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NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER
ARITHMETIC

ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

Abstract. A theory T is tight if different deductively closed extensions of T (in the same language)
cannot be bi-interpretable. Many well-studied foundational theories are tight, including PA [39], ZF, Z2,
and KM [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories.
We prove that restricting the Comprehension schema of Z2 and KM gives non-tight theories. Specifically,
we show that GB and ACA0 each admit different bi-interpretable extensions, and the same holds for
their extensions by adding Σ1

k -Comprehension, for k ≥ 1. These results provide evidence that tightness
characterizes Z2 and KM in a minimal way.

§1. Introduction. It is well known that set theories like ZF and class theories like
GB or KM are capable of interpreting many of their extensions as theories. For
instance, ZF interprets ZFC + CH via the constructible universe, or one may use the
Boolean ultrapower construction over the notion of forcing Add(�,�2) to produce
an interpretation ofZF + ¬CH inZF (see [19]). Accordingly,ZF + CH andZF + ¬CH
are mutually interpretable. Mutual interpretability yields equiconsistency results, but
for many set-theoretical purposes it is a coarse notion of equivalence. The issue is
that we may lose information. For an example where this loss is severe, consider
a model of ZFC + ¬CH with a measurable cardinal. Carry out the constructible
universe interpretation ofZF + CH in this model followed by the Boolean ultrapower
interpretation. This produces a model of ZFC + ¬CH again, but the model cannot
have a measurable cardinal. (As a forcing extension of L, it will miss, for example, 0�.)
Even in less severe cases information is lost—the Boolean ultrapower interpretation
produces ill-founded models, so this two-step interpretation destroys information
about well-foundedness (Figure 1).

To avoid this limitation and properly establish an equivalence between theories,
we need a bi-interpretation.1 Precisely, a bi-interpretation between two theories T1

and T2 are interpretations I and J , respectively, of T1 in T2 and of T2 in T1, so that
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1Interpretations were formally introduced by Tarski in [35] to deal with undecidable theories.

Arguably, we can say that interpretations were introduced informally in the study of the consistency of
alternative axioms of geometry in the second half of the nineteenth century (see [21, p. 260]). Feferman
studied interpretations themselves as mathematical objects in [8, 9]. Finally, bi-interpretations appear as
faithful interpretations in [11] even though their definition still do not encompass the full extent of what
we now call bi-interpretations.
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2 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

Figure 1. The L and Boolean ultrapower interpretations.

there are definable functions f and g in T1 and T2 such that for all ϕ and �

T1 � ϕ(x1, x2, ... , xn) ↔ ϕIJ
(f(x1), f(x2), ... , f(xn))

and

T2 � �(x1, x2, ... , xk) ↔ �J I
(g(x1), g(x2), ... , g(xk)).

One can also view bi-interpretations on the level of individual models, saying that
modelsM1 andM2 are bi-interpretable. One should view the theory definition as a
uniform version of the model definition, saying that every model of the theory T1

is bi-interpretable with a model of the theory T2, and vice versa, always using the
same choice of interpretations.

Notably, theories such as PA and ZF cannot fix one model up to isomorphism,
i.e., they are not categorical. We can, however, say that the second-order versions
of PA and ZF are, respectively, categorical (Dedekind in [4]) and quasi-categorical
(Zermelo in [43]). These categoricity results assume that second-order quantifiers
indeed range over all subsets of a given domain. Thus it requires us to attribute
to the mathematician a not substantiated ability to fix the meaning of second-
order concepts.2 In this context, the semantic notion of bi-interpretation can
be understood as a weak form of “sameness” allowing for a weaker form of
categoricity that does not rely on an arbitrary reference to the fullness of second-
order quantifiers.3 Instead of asserting that two models have isomorphic ontologies,
a bi-interpretation equates the expressible ontology of possibly different models.

In pursuing this form of categoricity for set and class theories, one should examine
which theories do not admit bi-interpretable models. Indeed, the interpretations

2See [3, 30] for a detailed philosophical analysis of the categoricity results.
3Alternatively to considering bi-interpretations, one may consider a single model with two versions of

the same theory (e.g., two separate symbols for ∈). Proving that the two versions are always isomorphic
amounts to what is called Internal Categoricity. This concept is nonetheless limited in scope as it uses
the axiom-schemes of the theory to allow for the two models to be related (e.g., separation satisfied
by each model should include formulas with the alternative symbol for membership). This concept was
introduced by Parson [29] with respect to arithmetic. Väänänen and Wang in [36–38] studied the internal
categoricity in set theory and further advanced the topic in recent years.
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NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER ARITHMETIC 3

of ZF + CH and ZF + ¬CH given above lose information. But, are there different
interpretations that do not have this problem, and instead give a bi-interpretation? As
demonstrated by Enayat [6], any two bi-interpreted models of ZF are isomorphic.
Consequently, no two different extensions of ZF are bi-interpretable, and so the
answer is negative. While a theory likeZFhas many models due to the incompleteness
phenomenon, in a sense we cannot have “too many.” This property of ZF was first
investigated by Visser in [39] with respect to arithmetic and later named by Enayat
as tightness.4

Definition. A theory T is tight if every two bi-interpretable extensions of T in
the same language as T have the same deductive closure.

Definition. A theory T is semantically tight if every two bi-interpretable models
of T are isomorphic.5

It is evident that every semantically tight theory is also tight.

Theorem (Enayat). ZF, KM, and Z2 are tight and semantically tight.6

A natural follow-up question is whether there are tight subsystems of these
theories. This was proposed in [6, p. 14] and partially addressed with respect to ZF
by Freire and Hamkins in [13]. They show that there are bi-interpretable models of
Z and ZFC–.7 Moreover, since these model constructions were uniformly produced,
they obtained different bi-interpretable extensions of Z and ZFC–. A full answer to
this question amounts to a profound characterization of ZF and it should be done
by obtaining bi-interpretable models of the theory Z with fragments of the axiom
scheme of replacement.

In a similar light, this article investigates tightness for subsystems ofKM, obtained
by restricting the Comprehension axiom. The weakest subsystem in this hierarchy
is Gödel–Bernays class theory GB, where Comprehension is only allowed for

4Philosophically, as bi-interpretation deals with expressible ontology, the fact that different models
of ZF are never bi-interpretable suggests that universalist set theorists “living” in different universes can
only assert to fully understand each other if both believe the other is wrong about their own intuitions.
Not only the other is wrong about the statement that their model is the model of set theory, but also that
their own intuitions about the structure of their models are wrong. A detailed analysis of this dynamic
can be found in [12].

5Enayat works with a stronger notion he calls solid. Consider N is an M-definable model and that N
has a definable copyM of M. Using the same interpretation,M obtains a definable copyN of N. Saying
that M and N are bi-interpretable amounts to (i) there is an M-definable isomorphism from M to M
and (ii) there is an N-definable isomorphism from N to N . If we can prove that models M and N of a
theory T are isomorphic without assuming (ii), we can say that T is not only semantically tight but also
solid.

6Enayat proved that ZF, KM, and Z2 are tight [6]; Visser proved that PA is tight [39]. Visser and
Friedman also proved the ZF case in an unpublished work (see note 1 of [6]). Indeed, Enayat shows
the stronger result that all these theories are solid. Note, however, that the results in this paper concern
non-tightness and hence will trivially imply non-solidity. For a brief exposition on this, we recommend
Hamkins’s blog post [18].

7Z refers to the first-order version of Zermelo set theory composed of ZF without the Replacement
schema; ZFC– stands for ZFC without the Powerset axiom. Note that ZFC– should be axiomatized with
Collection schema, not Replacement, and the well-ordering theorem instead of Zermelo’s formulation
of choice, as these are not equivalent in the absence of Powerset [42].
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4 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

first-order formulae. Strengthening upward adding Comprehension for Σ1
k formulae

gives theories we will call KMk .
Our first main results are that GB and KMk are not semantically tight.

Main Theorem 1.0.1. Let κ be an inaccessible cardinal and suppose Vκ |= V =
HOD.

• The minimum model of GB over Vκ is bi-interpretable with a certain extension
adding a Cohen-generic class of ordinals. Thus, GB is not semantically tight.

• Let k ≥ 1. The minimum model of KMk over Vκ is bi-interpretable with a certain
extension adding a Cohen-generic class of ordinals. Thus,KMk is not semantically
tight.

We then build on these to show that, indeed, these theories are not tight, and that
the same is true for subsystems of Z2. The failure of tightness should be seen as a
uniform version of the failure of semantic tightness.

Main Theorem 1.0.2. The following theories are not tight:
• GB;
• KMk for k ≥ 1;
• KMk + Σ1

k-Class Collection, for k ≥ 1; and
• any of the above theories plus the schema of Replacement for all second-order

formulae.

While our primary interest is in class theories, our methods are flexible enough to
also apply to subsystems of second-order arithmetic.

Main Theorem 1.0.3. The following theories are not tight:
• ACA0;
• Π1

k-CA0 for k ≥ 1;
• Σ1
k-AC0 for k ≥ 1; and

• any of the above theories plus the full Induction schema, i.e., the theories ACA,
Π1
k-CA, and Σ1

k-AC.

