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CERTAIN SUBMODULES OF SIMPLE RINGS 
WITH INVOLUTION, II 

I. N. HERSTEIN 

Let R be a simple ring, of characteristic not 2, having an involution *. Let 
5 = {x G R\x* = x} and K = {x £ i?|x* = — x} be the set of symmetric and 
skew elements, respectively, of R. 

In [1] we discuss the structure of S as a Jordan ring and K as a Lie ring. 
In [2] we considered cross-over submodules, namely additive subgroups 
U C K, V C S such that 

1 7 o 5 = {E(™ + «0|w € f / , ^ S | C £/, and [F, X] 

and characterized these. 
For the case of characteristic 3 we did leave open the question of additive 

subgroups V CS such that [V, K] C V. We point out here that the 3 X 3 
matrices over a field of characteristic 3 do give rise to examples which would 
not satisfy the dichotomy established in [2] if the characteristic is not 3. 

Let F be a field of characteristic 3 and consider R = F&, the 3 X 3 matrices 
over F relative to the involution given by transpose. Then, as is readily verified, 

A = « , 0 , 7 € F) 

is a commutative subring consisting of symmetric elements, satisfies 
[A, K] C A, yet A (£ F the center of R. 

The first, and most difficult, theorem of the paper characterizes subrings A, 
in a simple ring with involution, such that [A, K] C A. We make use of this 
result in [3] to extend the Brauer-Cartan-Hua theorem to subdivision rings, 
in a division ring with involution, which are invariant with respect to conjuga­
tion by all the unitary elements. 

LEMMA 1. Let R be a simple ring with involution of the second kind. Suppose 
that A is a commutative set of elements of R such that [A, K] C A. Then A (Z Z. 

Proof. Since the subring generated by A satisfies the condition imposed on A 
in the theorem, we may assume, without loss of generality, that A is a subring 
of R, containing Z. 
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630 I. N. HERSTEIN 

Because * is of the second kind, there is an element X G Z with X* = — X ^ 0. 
Thus S = \K. Consider B = A + X̂4 ; it is a subring of R and is commutative. 
Moreover, [B, K] C B since [A, K] C A. Also, since [.4,5] = [A, \K] = 
\[A, K] C \A C B, and [\A, S] = [A, \S] = [A, K] C A C B we have 
that [B, S] C B. Therefore [B, R] = [B, S + K] = [B, S] + [B, K] C B, 
whence B is a Lie ideal of R. But i? is also a commutative subring of R. Since 
char i? ^ 2, by [1, Theorem 1.2] we have B C Z, hence 4 C Z. 

LEMMA 2. Le£ R be a simple ring with involution of the first kind. Suppose that 
A is a commutative set of symmetric elements such that [A, K] C A. Then: 

(1) if char R 9* 3 and dim ZR > U C Z ; 
(2) if char R = 3 and dimzR > 9, A C Z. 

Proof. The subring generated by 4̂ satisfies the same condition as .4 does, 
hence, without loss of generality, we may assume that A is a subring of R. 
Furthermore, since the involution is of the first kind, we may assume that 
A 2) Z. Finally, we may assume that Z = 0 or that Z is algebraically closed; 
to see this, if Z ?± 0, merely pass to R ® z F where F is the algebraic closure 
of Z. Since X* = X for all X G Z, we can extend * to R ® z F as * ® 1. 

If a G A define d(x) = xa — ax for x £ R. Our hypothesis tells us that 
d2(k) = 0 for & Ç X. If 5 G 5, since a G 5 we have d(s) G 2£, hence J 3 0 ) = 
d2(d(s)) = 0. Because i? = 5 + X, we get d3(x) = 0 for all x £ R. Note that 
d2(x) G 4 for all x ^ . 

If char i? ^ 3 expanding d3(xd(x)) = 0 using Leibniz' rule yields 3(d2(x))2 

= 0, hence (d2(x))2 = 0. Thus (d2(k2))2 = 0 îor k £ K. But, since d2(&) = 0, 
d2(&2) = 2d(&)2, hence we get d(k)4 = 0. 

We claim that if b G A is nilpotent, then &2 = 0. From the discussion above, 
bzx - 362x6 + Sbxb2 - xbs = 0 for all x 6 jR. If &w = 0, bn~l ^ 0, multiplying 
this above relation from the right by bn~l yields bzxbn~l = 0. Since R is simple 
and b*Rbn~l = 0, bn~l 3̂  0, we have b3 = 0. The relation above thus reduces to 
3b2xb = 3bxb2; multiplying from the right by b gives 3b2xb2 = 0, and so 
b2xb2 = 0. Since b2Rb2 = 0 and R is simple, we have b2 = 0. 

