq r \leq 1$ the functions P must be members of one of the three classes $T_i(r)$, i = 1, 2, 3. It should also be noted here that if for a particular value of r a function belongs to $T_1(r)$, then that function belongs to $T_1(r)$ for all smaller values of r.

Next we note that if for $0 < r_1 < r_2 < 1$ and fixed $a_2, a_3, \ldots, a_p, \nu$, and ϕ we have $P \in T_2(r_2), P \in T_1(r_1)$ and $P \notin T_3(r)$ for any r satisfying $r_1 < r < r_2$ then there must exist an r satisfying $r_1 \leqslant r \leqslant r_2$ for which either P'(r) = 0 or P'(-r) = 0. This follows directly from the relation $\mathscr{I}\{P(\omega)\} = \mathscr{I}\{P(\tilde{\omega})\}, |\omega| \leq 1$, and the analyticity of all the P in $|\omega| < 1$.

From the definition of \tilde{R}_p in § 3 and from the preceding paragraph it is clear that for fixed a_2, a_3, \ldots, a_p and $r < \tilde{R}_p$, no function P can change directly from the class $T_2(r)$ to $T_1(r)$.

If, then, we are able to show that for any choice of $a_2, a_3, \ldots, a_p, \nu, \phi$ there exists no $r, 0 < r < \tilde{R}_p$, for which we have both $B^2 - 4 \leq 0$ and $B^2 - 4C \geq 0$ we will have shown that for $r < \tilde{R}_p$ we cannot have $P \in T_3(r)$ and with the result of paragraph (4.3) will have established the MAIN THEOREM. If $f(z) \in T_p(1)$, p a positive integer greater than 1, then $f(z) \in T_1(r)$ for all r satisfying $0 < r < R_p(a_2, \ldots, a_p) = R_{p-1}\tilde{R}_p$, where $R_1 \equiv 1$ and \tilde{R}_p is as defined in § 2.

In the proofs which follow in this section we will assume that $f(z) \in T_p(1)$, p > 2, and that $R_{p-1} < 1$. The case p = 2 will be treated separately in § 5. In § 5 we also show that $R_2 < 1$. This, then, justifies the assumption $R_{p-1} < 1$, p > 2.

The proof of the Main Theorem will depend upon four lemmas. In the proof of these we will fix a_2, \ldots, a_p, ν in the expressions $B^2 - 4 = 0$ and $B^2 - 4C = 0$ and plot r against K. The lemmas will be used to prove that the general geometric configuration is that of Figure 1.

FIGURE 1

The lemmas to be proved are:

LEMMA 4.1. The set of points (r, K) for which $B^2 - 4 \leq 0$ and $0 \leq r \leq 1$, is convex in the direction of the K-axis and in the direction of the r-axis.

LEMMA 4.2. The set of points (r, K) for which $B^2 - 4C \leq 0$ and $0 \leq r \leq 1$ is convex in the direction of the K-axis.

LEMMA 4.3. The set of points (r, K) for which $B^2 - 4C \le 0$, $B^2 - 4 \le 0$, and $0 \le r \le 1$ is convex in the direction of the r-axis.

LEMMA 4.4. If for any fixed a_2, a_3, \ldots, a_p , there exists a K and an $r = \alpha$, $0 < \alpha < 1$, for which both $B^2 - 4C = 0$ and $B^2 - 4 = 0$, then $\alpha \ge \tilde{R}_p$.

It should be noted that the continuity of the boundaries of the regions in Figure 1 follows directly from the continuity of the functions $B^2 - 4C$ and $B^2 - 4$ in the two variables r and K, where $0 < r \leq 1, 0 < R_{p-1} < 1$.

Proof of Lemma 4.1. In the proof of this lemma we assume that $b_1 > 0$. The lemma remains valid for $b_1 < 0$ with obvious modifications in the argument.

126

(a) From (2.11) and (2.13) we note that if K = 0 then

$$B = \frac{-r\cos\phi(1-R_{p-1}^2)}{(1-r^2R_{p-1})^2}$$

and therefore $B^2 - 4 \leq 0$ for all $0 \leq r \leq 1$.