In forthcoming work, Enayat [7] independently investigated the nontightness of
fragments of KM and Z2. He showed that finitely axiomatizable subtheories of
these are not tight. That gives an alternate proof of the nontightness of GB, KMk ,
ACA0, and Π1

k-CA0, as well as the versions with Class Collection or AC. But the
second-order Replacement schema and the full Induction schema are not finitely
axiomatizable, so his methods don’t apply to the theories with those schemata.

We present the semantic non-tightness (Section 3) and non-tightness (Section 4)
results for class theory separately. The constructions for non-tightness amounts to
more difficult variants of the constructions for semantic non-tightness, generalized
to apply to a wider class of models, including nonstandard models, so we present
the easier constructions first. Additionally, the constructions over Vκ may be of
interest to the set theorist with no interest in nonstandard models, and we wish to be
accommodating to any such reader. In Section 5, we explore how to apply the same
technique to subsystems of second-order arithmetic. And in Section 6 we briefly
discuss the extent to which our constructions generalize and what questions remain
open.

Before these sections we recall some definitions and basic facts about class theory.
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NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER ARITHMETIC 5

§2. Review of class theories and class forcing. In this paper we look at class
theories, also called second-order set theories, those set theories that have proper
classes as objects in their domains of discourse. We will use a two-sorted approach,
writing a model as, e.g., (M,X ) with M being the sets of the model and X
being the classes of the model. Following standard convention, when writing
formulae in the language of class theory we will use lowercase variables for sets
and uppercase variables for classes. For example, ∀x∃Y∀z (z ∈ x ⇔ z ∈ Y ) asserts
that every set is co-extensional with some class, a trivial consequence of First-Order
Comprehension.

If a formula only quantifies over sets—but possibly has class parameters—we call
it first-order. The class of first-order formulae is denoted with any of Σ1

0, Π1
0, or Δ1

0.
From the first-order formulae we build up the hierarchy of Σ1

k and Π1
k formulae

by adding class quantifiers in the way familiar to any logician. Namely, a Σ1
k

formula is of the form ∃X̄1 ··· ∀X̄kϕ(X̄1, ... X̄k), where ϕ is first-order and there
are k many blocks of alternating class quantifiers, while a Π1

k formula is of the form
∀X̄1 ··· ∃X̄kϕ(X̄1, ... X̄k), again with first-order ϕ and k many blocks of alternating
class quantifiers.

Definition 2.0.1. Gödel–Bernays class theory GB is axiomatized by the follow-
ing.

• ZFC for classes;8

• Class Extensionality, asserting that two classes are equal if and only if they
have the same elements;

• Class Replacement, asserting that the image of a set under a class function is
always a set; and

• First-Order Comprehension, asserting that classes can be defined using
comprehension for first-order formulae. More precisely, this axiom schema
has as instances the universal closure of

∃X X = {y : ϕ(y, P̄)}
for each first-order formula ϕ.

If we add to GB Full Comprehension, viz. the instances of Comprehension for any
formula in the language of class theory, we get Kelley–Morse class theory KM. For
finite k ≥ 1, adding Σ1

k-Comprehension—Comprehension for Σ1
k formulae—gives

the theory we will call KMk .

For some purposes KM is insufficient, and needs to be extended by a version of
Collection for classes.9 It will be convenient in this paper to work with this stronger
variant (but not stronger in consistency strength). Using a stronger version will not
harm our results since tightness is preserved by extension in the same language.

8The models we consider in this paper will all satisfy V = HOD and hence satisfy the axiom of choice.
So for our purposes we do not want to use merely ZF for the sets. For this same reason our models will
for free satisfy Global Choice.

9For example, KM does not suffice to prove a class version of Fodor’s lemma [17], but adding Class
Collection enables the proof of class Fodor’s lemma.
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6 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

A hyperclass is a collection of classes. Formally these do not exist in our models
similar to how classes formally do not exist as objects in ZFC. However, some
hyperclasses we can code with an individual class.

Definition 2.0.2. A code for a hyperclass is a class of ordered pairs. We say that
a hyperclass A is coded if there is a code A so that

A =
{
(A)i : i ∈ V

}
,

where (A)i = {x : (i, x) ∈ A} is the i-th slice of A.

Definition 2.0.3. The Class Collection (CC) axiom schema asserts that if for each
set there is a class satisfying some property, then we can collect witnesses classes
into a single coded hyperclass.10 Formally, instances of this schema are the universal
closure of

∀x∃Y ϕ(x,Y, P̄) ⇒ ∃B ∀x∃i ϕ(x, (B)i , P̄),

where ϕ ranges across all formulae in the language of class theory. If we restrict this
schema to Σ1

k formulae we get Σ1
k-Class Collection (Σ1

k-CC).

Marek and Mostowski [24, Theorem 2.5] showed that given any model of KM
you can thin down the classes to get a model of KMCC = KM + CC with the same
sets. Ratajczyk [31] built on their work to show that given any model of KMk you
can thin down the classes to get a model of KMCCk = KMk + Σ1

k-CC with the same
sets, where k > 0.

Just as Collection yields that every formula in the language of set theory is
equivalent to one in the Lévy hierarchy, CC yields that every formula in the language
of class theory is equivalent to a Σ1

k formula for some k. So the theories KMCCk give
a hierarchy of stronger and stronger theories which in the union give the full theory
KMCC.

2.1. Bi-interpretability with first-order set theory. For some of our results it will
be convenient to work with first-order set theories rather than class theories. The
construction behind the more difficult direction of these bi-interpretations goes back
to Scott [32]. The key observation is that the Foundation axiom implies that every
set x is determined by the isomorphism type of (TC({x}),∈). As such, sets can be
represented with isomorphism classes of well-founded, extensional directed graphs
with a maximum element. In this way a model of GB can represent sets of rank
>Ord. To have a name, call this construction the unrolling construction and refer to
the model of first-order set theory obtained as the unrolled model.

Theorem 2.1.1 [24]. KMCC and ZFC– plus “there is a largest cardinal, and it is
inaccessible” are bi-interpretable.11

Denote this latter theory by ZFC–
I . Working in ZFC–

I let κ denote the largest
cardinal. For these bi-interpretability results, V of the model of class theory is
isomorphic to Vκ of the unrolled model of ZFC–

I . That is, the sets are fixed and the
bi-interpretation is entirely about what happens in the classes.

10In the context of second-order arithmetic, the analogous axiom schema is referred to as AC (cf.
Definition 5.0.2).

11See [1] for a modern treatment of this result.
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NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER ARITHMETIC 7

Doing the construction more carefully you can get versions of this result for
restricted amounts of Comprehension. Here, let ZFC–

I,k denote the theory obtained
from ZFC–

I by restricting the Collection and Separation schemata to Σk formulae.

Theorem 2.1.2 [31]. The following pair of theories are bi-interpretable, for k ≥ 1.

• KMCCk and ZFC–
I,k .

The reader who desires to read through the construction in detail is referred to
the second author’s dissertation [40].

The main utility of these bi-interpretation results is that they allow us to use known
facts about models of first-order set theory to draw conclusions about models of class
theory. Additionally, some arguments become easier to formulate in that context,
since we have access to von Neumann ordinals, the Mostowski collapse theorem,
and so on, whereas with classes we don’t have direct access to these powerful tools.

2.2. Class forcing. We will use class forcing over models of KMCCk . Because the
theory of this is less well-known than over models of KM or GB, we recall the
important facts here. Let’s begin by addressing nonstandard models.

With a transitive model of set theory, given a generic G you can interpret all
P-names via an induction external to the model. If a model of set theory is ill-
founded, we cannot do that. Instead we need an approach similar to the Boolean
ultrapower approach. The atomic forcing relations p � � = � and p � � ∈ � yield
the equivalence relation =G defined as � =G � if and only if p � � = � for some
p ∈ G and a similarly defined congruence ∈G modulo =G . Quotienting the P-
names by =G and using ∈G as the membership relation gives the forcing extension.
Identifying the ground model with the collection of x̌/=G for check names x̌, we
get the forcing extension as a genuine extension. It is straightforward to check that
in case you start with a transitive model, this produces a model isomorphic to the
one obtained by the external induction. The usual lemmata about forcing can be
proved in this context.12

Theorem 2.2.1 (Stanley, Friedman [14, 34]). GB proves that pretame class forcings
satisfy the forcing theorem for first-order formulae, viz. that the relations p � ϕ(�, ...)
are classes for each first-order formula ϕ.

Corollary 2.2.2. Forcing with a tame class forcing preserves all axioms of GB
or KM.

We elide the technicalities of tameness and pretameness, and point the reader to
[14] or [2]. What is needed for our purposes is that Add(Ord, 1), the forcing to add
a Cohen-generic class of ordinals, is tame.

Theorem 2.2.3. Let k ≥ 1. Forcing with a tame class forcing preserves all axioms
of KMCCk .

Proof Sketch. One way to prove this goes through the bi-interpretability with
first-order set theory. Knowing that set forcing preserves ZFC–

k , with a little work
one concludes tame class forcing preserves KMCCk .

12For a recent exposition of these details, with a focus on how it makes sense for ill-founded models,
we recommend [16].
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8 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

Alternatively, one can prove this directly within class theory. To prove Σ1
k-

Comprehension and Class Collection, first you need to prove that the forcing
relations for Σ1

k-formulae are classes. Note that this uses Σ1
k-CC to be able to pull

the set quantifiers expressing “densely many conditions force such and such” inside
class quantifiers, so you get a Σ1

k-definition for the forcing relations. (Compare to,
in the ZF context, how replacement is used to pull bounded quantifiers inside to
get that the forcing relation for a Σk formula is Σk .) Once you know these forcing
relations are classes, you then prove the preservation of the axioms in the usual
way. 