Now, we have seen that d(k)A = 0 where d(k) = ak — ka £ A, for all 
a G A, k G K. Thus (ak — ka)2 = 0 by the paragraph above. If t G K, b = 
ak — ka then bt — tb £ A hence b(bt — tb) = (bt — tb)b\ because b2 = 0 we 
have 2btb = 0 and so, btb = 0. That is, bKb = 0. Also, (bt - tb)2 = 0. Ex­
panding this, using bib = 0 = b2, we get bt2b = 0. Since dim ZR > 4, by a result 
of Baxter [1, Theorems 2, 3], the additive group generated by all t2, t G K, is S. 
Hence bSb = 0. Since R = S + K, we get that « f t = bSb + W£è = 0. The 
simplicity of R forces b = 0. 

Thus 6 = ak — ka = 0 for all a G A, & G i£. This says that A centralizes K. 
However, since d\mzR > 4, K generates R [1, Theorem 2.2]. The upshot of 
this is that A C Z; this proves the lemma in case char R 7^ 3. 

Suppose that char R = 3. If a G A we have seen that ds(x) = 0, where 
d(x) = xa — ax, for all x G R. Because char R = 3, we get from this that 
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a3x = xa3 for ail x G R, and so, a3 G Z. In particular, if a G 4̂ then a3 = 0 or 
a must be invertible. Also, since Z = 0 or is an algebraically closed field, a3 = 
/x3 for some /x G Z. Hence (a — xi)3 = 0. 

Our aim is to show that iî b £ A and 62 = 0 then 6 = 0. So, suppose that 
62 = 0 for some 6 G ^4. As we saw earlier, this gives that bKb = 0. If x G i?, 
then x — x* G i£, hence bxb = 6x*6 follows. Let c £ A, c nilpotent; thus 
c3 = 0. Now b{cx)b = 6(cx)*6 = bx*cb = 6x*6c, whence bcxbc2 = 6x*6c3 = 0. 
Since i? is simple, we get be2 = 0. But then 6cx6c = bx*bc2 = 0; we are forced 
to 6c = 0. Thus be = 0 for all c G ̂ 4 which are nilpotent. If a G 4̂ then 
(a — /x)3 = 0 for some p G Z, hence 6(a — ix) = 0 , which is to say, 6a = /x6. 

Let c = (bk — kb)k — k(bk — kb) where k G i£. If c is nilpotent for every 
& G iC, by the above we have that 6c = 0. Evaluating this, using 6^6 = 62 = 0, 
we get 6&26 = 0. Since dimzR > 4, the k2 span 5, hence 656 = 0. Together 
with bKb = 0, we end up with bRb = 0 and so 6 = 0. So, if 6 ^ 0, we may 
assume that c = (bk — kb)k — k(bk — kb) = 6fc2 + kbk + &26 is not nilpotent 
for some k 6 K. Since c Ç i , and c is not nilpotent, c must be invertible. Thus, 
in particular, R must have a unit element. 

We return to the relation 6x6 = 6x*6 for all x G R. If y 6 i? then b(xby)b = 
b(xby)*b = 6y*6x*6 = bybxb. This says that ((6x)(6;y) — (by)(bx))b = 0. Let 

p = bR and T = {x G p|xp = 0}. 

Thus p / r is commutative. From general theory, it is primitive. Hence p/T is 
a field. Again, from general ring theory, we get that R must then have a 
minimal right ideal, and the commuting ring of R on this right ideal is a field. 
Since R is simple, has a unit element and a minimal right ideal on which the 
commuting ring of R is a field we get that R is isomorphic to the n X n ma­
trices over Z. 

We know bKb = 0. Also, if k G 2£ then (&fe - £6)& - k(bk - kb) G 4̂ 
hence b((bk — &6)& — k(bk — kb)) = cr6 for some a G Z. Evaluating this, 
using 6&6 = 62 = 0, we get 6&26 = ab. Since the k2 span S we get 656 C Zb. 
Hence bRb C Zb. This says that 6, as a matrix, has rank at most 1. Now we 
know there is some element c = 6&2 + kbk + &26 which is invertible; on the 
other hand, the rank of c is at most 3. The net outcome of this is that n ^ 3. 
This contradicts dimzR > 9. 