(b) For fixed $a_2, \ldots, a_p: \nu, r$ we have

$$\frac{dB}{dK} = \frac{1+r^2}{r}.$$

From (a) and (b) the convexity in the direction of the K-axis is immediate. (c) If r = 1 then B = 2 if

$$K = 2 + \frac{R_{p-1}b_1}{2}$$

and B = -2 if

$$K = -2 + \frac{R_{p-1}b_1}{2}.$$

Thus from (b) we have $B^2 - 4 < 0$ for all

$$-2 + \frac{R_{p-1}b_1}{2} < K < 2 + \frac{R_{p-1}b_1}{2}, \qquad r = 1.$$

(d) For K > 0,

$$\lim_{\tau\to 0}B = +\infty.$$

(e) For fixed
$$a_2, \ldots, a_p: \nu, K$$

$$\frac{dB}{dr} = -\frac{[K(1-r^2)(1-r^2R_{p-1}^2)^2 + b_1R_{p-1}r^2(1-R_{p-1}^2)(1+r^2R_{p-1}^2)]}{2r^2(1-r^2R_{p-1}^2)^2}$$

$$\equiv \frac{N(r)}{Q(r)}.$$

From (c), (d), and (e) we obtain the convexity in the direction of the r-axis of the set of points (r, K) for which $K \ge 0$, $B^2 - 4 \le 0$, $0 \le r \le 1$.

(f) dB/dr = 0 implies that

(4.4)
$$N(r) \equiv KR_{p-1}^{4}r^{6} - (KR_{p-1}^{4} + 2KR_{p-1}^{2} + b_{1}R_{p-1}^{3} - b_{1}R_{p-1}^{5})r^{4} + (2KR_{p-1}^{2} - b_{1}R_{p-1} + b_{1}R_{p-1}^{3} + K)r^{2} - K = 0.$$

From (3.4) we have N(0) = K, $N(1) = b_1 R_{p-1}(1 - R_{p-1}^4)$, and the product of the roots of N(r) is

$$\frac{1}{R_{p-1}^4} > 1.$$

Thus, if K < 0 we see that N(r) has but one root in the interval 0 < r < 1.

(g) When K < 0 we also have the following relations: B < 0; dB/dr < 0 for r sufficiently small, dB/dr < 0 for r = 1, and $\lim_{r \to 0} B = -\infty$.

From (c). (f), and (g), we obtain the convexity in the direction of the *r*-axis of the sets of points (r, K) satisfying $K \leq 0$, $B^2 - 4C \leq 0$, $0 \leq r \leq 1$.

Proof of Lemma 4.2. (a) First we note that $\lim_{r\to 0} B^2 - 4C < 0$ if and only if |K| < 2, while for r = 1, $B^2 - 4C > 0$ for all K.

(b) For |K| = 2, $B^2 - 4C > 0$ for all $0 \le r \le 1$.

(c) Then, since $B^2 - 4C$ is a quadratic in K it follows that for fixed a_2, \ldots, a_p, ν, r there exist at most two values of K for which $B^2 - 4C = 0$.

Proof of Lemma 4.3. This is immediate since if for a particular choice of $a_2, \ldots, a_p, \nu, \phi, r$, we have $B^2 - 4C < 0$ then the *P* under consideration is a member of $T_1(r)$ and from paragraph (4.2) we see that $B^2 - 4C$ cannot be greater than zero for any smaller *r* unless we have $B^2 - 4 \ge 0$.

Proof of Lemma 4.4. For fixed $a_2, \ldots, a_p: v, \phi$ let $P = u(r, \theta) + iv(r, \theta)$. Then, from the definition of P we have v(r, 0) = 0 and $v(r, \pi) = 0$ for all $0 \le r \le 1$. Thus, $v_r(r, 0)$ and $v_r(r, \pi) = 0$ for all $0 \le r \le 1$. Now if we rewrite (1.9) as $Q(a_2, \ldots, a_p; r, v, \phi, \theta)$ ($\cos^2\theta + B\cos\theta + C$) = $Q(\cos^2\theta + B\cos\theta + C)$, we have, since $C > 0, Q(a_2, \ldots, a_p; r, v, \phi, 0) = 0$ and $Q(a_2, \ldots, a_p; r, v, \phi, \pi) = 0$.