Definition 2.2.4. Suppose (M,X ) and (M,Y) are two models of class theory
with the same sets M. Say that (M,Y) is a width-extension of (M,X ) if X ⊆ Y
and for every well-order Γ ∈ Y there is Γ′ ∈ X so that (M,Y) has an isomorphism
Γ ∼= Γ′.

This notion is a class theoretic cousin of the familiar notion in first-order set
theory of an extension which does not contain any new ordinals. As in the ZF
context, forcing gives a width-extension (assuming strong enough axioms in the
ground model).

Theorem 2.2.5. Let k ≥ 1. Forcing over a model of KMCCk with a pretame forcing
produces a width extension.

Proof. Hamkins and Woodin [20] proved that pretame forcing over a model
of Open Class Determinancy cannot add new ordertypes for well-orders. Since Σ1

1-
Comprehension is enough to prove determinancy for open class games [15], this
gives the result.

Alternatively, one can prove this via the bi-interpretability with first-order set
theory, using that forcing over a model of ZFC–

1 cannot add new ordinals. 

As an aside, we remark that it is open whether KMCC1 is necessary for this result.

Question 2.2.6. Does GB prove that every pretame forcing extension is a width
extension?

§3. Semantic non-tightness in class theory. In this section we show that certain
fragments of KM fail to be semantically tight. All models considered will have the
same sets. Namely, they will be Vκ for a fixed inaccessible cardinal κ, and we will
assume that Vκ |= V = HOD. (It is easy to arrange such by forcing, if necessary.
Alternatively, this can be obtained by restricting down to an inner model.)

It is well known that satisfying V = HOD is equivalent to having a definable
(without parameters) global well-order. We will use the slightly stronger fact that
there is a uniform definition which works for any model of V = HOD. Namely,
V = HOD asserts that every set is definable in some V	 using some ordinal parameter
α. So if we order the sets x by the least 	 , then the least formula ϕ(v1, v2), then the
least parameter α so that x is defined by ϕ in V	 using parameter α, this gives a
global well-order of the universe in ordertype Ord. We will call this the HOD-order,
refer to HOD-least choices, and so on.

3.1. Semantic non-tightness of GB. The strategy for establishing the semantic
non-tightness of GB is this. Using Vκ as the sets there is a minimum model of GB,
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NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER ARITHMETIC 9

namely (Vκ,Def(Vκ)) where we append the first-order definable subsets of Vκ to
be the classes. By Tarski’s theorem on the undefinability of truth, being in Def(Vκ)
cannot be first-order definable over Vκ. But it is second-order definable and indeed
absolutely so. Moreover, we will produce a carefully defined C ⊆ κ which is also
absolutely second-order definable over Vκ. Our two bi-interpretable models of GB
will then be (Vκ,Def(Vκ)) and (Vκ,Def(Vκ; C)) where Def(Vκ; C) denotes the
hyperclass of subsets of Vκ definable using C as a parameter.

Observation 3.1.1. The satisfaction predicate T for Vκ is both Σ1
1 and Π1

1 definable
over Vκ. If X ⊆ P(Vκ) is any possible collection of classes which give a model of GB
then X will correctly define T.

The content of this observation can be traced back to Mostowski [25].

Proof. To define T in a Σ1
1 way, we observe that it is the union of the

Σk-satisfaction predicates, and these all agree on their common domains. While the
first-order definitions of these are progressively more complex as k increases, whether
a class is a Σk-satisfaction class is uniformly recognizable in k. Namely, S is the
Σk-satisfaction class if it satisfies the Tarskian recursion on its domain and it judges
the truth of all and only the Σk formulae. To define T in a Π1

1 way, ϕ[�a] ∈ T iff for
any class S if S is a Σk-satisfaction class and ϕ[�a] is in its domain, then S judges
ϕ[�a] to be true.

Observe that GB suffices to prove the Σk-satisfaction classes exist. So these
definitions work for any model of GB with Vκ as its sets. (Here we use that we
are working over a transitive model and so there are only standard k to worry
about.) 


While Def(Vκ) is a hyperclass and thus cannot be a class in any model of class
theory with Vκ as its sets, it can be coded by a single class.

Observation 3.1.2. After a minor reshuffling of coordinates, T is a code for
Def(Vκ).

Proof. A class X is definable if and only if X = {x : ϕ[x, �a] ∈ T} for some
formula ϕ with parameters �a. So by reshuffling coordinates in T to consist of
ordered pairs ((ϕ, �a), x) we get a code for Def(Vκ). 


We will slightly abuse notation and use T to refer both to the satisfaction class and
to this code for Def(Vκ). We will write (T)� to refer to the slice of T corresponding
to the �-th pair (ϕ, �a) in the HOD-order.

If C is a second-order definable generic for a forcing P ∈ Def(Vκ) then similar
results hold for T(C), the satisfaction class relative to C as a parameter, and
Def(Vκ; C), the hyperclass of classes definable using C as a parameter.

Lemma 3.1.3. Suppose C is a generic over (Vκ,Def(Vκ)) for a forcing P ∈
Def(Vκ), and C is second-order definable. Then, T(C) is definable, indeed definable in
a uniform manner across all (Vκ,X ) |= GB which define C the same. Moreover, after
a minor reshuffling of coordinates T(C) is a code for Def(Vκ; C).

Proof. The reason this isn’t completely trivial is that partial satisfaction classes
relative to C will not be (first-order) definable unless P is trivial, and so we cannot
just relativize the definition of T. Instead, we use the forcing theorem: ϕ[�a] ∈ T(C)
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10 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

if and only if there is p ∈ C so that “p � ϕ(�a, Č )” ∈ T. By the assumption that C
is second-order definable we can express “there is p ∈ C so that....” This definition
works across any (Vκ,X ) |= GB which defines C the same because T is absolute.
Finally, the same argument as with T gives a code for the hyperclass Def(Vκ; C). 


In particular, this lemma implies that “every class is definable from C” is a second-
order definable property. We will write Class = Def(Vκ; C) as an abbreviation for
the second-order formula asserting this.

It remains to determine how to give an absolute definition for a generic C. In
brief, we will define C to be a carefully chosen Cohen generic subclass of κ, using
the HOD-order to ensure canonicity of any choices.

Lemma 3.1.4. There is a second-order definition for C ⊆ κ which is Cohen-generic
over (Vκ,Def(Vκ)) so that any GB model over Vκ defines C the same. Consequently,
there is a second-order definition for T(C) so that all GB models over Vκ define T(C)
the same.

The idea behind this lemma is originally due to Feferman [10], who did the same
construction in the context of arithmetic. See [26–28] for an exposition of Feferman’s
work.

Proof. Recall that the forcing Add(κ, 1) is<κ-closed and is first-order definable
over Vκ. There are κ many dense subsets of Add(κ, 1) which appear in Def(Vκ),
so we can meet them one at a time, using closure at limit stages. From T define
a sequence �D = 〈D� : � ∈ κ〉 of all the dense classes in Def(Vκ) by ordering them
by the HOD-least pair (ϕ, �a) which gives a dense class. Note that �D is first-order
definable from T. Since T is absolutely definable this means that all models of GB
over Vκ compute �D the same.

The construction is done in κ many steps. Start with p0 = ∅. Having built p�
define p�+1 to be the HOD-least condition < p� which meets D� . And if � is limit
then define p� =

⋃
�<� p� . Because κ is inaccessible we have that p� ∈ Vκ and thus

we can continue the induction. Finally, set C =
⋃
�∈κ p� . Because any model of GB

over Vκ computes �D the same, inductively we can see that they all compute each p�
the same, whence they compute C the same. 


We are now in a position to exhibit that GB is not semantically tight.

Theorem 3.1.5. The two models (Vκ,Def(Vκ)) and (Vκ,Def(Vκ; C)) ofGB, where
κ is inaccessible, Vκ |= V = HOD, and C is the generic defined as above, are bi-
interpretable.13

Corollary 3.1.6. GB is not semantically tight.

Proof of Theorem. Let X = Def(Vκ) and Y = Def(Vκ; C). Interpreting
(Vκ,X ) inside (Vκ,Y) is simple. The interpretation, call it I, is the identity on
its domain, and ∈I is simply ∈. The domain includes all of Vκ to be the sets of

13Indeed, as remarked by the referee, one can alternatively establish the bi-interpretation of
(Vκ,Def(Vκ)) and (Vκ,Def(Vκ ; C)) with (Vκ,T). The interpretation of (Vκ,Def(Vκ ; C)) in (Vκ,T) is
obtained by representing Def(Vκ ; C)) with the HOD-least codes of T with the additional symbol for C;
the other direction is obtained directly by the Observation 3.1.1.
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the interpreted model, but restricts the classes to only include those which are first-
order definable. This domain is second-order definable because T is second-order
definable.

The interpretation in the other direction, call it J , takes more care, since we need
to refer to classes which are not actually in X . For the sets of the interpreted model
we will take all of {0} × Vκ and for the classes we will take a subset of {1} × κ.
Specifically, (1, �) is in the domain of J just in case (T(C))� �= (T(C))� for all � < �,
where the subscripts refer to the rank of the indices in the HOD-order. For sets,
(0, x) ∈J (0, y) if and only if x ∈ y. For set-class membership, (0, x) ∈J (1, �) if
and only ifx ∈ (T(C))�. In effect, the interpretation is that each class in the extension
is interpreted as (the index of) the first formula which defines it.