Thus if 6 G A and 62 = 0 then 6 = 0. In particular, this says that A has no 
nilpotent elements. But if a G A then (a — /x)3 = 0 for some p, (z Z. Since 
a — p G A we get a — p = 0 and so a = p G Z. Therefore 4̂ C Z and the 
lemma is proved. 

Having established the lemma we can pass to our first theorem. 

THEOREM 1. Let R be a simple ring with involution * of characteristic not 2. 
Suppose that A is a subring of R such that [A, K] C A. Then: 

(1) if A is non-commutative and dimzR > 16, A = R; 
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(2) if A is commutative, dimzR > 4 and char R 7e 3, A C. Z ; 

(3) if A is commutative, char R = 3 and d im z i ? > 9, A C Z. 

Proof. We first argue out the case A* = A, wherein a* G A for every a ^ A. 
Let i 4 " = i Pi Z . If yl~ = 0 then every element in A is symmetr ic , for 

a — a* 6 ^4~ if a G -4. T h u s i is a commuta t ive ring. By L e m m a 1 and 
Lemma 2 we obtain the result. So we may suppose t ha t A~ 9^ 0. 

Certainly [A~, K] C K and [ 4 - , K] C A, therefore [A~, K] C A~. T h u s 4 -
is a Lie ideal of K. lî A~ C. Z and if X ^ 0 Ç i4~ then for every 5 G 5 H i , 
As G ^4~ C Z. This would pu t s Ç Z and so A = A~ + A C\ S C Z. Hence 
we may suppose t ha t A~ (J_ Z. 

If d im z i£ > 16 then, as a non-central Lie ideal of K, by [1, Theorem 2.12], 
A~ must contain [K, K], hence A D [K, K]. Bu t [K, K] generates R if 
d i m z i ? > 4 [1, Theorem 2.13], resulting in A = R. So we may suppose t h a t 
dimzR !g 16. By our assumption on A, A mus t be commuta t ive in this case. 

So, suppose t ha t A is commuta t ive , d i m z / l > 4 and A~ = A C\ K <X Z. 
By [1, Theorem 2.9], a2 £ Z for all a £ ^4~, hence a (a& — ka) + (a& — &a)a = 
0 for all k £ K. But a& — ka £ 4̂ so must commute with a. The net result is 
t ha t a(ak — ka) = 0. If a2 9^ 0 then since a2 £ Z, a is invertible. Bu t then 
a& = ka for all k £ K; because K generates R, we get a £ Z. On the other 
hand, if a2 = 0 then from a(ak — ka) = 0 we get aKa = 0. If 5 G 5 then 
sas G K hence asasa = 0. This leads, from R — S + K, to (ax) 3 = 0 for all 
x (z R. By Levitzki 's Theorem [1, Lemma 1.1] this cannot happen in a simple 
ring. We thus end up with A C Z. 

We have now disposed of the case A* = A. Suppose t ha t A* ^ A. Let 
B = A r\A*. Then certainly B* = B and [B, K] C B. U A is commuta t ive 
and dimzR > 4 or d im z i ^ > 9 according as char R ^ 3 or char R = 3, or if A 
is not commuta t ive and dim z7^ > 16, by the discussion in the first pa r t of the 
proof, we have B C Z if A 7^ R. 

Let a Ç A, k = a* — a £ K. Then ka — ak = a*a — aa* £ ^4- Bu t since 
a* a — aa* is symmetr ic , it is also in A*, hence in B. Thus \x = a*a — aa* £ Z. 
Using the skew element (a*)2 — a2, we get (a*)2a — a(a*)2 Ç ^4. Bu t (a*)2a — 
a(a*) 2 = 2Ma*; since (2/x)* = 2M, we have 2Ma* Ç 4 * . Since 2/xa* G 4 H ,4* -
B (Z Z we have a* £ Z if /x 5^ 0, and so a Ç Z, whence ju = a*a — aa* = 0. In 
other words, /x = 0 and a*a = aa* for ail a £ i4. 