Any solution of the system $\{B^2 - 4C = 0, B^2 - 4 = 0\}$ is also a solution of the equivalent system $\{B^2 - 4 = 0, C = 1\}$. Let $r = \alpha, 0 < \alpha < 1$ be a solution of this system for some particular $a_2, \ldots, a_p: \nu, \phi$. We have

$$v_{\theta}(r, \theta) = (Q)(-B\sin\theta - 2\sin\theta\cos\theta) + (Q_{\theta})(\cos^{2}\theta + B\cos\theta + C)$$

$$v_{r}(r, \theta) = (Q)(B_{r}\cos\theta + C_{r}) + (Q_{r})(\cos^{2}\theta + B\cos\theta + C)$$

and, therefore, we have

$$\begin{aligned} v_{\theta}(\alpha, 0) &= (Q_{\theta})(1 + B + C)]_{\theta=0} & v_{r}(\alpha, 0) = 0, \\ v_{\theta}(\alpha, \pi) &= (Q_{\theta})(1 - B - C)]_{\theta=\pi} & v_{r}(\alpha, \pi) = 0. \end{aligned}$$

Thus for $r = \alpha$ either $v_{\theta}(\alpha, 0) = 0$ or $v_{\theta}(\alpha, \pi) = 0$, since *B* and *C* are independent of θ . This, however, implies that either $P'(\alpha) = 0$ or $P'(-\alpha) = 0$ for this choice of a_2, \ldots, a_p : ν, ϕ . Thus $\alpha \ge \tilde{R}_p$ follows from (3.2).

Proof of the Main Theorem. From Lemmas 4.1 through 4.4 it is clear that for any choice of a_2, \ldots, a_p no function P can belong to $T_3(r)$ if $r < \tilde{R}_p$. The proof then follows directly from the first two paragraphs of § 4, and formula (2.1).

5. The Class $T_2(1)$. Because of the discontinuity of the functions (2.11) and (2.12) at r = 1, $R_{p-1} = 1$ the derivation of the R_p , p > 2 employed in § 4 is not valid for the case p = 2 in which $R_{p-1} \equiv R_1 \equiv 1$. We present, therefore, in this section a rather simple proof of the validity for p = 2 of the Main Theorem. This proof is a modification of the proof found in the author's paper (1).

When p = 2 we must have $b_1 > 0$ if statement (2.2) is to be compatible with Rogosinski's definition of the class $T_1(1)$, (6).

(5.1)
$$B = \frac{K(1+r^2)}{2r}$$

(5.2)
$$C = \left(\frac{1-r^2}{2r}\right) - \frac{K(\cos\phi + \cos\nu)}{2} - \cos\phi\cos\nu,$$

and

and

(5.3)
$$K = b_1 - 2\cos\phi = a_2 - 2\cos\nu - 2\cos\phi.$$

Equation (3.1) takes the form

(5.4)
$$\left(\frac{\omega^2+1}{2\omega}+\frac{K}{2}\right)^2 - \left(\cos\phi\cos\nu+\frac{Ka_2}{4}\right) = 0, \quad 0 < |\omega| < 1.$$

Solving (5.4) for ω , we obtain

(5.5) $\omega_1 = a + (a^2 - 1)^{\frac{1}{2}}, \ \omega_2 = a - (a^2 - 1)^{\frac{1}{2}}, \ \omega_3 = b + (b^2 - 1)^{\frac{1}{2}}, \ \omega_4 = b - (b^2 - 1)^{\frac{1}{2}},$ where

(5.6)
$$a = \frac{-K}{2} + (\cos\phi\cos\nu + \frac{1}{4}Ka_2)^{\frac{1}{2}}$$

$$b = \frac{-K}{2} - (\cos \phi \cos \nu + \frac{1}{4}Ka_2)^{\frac{1}{2}}.$$

From (5.5) and (5.6) it is evident that to obtain $\tilde{R}_2(a_2)$ we need only minimize the expression $|a| - (a^2 - 1)^{\frac{1}{2}}$, $|a| \ge 1$, since |a| and |b| have the same maximum value.