It is clear from the constructions that I(Vκ,Y) = (Vκ,X ) and J (Vκ,X ) ∼=
(Vκ,Y). For one composition, work inside (Vκ,X ). It is easy that I(J (Vκ)) is
isomorphic to Vκ—just strip off the 0 in the first coordinate. For the classes, to
define an isomorphism X ∼= I(J (X )), given a class X first query T(C) to find the
HOD-least formula which defines X. Call the index of this formula �. Then send X
to (1, �). This isomorphism is first-order definable from T(C), so it is second-order
definable over (Vκ,X ), which correctly computes it. For the other composition, it
is again easy that the sets of J ◦ I are isomorphic to the sets in the ground model.
For the classes, again do the same trick of looking for the HOD-least slice of T(C)
which gives X. 


3.2. Semantic non-tightness of KMk . Fix for the entirety of this section finite
k ≥ 1.

It will be convenient to work with the stronger theory KMCCk . This gives a slight
improvement to the conclusion that KMk is not semantically tight, so that is no
cost to pay. To show that KMCCk is semantically non-tight we will follow the same
strategy as in the previous subsection. One model of KMCCk will be the minimum
model of KMCCk over κ and the other will be an extension of the minimum model
by a canonically chosen Cohen generic.

Fix finite k ≥ 1. Let α > κ be the smallest ordinal so that Lα(Vκ) satisfies Σk-
Collection and Σk-Separation. By the assumption that Vκ |= V = HOD, we have a
definable global well-order in Lα(Vκ), call it the L(Vκ)-order. Set M to consist of
all subsets of Vκ which appear as elements of Lα(Vκ). This (Vκ,M) will be our
minimum model of KMCCk .

Lemma 3.2.1. The minimum model (Vκ,M) |= KMCCk .

Proof. It is immediate that the model satisfies Class Extensionality and Class
Replacement. Consider a Σ1

k-formula ϕ(x), possibly with parameters from M.
Inside Lα(Vκ), the set {x ∈ Vκ : Lα(Vκ) |= ϕ(x)M} exists by Σk-Separation. But
then this set is in M, establishing the instance of Comprehension for ϕ. Now
consider a Σ1

k-formula ϕ(x,Y ), possibly with parameters from M, and assume that
for each x ∈ V there is Y ∈ M so that (Vκ,M) |= ϕ(x,Y ). By Σk-Collection in
Lα(Vκ) we find therein a set b ⊆ P(Vκ) so that for each x ∈ Vκ there is Y ∈ b
so that ϕ(x,Y )M. Because Lα(Vκ) has an injection f : b → κ we can build the set
B = {(f(Y ), y) : y ∈ Y ∈ b}, which is in M. This B witnesses the instance of Class
Collection for ϕ, completing the proof. 
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While this is not necessary to produce non-isomorphic but bi-interpretable models
of KMCCk , we remark as an aside that this M really does give a minimum model.

Theorem 3.2.2 (Ratajcyk). If (Vκ,X ) |= KMk then M ⊆ X .

Proof. By work of Ratajcyk [31], every model of KMk contains a submodel with
the same sets which satisfiesKMCCk . So we may assume that (Vκ,X ) |= KMCCk . Let
M |= ZFC–

I,k be the unrolled model, obtained as discussed in Section 2.1. Because
κ has uncountable cofinality, (Vκ,X ) is correct about which of its classes are well-
founded. Thus, M is well-founded, and we assume without loss that M is transitive.
By the leastness of α, we have Lα(Vκ) ⊆M and thus M ⊆ X . 


Next we need to see that we can define a code for M in such a way that different
models of KMCCk over Vκ will define the same code. First, let us work with Lα(Vκ).
We begin by highlighting an easy but useful fact.

Lemma 3.2.3. Over Lα(Vκ) there is a definable increasing cofinal map α → κ.
Consequently, any outer model of Lα(Vκ) can define this map, with the same definition
working uniformly across all outer models.

Proof Sketch. The argument combines two facts. First, because Lα(Vκ) doesn’t
satisfy Σk+1-Replacement, there is a definable cofinal map from some � < α to α.
Second, because Lα(Vκ) satisfies that every set injects into κ we may take � = κ.
And it’s easy to get the map to be increasing. 


Once we have an increasing cofinal map f : κ → α it is straightforward to define
a bijection κ → Lα(Vκ). For eachf(i) pick the L(Vκ)-least bijection bi : κ → Lf(i).
Combining these together we get a map κ × κ → Lα(Vκ), and via a pairing function
we may take the domain to be κ. To get a bijection we need to ensure everything in
the codomain is hit only once, but this is easily done by only picking the least index.
Writing down an explicit definition is tedious, but it is clear that this produces a
definable map. One can think of this bijection as giving us uniform access to all of
Lα(Vκ).

But we want to work over (Vκ,M) to get a uniform access to all of M, which
requires some small adjustments.

Corollary 3.2.4. Over (Vκ,M) we can define, via a second-order formula, a code
TM for M. Moreover, we can do this in such a way that any (Vκ,Y) |= KMCCk which
is a width-extension of M will define the same code TM.

Proof. Let f : κ → α denote the definable, cofinal map defined above. The
point is, we can mimic the definition of f inside (Vκ,M). In some detail: There
is an isomorphic copy of (TC({x}),∈ � TC({x})) in M for each x ∈ Lα(Vκ).
More, by Mostowski’s collapse lemma any extensional, well-founded relation with
a maximum element in M is isomorphic to the restriction of ∈ to TC({x}) for
some x ∈ Lα(Vκ).14 In sum, (Vκ,M) can mimic quantification over Lα(Vκ) by
quantifying over extensional, well-founded relations with a maximum element, and
thus (Vκ,M) can mimic the definition of f.

We then define a code TM ⊆ κ × κ × Vκ for M by putting (i, j, x) in TM if x is in
the j-th element of Lf(i)(Vκ) according to the L(Vκ)-least enumeration of Lf(i)(Vκ).

14Note that Mostowski’s lemma is provable in KP + Σ1-Separation, so it holds in Lα(Vκ).
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And this definition is absolute to width-extensions because width-extensions will
define L(Vκ) the same and so define F the same. 


Note that this definition for the code TM is not Σ1
k because the definition of f is

logically too complex. Of course we cannot hope to find a Σ1
k definition. For if TM

were Σ1
k definable then it would be an element of M by Σ1

k-Comprehension, but then
TM would be an element of L�(Vκ) for some � < α and so all of Lα(Vκ) would
occur by stage �. That would be absurd.

Similar machinery works for relative constructibility. Given a class C over Vκ, let
M(C) denote the subsets of Vκ which appear in Lα(Vκ,C). As in the GB case, if
C is a generic for a forcing in M then we can define a canonical choice of a code
TM(C) for M(C).

Lemma 3.2.5. Suppose C ⊆ Vκ is generic over (Vκ,M) for a the forcing Add(κ, 1)
and C is uniformly second-order definable in every model of KMCCk which width-
extends M. Then we can define, via a second-order formula, a code TM(C) for
M(C)in such a way that any model of KMCCk which width-extends M will define
TM(C) the same.

Proof Sketch. Again we use a definable cofinal map f : κ → α to define
TM(C). The difference is, rather than ask about elements of levels of L(Vκ) we
ask about what conditions in C force. Here’s one way you could implement this. Put
(i, j, x) in TM(C) if there is a conditionp ∈ C which forces that x is an element of the
j-th element of Lf(i)(Vκ,C) according to the L(Vκ,C)-least enumeration. Again the
forcing lemma lets us do this definition inside M. This definition is uniform across
width-extensions because they have the same class well-orders and thus compute
L(Vκ) the same. 


It remains to give the definition for C. We use the same strategy as before to
get a definition absolute for width-extensions of (Vκ,M). From the code TM we
canonically extract a κ-sequence of dense subclasses of Add(κ, 1) in M and meet
them one at a time. We use the HOD-order in Vκ to ensure a canonical choice at
each step.

Lemma 3.2.6. There is a second-order definition for C ⊆ κ which is Cohen-generic
over (Vκ,M) so that any model of KMCCk which width-extends (Vκ,M) defines C
the same. Consequently, there is a second-order definition for TM(C) so that all width
extensions of (Vκ,M) which satisfy KMCCk will define T(C) the same.

Recall Theorem 2.2.3 that tame class forcing, such as adding a Cohen-generic
class of ordinals, preserves KMCCk . Also recall Theorem 2.2.5 that tame class
forcing produces width-extensions. So (Vκ,M[C]) is among the width-extensions
of (Vκ,M) subject to the conclusion of the lemma.

We are now in a position to exhibit that Σ1
k-CA is not semantically tight. This is

analogous to the GB proof, so we omit most the details.

Theorem 3.2.7. Let k ≥ 1, let κ be inaccessible, and let M and C be defined as
above, where we assume Vκ |= V = HOD. The two models (Vκ,M) and (Vκ,M(C))
of KMCCk are bi-interpretable.