Linearize a*a = aa*; this results in a*a + b*a = a6* + aa* for ail a, 6 G A. 
Hence a*b — ba* = ab* — b*a = — (a*b — ba*)*; in other words, the element 
a*b — ba* is skew. But a*b — ba* = (a* — a)b — a (a* — a) + (ab — ba), so 
is in A. Being skew, it is also in A*, hence in A P\ A* = B C Z. Let 1/ = 
a*a - 6a*; if v ^ 0 then 5 = ^ and [ 4 , 5] - [ 4 , vK] = J / [ 4 , i£] C 4̂ since 
1/ Ç i4 and [ 4 , K] C 4 . Therefore [ 4 , R] C -4. Since char R ^ 2 and 4 is a 
subring and a Lie ideal of R, by [1, Theorem 1.2], A (Z Z or A = R; since 
4̂ 9^ R we get t ha t A C Z, the desired result. Hence we may assume t h a t 

v = 0, which is to say, a*a = ba* for all a, a Ç yl. 
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If 4 is commutative, then C = A + 4 * + AA* is a subring of R, C* = C 
and [C, X] C C. Since C is commutative we have, under our assumptions, that 
C C Z and so, A (Z Z. Thus we may suppose that A is not commutative and 
dimzR > 16. 

Let a, b £ A such that ab - ba 9^ 0. The ring C = 4 + 4 * + -44* is not 
commutative, [C, K ] C C and C* = C, hence C = R. Now & = a*fr — b*a G 
i£, hence (a*ô — b*a)a — a(a*b — b*a) G A ; since A* centralizes A this yields 
a*(ab — 6a) G 4 . Therefore, if c £ A we must have (a*(ab — ba))c* = 
c*(a*(ab — ba))] this results in (a*c* — c*a*)(ab — ba) = 0 for all a, 6, c G 4 . 
Since i? = 4 + 4 * + 4 4 * , given x G i?, we can write x as x = a,\ + a2* + 
5Z«^<* with all of ai, a2, w*, u* in 4 . Thus 

(a*x — xa*)(ab — ba) = (a*a% — ai a*)(ab — ba) 

+ ^2 Ui(a*v* — v{*a*)(ab — ba) = 0 

from the above. Let T = {y G R\(a*x — xa*)y = 0 for all x G i?}. T is an ideal 
of R and, since afr — ba 9e 0 is in T, T 7^ 0. Therefore T = R. Since all 
a*x — xa* now must annihilate i?, we have a*x = xa* for all x G i?. This puts 
a*, and so a, in Z. However this contradicts that ab — ba ^ 0. With this, the 
proof is complete. 

We now continue with a study of subsets of a simple ring with involution 
which are invariant with respect to other operations with the skew or sym­
metric elements. The remaining theorems are very much easier than Theorem 1. 

THEOREM 2. Let R be a simple ring with involution, of characteristic not 2, 
such that dimzR > 4. If A is an additive subgroup of R such that [ 4 , 5 ] C 4 
then either A C Z or A 3 [R, R]. In particular, if A is a subring of R such that 
[4 ,5 ] C 4 then either A C Z or A = R. 

Proof. Since [4 ,5] C 4 , by use of the Jacobi identity we easily get 
[4, [5,5]] C 4 . Since 5 generates R, by the argument given on [1, p. 43], 
[R, 5] = [R, R]. This gives [R, R] = [5, K] + [5, 5] C 5 + [5, 5]. Hence 
[4, [R,R]]C[A,S] + [4, [5,5]] C 4 . By [1, Theorem 1.14], we get 4 CZor 
A 3 [R, R]. If 4 is a subring and 4 D [R, R] then 4 = R, since [R, R] generates 
R [1, Corollary to Theorem 1.5]. This proves the theorem. 

We now turn to invariance relative to the circle product a o b = ab = ba. 
If 4 and B are additive subgroups of R, by 4 o B we mean the additive sub­
group of R generated by all ab + ba where a G 4 and b G B. 

THEOREM 3. Let R be a simple ring with involution of characteristic not 2, 
with dimzR > 4. If 4 is an additive subgroup of R such that A o K C 4 , then 
either A = 0 or A = R. 

Proof. Suppose that 4 ^ 0 . If a G 4 and k G K then (a& + ka)k + 

https://doi.org/10.4153/CJM-1975-073-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-073-3


634 I. N. HERSTEIN 

k(ak + ka) 6 A, t ha t is, ak2 + 2kak + k2a 6 v4. Linearizing this on k} we 
obtain 

(1) a(kik2 + k2ki) + (&i&2 + k2ki)a + 2kidk2 + 2&2&&1 G .4 

for a 6 ^4, &i, k2.€ i£. 