The minimum of $|a| - (a^2 - 1)^{\frac{1}{2}}$ occurs when |a| is maximum, that is, when $\phi = \nu = \pi$, $a_2 > 0$ or $\phi = \nu = 0$, $a_2 < 0$. Thus

(5.7)
$$\widetilde{R}_2(a_2) = (|a_2|+3) - ((|a_2|+3)^2 - 1)^{\frac{1}{2}}.$$

We do not establish the validity of the Lemmas 4.1 to 4.4 for p = 2 since from (5.1) we have for fixed a_2 , ν , and ϕ that

(5.8)
$$\frac{d|B|}{dr} = \left|\frac{K}{2}\right| \left(\frac{r^2 - 1}{r^2}\right) < 0$$

for all 0 < r < 1 and

(5.9)
$$\frac{d(B^2 - 4C)}{dr} = \left(1 - \frac{K^2}{4}\right) \left(\frac{1 - r^2}{4r^3}\right) > 0$$

for all |K| < 2, 0 < r < 1.

From (5.7) we see that

$$\max_{|a_2|} \tilde{R}_2(a_2) = 3 - 2 \sqrt{2}.$$

If $r = 3 - 2\sqrt{2}$ and $|B| \leq 2$ we have from (5.1) that $|K| \leq 2/3$. Then from (5.8) we see that for |K| > 2/3 and $r < 3 - 2\sqrt{2}$ we have |B| > 2.

Next, from (5.1) and (5.2) we have for $r = 3 - 2\sqrt{2}$,

$$B^{2} - 4C = 8(\frac{1}{4}K^{2} - 1) + (\frac{1}{2}K + \cos\phi)(\frac{1}{2}K + \cos\nu)$$

which is readily seen to be negative if $|K| \leq 2/3$. Then from (5.9) we see that for $r < 3 - 2\sqrt{2}$ and $|K| \leq 2/3$ we have $B^2 - 4C < 0$.

Thus, as in § 4, it follows that for any fixed a_2 , ν , $0 < \nu < \pi$, and all $r < \tilde{R}_2(a_2)$ we have $P \in T_1(r)$. This establishes the Main Theorem for p = 2.

6. Sharpness. To show that our result is sharp over $\bigcup_p T_p(1)$ we give a function of class $T_2^*(1)$ which is typically real of order one for and only for $|z| < R_2(a_2) \equiv R(a_2)$ as defined in (5.7).

Consider the function

(6.1)
$$f(z) = \frac{z^3 + (a_2 + 4)z^2 + z}{(z+1)^4}; \qquad a_2 > 0, |z| < 1.$$

This function is a member of $T_2^*(1)$ and

(6.2)
$$f'(z) = \frac{(z-1)[z^2 + (2a_2 + 6)z + 1]}{(z+1)^5}$$

From (5.2) it is readily seen that f(z) cannot belong to $T_1(r)$ for any r greater than $(a_2 + 3) - ((a_2 + 3)^2 - 1)^{\frac{1}{2}} \equiv \tilde{R}_2(a_2) \equiv R(a_2)$.

References

- 1. R. K. Brown, Some mapping properties of the mean sums of power series and a problem in typically-real functions of order p, Ph.D. thesis (Rutgers University, 1952).
- A. W. Goodman, Typically real functions with assigned zeros, Proc. Amer. Math. Soc., 2 (1951), 349-57.
- A. W. Goodman and M. S. Robertson, A Class of Multivalent Functions, Trans. Amer. Math. Soc., 70 (1951), 127-36.
- M. S. Robertson, A representation of all analytic functions in terms of functions with positive real parts, Ann. Math., 38 (1937), 770–83.
- 5. The variation of the sign of V for an analytic function U + iV, Duke Math. J., 5 (1939), 512-19.
- W. Rogosinski, Ueber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Zeit., 35 (1932), 73-5.

Rutgers University