Corollary 3.2.8. KMk and KMCCk are not semantically tight.

https://doi.org/10.1017/jsl.2023.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.38


14 ALFREDO ROQUE FREIRE AND KAMERYN J. WILLIAMS

Proof Sketch of Theorem. Interpreting (Vκ,M) inside the larger model
(Vκ,M[C]) is easy, because M is a definable hyperclass in the larger model. For the
other direction, use the code TM[C], which is second-order definable over (Vκ,M)
to give an interpretation, as in the similar direction in the proof of Theorem 3.1.5,
interpreting classes in the larger model by the (HOD-least) index of their slice in
TM.

As remarked after the lemmata, (Vκ,M[C]) and (Vκ,M[C]) compute TM and
TM[C] the same. This ensures that composing one interpretation with the other
gives back (an isomorphic copy of) the model we started out with. 


§4. Non-tightness in class theory. To obtain the nontightness of the class theories
we consider we need a uniform construction, one which applies to any model of
a fixed first-order theory. We will strengthen the theories we used to ensure an
appropriately modified version of the construction from Section 3 goes through in
a more general setting. Two key facts about Vκ we used were its well-foundedness,
ensuring uniqueness of certain constructions, and the regularity of κ, ensuring that
when we constructed a Cohen generic in κ many steps that the partial constructions
were sets in Vκ. For our purposes we can replace these non-first-order axiomatizable
properties with a strong form of the Replacement schema.

Definition 4.0.1. Let Φ be a collection of formulae in the language of set or
class theory. The axiom schema of Φ-Replacement consists of the instances of
Replacement for all functional ϕ ∈ Φ, i.e., the axioms

∀a
(
(∀x ∈ a∃y ϕ(x, y)) ⇒ (∃b∀x ∈ a∃y ∈ b ϕ(x, y))

)
,

allowing parameters, which we suppressed here. Let SOR denote Second-Order
Replacement, namely Φ-Replacement where Φ is the collection of all second-order
formulae in the language of class theory, allowing class parameters.

It is not difficult to see that SOR is consistent, given mild large cardinals. If κ is
inaccessible then (Vκ,X ) |= SOR for any collection X ⊆ P(Vκ) of classes over Vκ,
by the regularity of κ.

Let’s collect some consequences of SOR. These are proved using the same
arguments for the first-order versions of the axiom/theorem schemata.

Lemma 4.0.2 (Second-order separation). Fix (M,X ) |= GB + SOR. Ifx ∈M and
ϕ(y) is any second-order formula, possibly with parameters, then {y ∈M x : (M,X ) |=
ϕ(y)} is an element of M.15

Lemma 4.0.3 (Second-order recursion along Ord). Fix (M,X ) |= GB + SOR. Let
G ⊆M be a second-order definable class function. Then there is a unique definable
function F over (M,X ) such that F (α) = G(F � α) for every α ∈ OrdM.

15There is a small abuse of notation here. It could be M isn’t a transitive set and ∈M isn’t the true ∈.
In such a case it doesn’t make sense to talk about {y ∈M x : (M,X ) |= ϕ(y)} being an element of M.
What we mean is that M has an element z so that (M,X ) |= z = {y ∈ x : ϕ(y)}. We use this sort of
talk rather than more precise circumlocutions because we think it clearer to stick close to how we talk
about transitive models.
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Lemma 4.0.4 (Second-order recursion along set-like, well-founded relations). Fix
(M,X ) |= GB + SOR. Let G ⊆M be a second-order definable class function and let
R ⊆M be a second-order definable, set-like, well-founded relation.16 Then there is a
unique definable function F over (M,X ) such that F (x) = G(F � ExtR(x)) for every
x ∈ domR.

We highlight an immediate corollary we will make repeated use of.

Corollary 4.0.5. Fix (M,X ) |= GB + SOR. Suppose F ⊆M is defined by
second-order recursion. Then for any x ∈M we have that F (x) ∈M .

Proof. Because F (x) is definable by second-order Separation. 

Lemma 4.0.6 (Second-order induction). Fix (M,X ) |= GB + SOR. Let R ⊆M

be a second-order definable, set-like, well-founded relation. Suppose X is a second-order
definable, inductive subset of the domain of R. Then X = domR.

An instance of this is especially relevant to our purposes.

Corollary 4.0.7. Over GB, SOR proves the single sentence that asserts for every
k ∈ � there is a Σk satisfaction predicate.

Proof. It is easy to see that the subset of � consisting of the k for which a Σk
satisfaction predicate exists is inductive. 


Just GB alone proves the existence of the Σk satisfaction predicate for every
standard k, by an induction in the metatheory. The point is, with SOR the
quantification over k is not in the metatheory and we get Σk satisfaction predicates
even for nonstandard k. The connoisseur of nonstandard models knows that �-
nonstandard models may fail to admit any Σk satisfaction predicate for nonstandard
k.17 Second-Order Replacement rules these models out from consideration.

As an aside, we remark that GB + SOR exceeds GB in consistency strength.

Proposition 4.0.8. GB + SOR proves the consistency of GB.

Proof Sketch. Work internally to a model of GB + SOR. By second-order
Separation form the set of (parameter-free) first-order truths of the universe of sets.
By induction this truth set contains every instance of Replacement and Separation.
And it must be consistent, so we have constructed a consistent extension of ZFC,
whence we get the consistency of GB. 


On the other hand, SOR says very little about what classes exist.

Lemma 4.0.9. Let (M,X ) |= GB + SOR. Suppose Y ⊆ X is definable over (M,X )
by a second-order formula, possibly using parameters. Then (M,Y) |= SOR.

Proof. Consider an instance � of SOR. Let �Y be the relativization of �
so that class quantifiers only quantify over elements of Y , using that Y is

16We of course mean that (M,X ) thinks that R is set-like and well-founded. In the sequel we will use
similar phrasing with similar intent, and trust the reader to understand. If we wish to speak of what is
seen externally to the model we will be explicit.

17For the non-connoisseur: Let M be an�-nonstandard model ofZF, and letX consist of its definable
classes. Then (M,X ) |= GB. But X cannot have a Σk satisfaction predicate for nonstandard k by Tarski’s
theorem on the undefinability of truth.
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definable. (Set quantifiers are unchanged.) By SOR we get that (M,X ) |= �Y . Hence
(M,Y) |= �. 


In particular, by similar logic as to how we defined Def(Vκ) in the previous
section, we will get that any model of GB can define what internally looks like the
definable classes. This gives a model of GB + SOR with a weak second-order theory,
not even able to prove the existence of a satisfaction predicate which measures all
first-order formulae. Such a model will fail to satisfy even Π1

1-CA.
We close this section with the fact that forcing preserves SOR.

Lemma 4.0.10. Suppose (M,X ) |= GB + SOR. Then, any forcing extension of
(M,X ) by a tame, <Ord-closed forcing in X will satisfy SOR.

Proof. Let (M,X [G ]) denote the forcing extension—the sets are the same by
<Ord-closure—and suppose toward a contradiction that it fails to satisfy SOR. Let
ϕ(x, y) be an instance of SOR which fails in this extension; that is, (M,X [G ]) has
a set a so that for all x ∈ a there is unique y so that ϕ(x, y) but there is no set
containing all such y. This is forced by some condition p ∈ G . By <Ord-closure we
may moreover assume that p decides the identity of each of these witnesses; there are
|a| < Ord many names to decide, so by closure we have enough space to continually
extend to decide each of them. And they are decided to be equal to some check
name y̌, since no sets are added. But then (M,X ) satisfies that there is a set a so that
for all x ∈ a there is a unique set y so that p � ϕ(x̌, y̌), with no set b containing all
such y. This is a failure of SOR in the ground model, contrary to the assumptions
of the lemma. 


4.1. Non-tightness of GB. All results in this section concern models of GB +
SOR + V = HOD, and the reader is warned we will not make this assumption
explicit in every single definition and lemma. Many results do not need the full
strength of this assumption, but we leave it to the interested reader to identify the
minimal assumptions for each result.

We start this section by considering truth and definability. We take some care to
make it clear everything works in the�-nonstandard case. All definitions that follow
take place in the context of a fixed model of GB + SOR + V = HOD.

Definition 4.1.1. A partial satisfaction predicate is a class S of (first-order)
formulae ϕ[�a] equipped with set parameters assigned to all free variables so that
the domain of S is closed under subformulae and S satisfies the Tarskian recursion
on its domain. If the domain of S is all Σk formulae, for k ∈ �, we call S the Σk
satisfaction predicate.

Our use of the definite article in that last sentence is justified by the following
observation.

Proposition 4.1.2. Any two partial satisfaction classes agree on their common
domain.

Proof. By Elementary Comprehension form the class of locations where they
disagree. If nonempty there must be a minimal location ϕ[�a] of disagreement. But
since they agree on subformulae ofϕ[�a] and they both satisfy the Tarskian recursion
they must agree on the truth of ϕ[�a]. 
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Definition 4.1.3. Define T to be the union of all partial satisfaction predicate.
Write Tk for the Σk satisfaction predicate.

It follows from earlier remarks that SOR implies T is the full satisfaction predicate,
the unique satisfaction predicate that measures the truth of all formulae.18

A notion of satisfaction carries a notion of definability. LetD be the (second-order
definable) hyperclass of all T-definable classes. That is, X ∈ D if and only if there is
ϕ[x, �a] so that X = {x : ϕ[x, �a] ∈ T}. As in the Vκ case, with minor reshuffling of
indexing T gives a code for D.