On the other hand since &1&2 — &2&1 6 i£, 

(2) a(feife2 — k2ki) + ( f e ^ ~ k2kx)a Ç 4 . 

Adding (1) and (2) yields, using 2K = i£, 

(3) a^i^2 + kik2a + ^ia^2 + &2&&1 Ç -4. 

But (afei + kia)k2 + k2(aki + feia) Ç -4, t ha t is 

(4) akik2 + &2&i<2 + &i#&2 + k2aki Ç ^4. 

Subtrac t ing (4) from (3) we obtain (k\k2 — k2ki)a 6 4̂ for all a Ç .4, fei, k2 Ç 
X tha t is, [X, X] 4̂ C ^4. However, from this we get t h a t the subring T, 
generated by [K, K], satisfies TA C A. Since dimzjR > 4, [K, K] generates R} 

hence T = R and RA C A. Also, since (iL4) oK C A,we obtain 2L42C C -4, 
whence RAK C ^-4 C A. Because K generates R we have RAR C -4. B u t 
since A ^ 0 and i? is simple, iL4i? = R. T h u s we get A = R. 

The final result of the paper concerns invariance relative to circle multiplica­
tion with S. 

T H E O R E M 4. Let R be a simple ring with involution of characteristic not 2, 
with dimzR > 4. If A is a subring of R such that A o S (Z A, then A = 0 or 
A = R. 

Proof. Suppose tha t A ^ 0. If a 9* 0 6 A then (a* + a)a + a(a* + a) £ A, 
hence a*a + aa* £ ^4. Since a*a + aa* is symmetr ic , it mus t be in A* hence 
in B = A C\ A*. Now 5 * = B is a subring of R and 5 o 5 C B. If £ + = 
B r\ S, we get t ha t B+ is a Jordan ideal of 5 , hence by [1, Theorem 2.6], B+ = 0 
or B+ = S. If 5 + = 5 then J3 contains the subring generated by S, t h a t is, B 
contains R. Hence A Z) R and so A = R. T h u s we may suppose t h a t B+ = 0. 

If B- = B Pi K then 5 ~ o 5 C £ ~ ; by [2] we get t ha t B~ = 0 or B~ = J£\ 
If 5 - = K then i D ^ D ^ since i? is generated by K. T h u s B~ = 0. Bu t 
5 = B+ + B- = 0. T h u s 4 H 4 * = 0 and so aa* + a*a = 0 for all a £ A. 

Linearize aa* + a*a = 0; this gives b*a + a&* + #*& + ba* = 0 for all a, 
K i . T h u s a*a + ab* = — (a*b + ba*) = — (è*a + ab*)* is skew. However, 
b*a + ab* = (5* + b)a + a(b* + b) — (ab + ba) so is in A. Being skew, it is 
also in A*, hence in A H A* = 0. T h u s we have fr*a + ab* = 0 for all a, b £ A 
T h u s b* ant i -commutes with a. H c £ A then c*b* mus t commute with a; bu t 
c*b* = (ta)* G A*, so ant i -commutes with a. The net result of this is t h a t 
c*b*A = 0 for all c, b G -4. 
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Thus, if a G A, s Ç S, we have c*b*(as + sa) = 0. This gives c*b*SA = 0. 
Repeating, we get c*b*TA = 0 where T is the subring generated by 5; since 
r = R we have c*b*RA = 0. Because i£ is simple and A ^ 0 this yields c*6* = 
0, hence be = 0 for all &, c € 4 . Thus ^i2 = 0. 

Since 4̂ (as + 5a) C ^42 = 0 for a £ A, s £ S we get ASA = 0. Repeating, 
and using that S generates R we end up with ARA = 0. Because R is simple, 
this forces the contradiction . 4 = 0 . With this the theorem is proved. 

A few final remarks might be in order. To begin with, some analogous 
theorems to the ones we proved here can undoubtedly be proved in the wider 
context of semi-prime rings which are 2-torsion free. Also, even in this wider 
setting, one could insist on weaker hypotheses on A in some of these results. 
Instead of insisting that A be a subring, as we do in Theorems 1 and 4, we 
should be able to characterize all additive subgroups satisfying [A, K] C A 
or A o S d A for semi-prime, 2-torsion free rings. Also, one should be able to 
extend Theorem 1, even in this more general case, to the situation 
[A, [K, K]] C A. We shall return to these things another time. 
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