Definition 4.1.4. We write Class = Def(V ) to denote the axiom asserting that
every class is in D.

Lemma 4.1.5. Consider a model (M,X ) of GB + SOR + V = HOD. Then DX ⊆
X and (M,DX ) |= GB + SOR + V = HOD.

Proof. For the first part, we note that X is T-definable if, and only if, X is Σk-
definable for some k ∈ �M . By SOR, for each k the Σk satisfaction predicate is in
X . So from First-Order Comprehension we obtain X ∈ X .

For the second part: Extensionality is trivially obtained and Replacement holds
because it holds in the larger X . For First-Order Comprehension, fix A ∈ DX and
assume B is externally definable from A via a Σ -formula with set parameters, i.e.,
for standard . Because A is T-definable that means that A is Σk-definable for some
level k in �M . But then B is Σk+ -definable, whence B is T-definable. Finally, that
(M,DX ) satisfies SOR is Lemma 4.0.9 and that it satisfies V = HOD is because
V = HOD only quantifies over sets. 


Lemma 4.1.6. The definition ofD is absolute between models with the same sets and
the same T. That is, if (M,X ) and (M,Y) are models where TX = TY then DX = DY .

Proof. Just observe that the definition ofD from the parameter T only quantifies
over sets. 


Lemma 4.1.7. Moving to D preserves the satisfaction predicate. In symbols:
TD = T.

Proof. Because the Σk satisfaction predicate is Σk+1-definable. 

Altogether, we have that D thinks it is the minimum model of GB.

Corollary 4.1.8. The D operator is idempotent. That is, for any (M,X ) |= GB we
have that DDX

= DX . Consequently, (M,DX ) satisfies GB + SOR + V = HOD +
Class = Def(V ).

Corollary 4.1.9. If (M,X ) |= GB + SOR + V = HOD + Class = Def(V ), then
X = DX .

These definitions and results about satisfaction/definability can be relativized to
a class parameter. If this parameter is an element of X then the proofs are near

18Uniqueness here is only inside the model of GB. From the external perspective we may see multiple
subsets of M which satisfy the Tarskian recursion and measure the truth of all formulae in M. But only
one of these can be a class in our model.
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identical. If the parameter is a second-order definable Cohen generic then we need
a slight change. As in the proof of Lemma 3.1.3, the change is to ask about what
is forced. We state the relativized results only for the Cohen generic case, and omit
any proofs as they are the same modulo this small change.

Lemma 4.1.10. Fix (M,X ) |= GB and suppose C ⊆M is generic over DX for the
forcing Add(Ord, 1). Then C ∈ D(C)X and (M,D(C)X ) |= GB. Moreover, if C is
uniformly definable over models with the same sets and the same T, then the definitions
of T(C) and D(C) are absolute between these models.

Lemma 4.1.11. For any (M,X ) |= GB and any Cohen-generic C, we have that
D(C)D(C)X = D(C)X .

Corollary 4.1.12. Fix (M,X ) |= GB and fix a Cohen-generic C. Then
(M,D(C)X ) |= GB + Class = Def(V ; C). Note that this can be expressed as a
single second-order assertion, using the parameter C.

Corollary 4.1.13. If (M,X ) |= GB + Class = Def(V ; C) where C is a Cohen-
generic over (M,DX ), then X = D(C)X .

Now we turn our attention to the definition of the Cohen generic C we use in our
construction.

Lemma 4.1.14. Work over (M,X ) |= GB + SOR + V = HOD. Over this model
there is second-order definable C ⊆M which is generic for Add(Ord, 1)M over
(M,DX ). Moreover, C and T(C) are absolute to any (M,Y) |= GB + SOR + V =
HOD for which TY = TX .

Proof. As in Lemma 3.1.4, we define the classD ⊂ Ord × Add(Ord, 1) such that
the slices (D)i are all the T-definable dense subclass of Add(Ord, 1). The order in D
is obtained from the HOD-order in M. We also use the HOD-order to recursively
build the sequence of increasingly stronger forcing condition 〈p� : � ∈ Ord〉 such
that p� ∈ (D)� . This is where we use SOR: This sequence is defined by transfinite
recursion using a second-order definition (because we need a second-order definition
to define T to thereby define D). By Lemma 4.0.3 this recursion succeeds and the
initial segments of the sequences are sets in M.

What remains in the proof is precisely the same as in the proof of Lemma 3.1.4.
We omit repeating it. 


A consequence of Lemma 4.0.10 is that the extension by C will satisfy SOR. To
check that the lemma we just proved includes this extension itself we simply need to
check that it defines T the same as its ground model. Fortunately this is easy.

Lemma 4.1.15. Let (M,X ) |= GB + SOR + V = HOD. Then any extension of
(M,X ) by a tame forcing in X which does not add sets will define T the same as X .

Proof. Let (M,X [G ]) denote the forcing extension. It satisfies GB, so it thinks
that Σk satisfaction predicates are unique. SinceX [G ] contains all ofX , it thus agrees
with X as to what class is the Σk satisfaction predicate for all k, even nonstandard.
So they define T the same. 


Finally we are in a position to prove that GB is not tight.
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Theorem 4.1.16. Consider the following two theories.

• D is the theory consisting of GB + SOR + V = HOD + Class = Def(V ).
• U is the theory consisting of GB + SOR + V = HOD + Class = Def(V ; C)

where C is the Cohen generic over D built up according to Lemma 4.1.14.

The theories D and U are bi-interpretable, via interpretations that fix the sets of the
models.

Corollary 4.1.17. GB and GB + SOR are not tight.

Proof Sketch of Theorem. We use the same interpretations I and J from
Theorem 3.1.5.

First we interpret D in U via I, whose domain is D. This is expressible because D
is a definable hyperclass. As before, I is the identity on its domain and ∈I is ∈. The
lemmata about D then give that this is an interpretation of D in U.

For the other direction let us work in an arbitrary model (M,X ) |= D. For the
sets of the interpreted model we will take all of {0} ×M and for the classes we
will take a subset of {1} × Ord. Specifically, (1, �) is in the domain of J just in
case (T(C))� �= (T(C))� for all � < �, where the subscripts refer to the rank of the
indices in the canonical global well-order. For sets, (0, x) ∈J (0, y) if and only if
x ∈ y. For set-class membership, (0, x) ∈J (1, �) if and only if x ∈ (T(C))�. In
effect, the interpretation is that each class in the extension is interpreted as (the
index of) the first formula which defines it. The lemmata about C imply that this is
an interpretation of U in D.

That these interpretations compose to give definable bijections is the same
argument as in Theorem 3.1.5. 


4.2. Non-tightness of KMCCk . Our work here is to show that the construction in
Section 3.2 can be made to work uniformly, instead of working only over a fixed
transitive model. As before, it will be convenient to work with the unrolled model
of ZFC–

I,k as described in Section 2.1. We will use Class = L to mean that every class
is (second-order) constructible. More precisely, Class = L expresses the translation
of V = L in the unrolled model. Note that Class = L implies V = L.19

Before we describe our construction, let us recall the construction in the transitive
context. A transitive model of ZFC–

I,k + V = L is of the form Lα and thinks there is
a largest cardinal, call it κ, and it is inaccessible. This Lα is bi-interpretable with a
model of the form (Lκ,M) |= KMCCk . There is a least α which gives such a model
of KMCCk with Lκ as the sets. It can be characterized as the smallest α > κ which
satisfies Σk-Replacement.

In the transitive setting, we used that such α must admit some Σk+1-definable
cofinal map κ → α. But if we are to have a uniform construction then we must have
a single definition for a cofinal map across all models, and it must be sufficiently

19Earlier we only assumed V = HOD. We think that the results in this section would go through in
that more general context. But since we needed to make use of some nontrivial fine structure theory
for this section we found it easier to work in this section with models where everything is constructible,
rather than work with relative constructability. This is a cost, since it means our results as written cannot
apply to models with large enough large cardinals. We leave it to the reader who wishes to avoid this cost
to check the details for the relative constructibility context.
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absolute to achieve the nontightness of KMCCk . The basic idea is, we successively
close off under taking witnesses for instances of Σk-Replacement for more and more
inputs. For this we will make use of some fine structural tools.

Briefly: Jensen—e.g., in [22]—gave a precise analysis of the structure of L as built
up using rudimentary functions. He considers an alternate hierarchy, the J hierarchy,
to build up L. But the J and L hierarchies agree on limit levels, so the distinction
will not be relevant for our purposes. A key theorem he proves is that levels of the J
hierarchy have Σk Skolem functions for all k, uniformly so. Let us give a version of
this appropriate to our context.

Definition 4.2.1. Consider a model U of a strong enough fragment of ZFC and
fix finite k. We say that U has a Σk Skolem function when there is a Σk definition for
the function h : �U ×U → U such that, for every Σk formula ϕ,

U |= ∃y ϕ(y, x) ⇒ ϕ(h(�ϕ�, x), x).

Theorem 4.2.2 (Jensen’s Σ uniformization theorem). Fix 1 ≤ k ≤ . There is a
Σk formula � such that ZFC–

 + V = L proves that � defines a Σk Skolem function.
That is, if U |= ZFC–

 + V = L then the function h = �U defined by � in U is a Σk
Skolem function for U.

This is a combination of some results in [22], mainly Lemmas 2.9. and 3.4(i)
together with the technique of standard codes developed in Section 4. A recent
version of these can be found in the recent [23] where Jensen develops the
fine structure theory in more detail, mentioning more precisely where and how
uniformization applies absolutely. Jensen presents his work in the context of
transitive models with ZFC as the background theory. A careful read-through of
his arguments makes clear that this background theory is overkill. One does not
need the Powerset axiom to carry out the inductive construction, and the amount
of Collection and Separation needed does not exceed the complexity of the desired
Skolem function. Rather than multiply this paper’s length by giving a reconstruction
of Jensen’s arguments with a careful accounting of the axioms used, we point the
reader to the above-cited works. We also point to [5] for an analysis of the minimal
axioms—less than even KP—needed to carry out the basic constructions of the
rudimentary functions.

Lemma 4.2.3. Fix k ≥ 1. Work over KMCCk + SOR + Class = L Consider the
unrolled model U |= ZFC–

I,k + V = L, and let κ denote the largest cardinal in this
model. Then there is a definition for a sequence 〈αi : i ∈ �〉 so that

⋃
i Lαi |= ZFC–

I,k ,
with the same largest cardinal κ. Consequently the property “the sequence 〈αi〉 is
cofinal in the ordinals” is expressible.

Before the proof let’s clear up a potential misunderstanding. The union
⋃
i Lαi

refers to the direct limit of the system of models Lαi , each equipped with the
membership relation from the unrolled model. If we’re working over a transitive
model then this union is itself a level of the L hierarchy. But in a nonstandard model
there might be a cut and the sequence αi doesn’t have a supremum in the model.
(Indeed, that is exactly what happens when the sequence is cofinal, which it will
be in the models we are interested in.) After all, while the sequence is definable, its
definition is too complex for the weak theory satisfied by the model to guarantee

https://doi.org/10.1017/jsl.2023.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.38


NON-TIGHTNESS IN CLASS THEORY AND SECOND-ORDER ARITHMETIC 21

its supremum exists as an element of the model. Nonetheless, the direct system is
definable and hence its direct limit is also definable.

Proof. Consider a model (M,M) |= KMCCk + SOR + Class = L and work in
its unrolled modelU |= ZFC–

I,k . From Theorem 4.2.2, we have a Σk Skolem function
h for U. Define the �-sequence 〈αi〉 as follows: Start with α0 = κ and at successors
we will pick αi+1 to be give a level of the L hierarchy which is closed under h for
inputs from Lαi . To this purpose, define the class function

W (α) = {� ∈ Ord : � = h(�ϕ�, x) where x ∈ Lα and ϕ is Σk}.

The function h is Σk and being Lα is a Σ1 property of α. So in all W is Σk , and so
W (α) is a set in U. Then, set

αi+1 =
⋃
W (αi).

If �(y, x) is Σk then the property “L� contains h(���, x)” is also Σk in parameters
� and x. So this definition really does give that Lαi+1 is closed under h for inputs
from Lαi .

We can always continue the construction one more step, and so the set of i for
which αi is defined forms an inductive subset of �. So by SOR it must be all of �.

To show thatN =
⋃
i Lαi |= ZFC–

I,k we first show that any Σk formula �(y, x) with
a parameter x in one of the Lαi reflects. To this end fix such �(y, x) and x ∈ Lαi .
Suppose that U |= ∃y �(y, x). Then U |= �(h(��, x�)). But h(��, x�) ∈ Lαi+1 . By
Tarski–Vaught we get that N is a Σk elementary submodel of U. Now by a standard
argument we get thatN |= Σk-Replacement. Namely, suppose there is a ∈ N so that
for each x ∈ a there’s a unique y so that ϕ(x, y), where ϕ is a Σk formula, possibly
with parameters. Then there’s i so that a and all parameters are in Lαi . Using that
N is Σk-elementary in U, we get that the witnesses y must all be in Lαi+1 , witnessing
that instance of Replacement. This immediately implies that N |= Σk-Separation
and Collection, where for the second fact we use that N has a definable global well-
order. ThatN |= V = L is immediate. And N has the same κ as its largest cardinal by
an inductive argument. Trivially Lα0 = Lκ has cardinality κ. And then inductively
Lαi+1 is a union of κ many sets of size κ whence it’s also of cardinality κ. 


This theorem allows us a characterization of models of class theory which think
they are the minimum model of KMCCk . Namely, let Class = MinModk be the
conjunction of Class = L and “in the unrolling the sequence 〈αi〉 is cofinal in the
ordinals”. Moreover, we can express whether a model is a width-extension of a model
of Class = MinModk , by expressing that the second-order constructible classes of
that model satisfy Class = MinModk .

As in the transitive case, having a definable cofinal sequence in the ordinals of the
unrolled model allows us to define a code for the hyperclass of all classes.

Lemma 4.2.4. Fix k ≥ 1. Let (M,M) |= KMCCk + SOR + MinModk . Then over
(M,M) there is a definition for a code TM for M. Moreover, this definition can be
chosen to be absolute across all width-extensions of (M,M).

Proof Sketch. As in Corollary 3.2.4, but since our cofinal sequence has length
� we define the code to consist of triples (i, j, x) where i ∈ �, j ∈ Ord, and x
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is a set. To make the definition absolute across width-extensions, relativize it to
second-order L. 


We can also do this for Cohen generics over a model of MinModk , as in
Lemma 3.2.5.

Lemma 4.2.5. Fix k ≥ 1. Let (M,M) |= KMCCk + SOR + MinModk and sup-
pose C ⊆M is a generic over (M,M) for Add(Ord, 1) which is second-order definable
over (M,M). Then there is a definition for a code TM(C) which is absolute across all
width-extensions of (M,M).

The extension by C is a width-extension, so it is among those extensions for which
the definition of TM(C) is absolute.

Finally, we must say how to define C. But there is no new content here. Work in a
model of KMCCk + SOR + MinModk . Using the code TM we extract a canonical
Ord-sequence of the dense subclasses of Add(Ord, 1) in the model. We extend to
meet these subclasses one at a time, always using the L-order to make choices of
how to extend. Here SOR comes into play to ensure this construction never takes us
outside the model. So in Ord many steps we produce C. And any extension which
defines TM the same will define C the same.

Let Class = MinModk[C] be the second-order formula which expresses that the
classes are precisely those which appear in the code TM[C]. Intuitive, this formula
expresses that the model is the forcing extension of the minimum model of KMCCk
by the canonical choice of a Cohen generic.

Following the same interpretation strategy as before, we get that any model of
Class = MinModk is bi-interpretable with its extension by C.

Theorem 4.2.6. Fix k ≥ 1. The following two theories are bi-interpretable.

(1) Dk = KMCCk + SOR + Class = MinModk .
(2) Uk = KMCCk + SOR + Class = MinModk[C].

Corollary 4.2.7. Fix k ≥ 1. The theories KMCCk and KMCCk + SOR are not
tight.

§5. Non-tightness in second-order arithmetic. The constructions used in the
previous section also work in the context of second-order arithmetic. However, there
are enough subtleties and notational differences in arithmetic context that for ease
of exposition we discuss it separately in this section. Most proofs carry over mutatis
mutandis from the class theory context, and we leave it to the interested reader to
rewrite the proofs with the changed details. We state some facts about models of
second-order arithmetic without proof, and we point the reader to Simpson’s book
on the subject [33], especially Chapter VII, for proofs and detailed references.

In the class theory context, to get the failure of tightness we added the full second-
order Replacement schema to our theories. In the arithmetic context, the analogue
is the full Induction schema, i.e., the instances of Induction for every second-order
formula, and we will include it in our theories to ensure constructions go through
the model’s full �.

The strategy is the same as in class theory. For fragments of second-order
arithmetic we can write down a theory which characterizes a minimum model.
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We can define a canonical code for this minimum model, and thereby define
a canonical Cohen extension of the minimum model. These two models are bi-
interpretable. Of course, with the nonstandardness phenomenon there is no hope
for a notion of minimum absolute between all models of the theory. But we can get
a sufficiently absolute notion to enable the bi-interpretation, so we get the fragment
of Z2 cannot be tight.

First we discuss the analogue of GB. The theory ACA0 has as its principle
axioms Induction and Comprehension for arithmetical formulae. If you strengthen
Induction to the full schema, over all second-order formulae, you get the theory
ACA. Every �-model of ACA0—viz. a model whose numbers are isomorphic to�—
automatically satisfies full ACA. But for nonstandard models the theories diverge.
For instance, analogous to the situation with GB and SOR, over ACA you can prove
that the Σk-satisfaction class exists for all k, even nonstandard. Whereas with just
ACA0 you are only guaranteed to have such for standard k. The reason, of course, is
that (M,Def(M )) is always a model of ACA0 for anyM |= PA, and no nonstandard
Σk-satisfaction class can be definable.

Following the GB context, we can write down a theory which identifies the
minimum �-model, namely the arithmetical reals, among all �-models. Using
full Induction, this will allow a definition sufficiently absolute among nonstandard
models to enable two distinct but bi-interpretable extensions of ACA.

There is a second-order definition for the (first-order) satisfaction predicate, call
it T. Indeed, the same definition as before—viz. the union of the Σk-satisfaction
classes—will do, modulo the details of Gödel coding. Note that full Induction is
used to ensure there is a Σk-satisfaction predicate for every k in the model. This makes
possible a theory D expressing ACA + “every set is arithmetical” and a theory U
expressing ACA + “there is a canonical Cohen-generic C over the arithmetical sets
and every set is arithmetical in C.” These two theories are then bi-interpretable,
with two key points—proved much the same as the class theoretic case—being that
forcing preserves full and induction and the definition of T.

All in all, we get the following result.

Theorem 5.0.1. The theory ACA is not tight. Consequently, any weakening of ACA
in the language of second-order arithmetic, such as ACA0, is also not tight.

For stronger fragments of Z2 the same basic strategy works, but producing the
code for the minimum model is more difficult than defining a satisfaction predicate.
We start by recalling some definitions and facts.

Definition 5.0.2. Fix k ≥ 1.
• The theory Π1

k-CA0 is obtained from ACA0 by adding Comprehension for Π1
k

formulae.
• The theory Π1

k-CA is obtained from Π1
k-CA0 by adding full Induction.

• The theory Σ1
k-AC0 is obtained from Π1

k-CA by adding the Σ1
k-Choice schema.

This schema is the arithmetic counterpart to the Σ1
k-Class Collection schema

(cf. Definition 2.0.3).
• The theory Σ1

k-AC is obtained from Σ1
k-AC0 by adding full Induction.

The theory ATR0, a strict subtheory of Π1
1-CA0, is strong enough to carry out

the unrolling construction. As such, theories of arithmetic which extend ATR0 are
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bi-interpretable with certain set theories. These theories are strong enough to carry
out the construction of L. Restricting to the constructible sets gives fragments of
the AC schema, so Σ1

k-AC does not exceed Π1
k-CA in consistency strength. Unlike

in class theory, however, weak enough fragments of the AC schema are outright
provable, without any assumption of every set being constructible.

Theorem 5.0.3. The Σ1
1-Choice schema is a consequence of ATR0, and over ATR0

the Σ1
2-Choice schema is equivalent to Δ1

2-Comprehension. For k > 2, the Σ1
k-Choice

schema is a consequence of Π1
k-CA0 + “there is a real from which every real is

constructible.”

For our purposes we are looking at models which satisfy that every real is
constructible, or Cohen-extensions thereof. So we will only be looking at models of
Σ1
k-AC. (This will include Σ1

1-AC = Π1
1-CA and Σ1

2-AC = Π1
2-CA, but for the sake of

uniform notation we will use the former names.) Here are bi-interpretation results
for these theories.

Theorem 5.0.4. The following pairs of theories are bi-interpretable.

• Z2 + Σ1
∞-CA and ZFC– plus “every set is countable.”

• For k ≥ 1, Π1
k+1-CA0 and ZFC–

k plus “every set is countable.”

In the class theoretic case, the indexing was the same. Here they are off by one.
The culprit is well-foundedness. In class theory this is a first-order property, whereas
in arithmetic it is Π1

1-universal. Because of this misaligned indexing, the situation
with Σ1

1-AC is different from the stronger theories. We discuss it first.

Theorem 5.0.5. The minimum 	-model of Σ1
1-AC consists of the reals in L�CK

�
,

where �CK
� is the supremum of the first � many admissible ordinals.

Note that the inclusion of full Induction means that any model of Σ1
1-AC thinks the

n-th admissible ordinal �CK
n exists even for nonstandard n. This is because Σ1

1-AC0

is strong enough to prove that the admissible ordinals are unbounded and so the
set of such n is inductive. And over Σ1

1-AC we can define the sequence of the �CK
n .

From this sequence we can extract a canonical code of all the reals in L�CK
�

, as in
the similar argument for strong fragments of KM. From this code we can define, via
a second-order formula, a canonical choice for a Cohen real C which is generic over
L�CK
�

.
It is straightforward to formulate an axiom asserting over Σ1

1-AC that every set is in
L�CK
�

. Namely, this axiom asserts that for every set X there is an integer n so that there
is a length n sequence of well-orders �i so that each �i is admissible, �0 = �, there are
no admissibles between �i and �i+1, and X is in L�n . Call this axiom Class = Adm� .
Similarly, we can formulate an axiom Class = Adm�[C] which asserts that C exists
and every set is in L�CK

�
[C], where C is definable Cohen generic over the reals in

L�CK
�

. We follow the same strategy as before to define C, using the canonical code
of L�CK

�
.

Putting this all together, we get that the theories Σ1
1-AC + Class = Adm� and

Σ1
1-AC + Class = Adm�[C] are bi-interpretable. A key point is, a model of Σ1

1-AC
and any Cohen-extension thereof will have the same well-orders and agree on which
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well-orders give admissible ordinals. So they will define the canonical code for the
reals in L�CK

�
the same, and thereby define C the same.

Theorem 5.0.6. The theory Σ1
1-AC(= Π1

1-CA) is not tight. Consequently, any
weakening of Σ1

1-AC in the language of second-order arithmetic, such as Π1
1-CA0,

is also not tight.

We turn at last to Σ1
k-AC for k ≥ 2. For these the characterization of the least

	-model is more complex.

Theorem 5.0.7. For k > 1, the minimum 	-model of Σ1
k-AC consists of the reals in

Lα where α is the least ordinal so that Lα satisfies Πk–1-Separation. Equivalently, α
is the least ordinal so that Lα satisfies Σk–1-Replacement. Equivalently, α is the least
ordinal whose k-th projectum �αk is itself.

Yet again, the sticking point is defining a cofinal �-sequence in α. Here we can
use the same fine structural facts as in Section 4.2. If (M,X ) |= Σ1

k-AC+ “every set
is constructible” then it is bi-interpretable with its unrolling U |= ZFC–

k–1 + V = L.
By Theorem 4.2.2 U has a Σn Skolem function. Using this Skolem function and full
Induction we can define an �-sequence of ordinals αn which are cofinal in what U
thinks is the minimum model of ZFC–

k–1, as in the proof of Lemma 4.2.3. We can
thus formulate an axiom expressing that U is itself this minimum model, namely by
asserting that every set is in Lαn for some n.

All this can be translated over to the model (M,X ) of second-order arithmetic. Let
Class = MinModk denote the formula in the language of second-order arithmetic
asserting that every set is in this minimum model. Then any model of Σ1

k-AC +
Class = MinModk can define a canonical code for itself, using the definable �-
sequence 〈αn〉 of ordinals cofinal in the height of its unrolling. This code will be
absolute between this model and its Cohen-extensions, because they will have the
same well-orders and hence the same L. From this code we can define a canonical
choice for a Cohen real C which is generic over the minimum model. And so we can
formulate an axiom Class = MinModk[C] which asserts over Σ1

k-AC that C exists
and every real is in the extension of the minimum model by C.

Following the same interpretations as used in the previous theorems, we then
conclude that Σ1

k-AC + Class = MinModk and Σ1
k-AC + Class = MinModk[C] are

bi-interpretable.

Theorem 5.0.8. Fix k ≥ 2. Then, Σ1
k-AC is not tight. Consequently, any theory

weaker than Σ1
k-AC in the language of arithmetic, such as Π1

k-CA and Π1
k-CA0, is also

not tight.

§6. Final remarks. The reader who thoroughly read the previous sections will have
noticed that this article is about essentially one construction done over and over in
different settings. We remark that it may be carried out in yet more settings. For
example, [41] proves that there is a minimum 	-model of ETR, where Elementary
Transfinite Recursion ETR is the class theoretic analogue of ATR0. One can take
their construction of the minimum 	-model of ETR and put the construction of
this article in that setting, thereby showing that the minimum 	-model of ETR is
bi-interpretable with its extension by a canonical choice of Cohen generic.
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In [6], Enayat conjectures that no (proper) subsystem of the tight theories PA, Z2,
ZF, KM can be tight. In this article, we demonstrated the non-tightness of KMk +
SOR for all natural numbers k. These results yield a natural and comprehensive
collection of non-tight subtheories approximating KM. Indeed, it shows that full
comprehension is the minimal level of comprehension that produces a tight theory
from GB.

As we were writing this article, we learned from Ali Enayat that in forthcoming
work [7] he had independently proved that all finitely axiomatizable fragments ofPA,
Z2,ZF,KM are not tight. His proof provides an alternate proof of the nontightness of
GB and KMk , along with their arithmetical counterparts. But his argument does not
apply to GB + SOR, KMk + SOR and their arithmetical counterparts, as the second-
order Replacement schema (respectively, the second-order Induction schema) is not
finitely axiomatizable. Thus, putting together Enayat’s results, our results in this
article, and those of Freire and Hamkins [13], we have a substantial basis for Enayat’s
conjecture. And while there still are other theories to consider in order to assert that
all subtheories of KM are not tight, these would be quite unnatural subtheories.

What is missing to get the full result? With respect to class theories, we should
consider proper subtheories of KM that have instances of Comprehension of ever
growing formula complexity, but in such a way that full KM isn’t provable from
those instances. This type of subsystem is hardly considered in the literature and
for this reason it may require some novel treatment. The status of the same kind of
the fragment of arithmetic and first-order set theory is also unknown. Additionally,
while one may consider levels of formula complexity in the single scheme (induction)
in arithmetic and (comprehension) in class theory, the same do not apply to ZF as
one should also consider fragments of Replacement together with the full scheme of
Separation, or other natural systems like Zermelo set theory plus the assertion that
every set is in a Vα . Therefore, while the picture may be said to be nearly complete
for KM, PA, and Z2, there is still a lot to be discovered with respect to ZF.
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