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SUMMARY

Assortative mating is generalized to include social homogamy and
phenotypic homogamy as two special cases. This generalization, called
mixed homogamy, enables tests of hypotheses on the nature of assort-
ment. Cultural inheritance is also extended to include two components:
transmitted from parental environments, and non-transmitted sibship
environment. Familial correlations are derived for a variety of relation-
ships under mixed homogamy.

1. INTRODUCTION

Assortative mating is a system in which either like individuals (positive assor-
tative mating) or unlike individuals (negative assortative mating) preferentially
mate with each other. This preference may be based on two broad characteristics:
phenotype, or social class including status, tastes, contacts and other aspects of
group membership. Assortative mating may accordingly be classified into two
major types: phenotypic homogamy and social homogamy. Under phenotypic
homogamy the phenotypic correlation between spouses is primary, leading to
secondary correlations between genotypes and environments of spouses. Under
social homogamy, on the other hand, mates choose each other on the basis of
their group membership which generates primary correlations between the geno-
types and environments of spouses, and the phenotypic correlation between
spouses becomes secondary. Models for phenotypic homogamy in the presence of
cultural inheritance were developed and studied extensively by Sewall Wright
(1978), Cloninger, Rice & Reich (1979) and Jencks (1972). We have so far concen-
trated on social homogamy (Morton & Rao, 1978; Rao & Morton, 1978), with
major interest in physiological variables such as lipoprotein concentrations (Rao
et al. 1979), hypertension (Morton et at. 1978), etc. So far, the choice between the
two models of assortative mating was arbitrary. We here generalize assortative
mating to incorporate phenotypic homogamy and social homogamy as two special
cases, revise our model for cultural inheritance, and present a comprehensive
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theory for the resolution of biological and cultural inheritance in arbitrary pedi-
grees. We call the generalized assortative mating mixed homogamy, which was
briefly introduced in Morton & Rao (1979).

A subsequent paper will report applications of these methods to several bodies
of data.

2. GENERALIZED ASSORTATIVE MATING

We assume that environment (G) acts additively with genotype ((?) to produce
a phenotype (P), all interactions being negligible. Fig. 1 displays the relationships
between these variables for a couple, where subscripts F and M denote father and
mother respectively. While dealing with phenotypic homogamy which is shown
in Fig. 1 by a direct path (p) between PF and PM, we follow a recent technique of
Wright (1978) and reverse the paths from G and C to P and replace the path
coefficients by the correlation coefficients. We follow another technique of Cloninger
et al. (1979) and avoid repetition of parental phenotypes. In Fig. 1 the solid lines
represent phenotypic homogamy. Notice that the compound path coefficients
y and tp for the reversed paths are actually correlations of the phenotype with the
genotype and indexed environment respectively:

y = hz + cya, <f> = cy + hza.

All these parameters are defined in Table 1. Total correlation between the genotype
(G) and indexed environment (C) of an individual is denoted by a, a function of
other parameters. This is split into two components under phenotypic homogamy:
one direct correlational path between the two (a — ycj>), and another part via the
phenotype (P) with a value of y^>, making the total a — y(f> + y<j) = a. Residual
paths for the two spouses, not shown in Fig. 1, are assumed to be uncorrelated.

In Fig. 1 let us now superimpose social homogamy (H) onto phenotypic homo-
gamy. Consequences of social homogamy are denoted by broken lines. Social
homogamy has a direct path yjm to each of the two parental genotypes, and a direct
path *Ju to each of their indexed environments. This induces an indirect cor-
relation (s = *Jmu) between G and C of an individual, and hence the direct
correlation between G and C is shown as a — s for either parent (by broken lines).
I t should be noted that this system of parallel paths in terms of solid and broken
lines does not correspond to reciprocal causation (Wright, 1968). If cohabitation
induces phenotypic correlation, this will be reflected by u. The extent of premarital
resemblance of spouses due to phenotypic homogamy is measured by p.

In Fig. 1, all solid paths correspond to phenotypic homogamy, and all broken
paths correspond to social homogamy. Notice that p = 0 gives social homogamy,
and m = u = 0 gives phenotypic homogamy.

At this stage we introduce the following two conventions in reading broken
paths for deriving familial correlations under mixed homogamy:

(i) Within an individual, either solid lines or broken lines are used but not both.
For example, the correlation between PF and CF of Fig. 1 is: <j> = cy + hza through
solid lines and cy-\-hz{a — ^{rnu)) + hz^(mu) = <j> through broken lines, conserving
equality.
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Mixed homogamy 111

Fig. 1. Path diagram for assortative mating under mixed homogamy. P, 0, C, H,
denote phenotype, genotype, indexed environment and social homogamy respec-
tively. Subscripts F and M denote father and mother. See Table 1 for definition
of the parameters, y = hz + cya, <j> = cy + hza, $ =

Table 1. Parameters of the mixed homogamy model

Symbol

h effect of genotype on child's phenotype (square-root of 'heritability').
hz effect of genotype on adult's phenotype
c effect of child's indexed environment on the child's phenotype
cy effect of adult's indexed environment on the adult's phenotype
p primary correlation between parental phenotypes, not due to secondary resemblance

through social homogamy (H)
m correlation between parental genotypes through social homogamy (H)
u correlation between parental indexed environments through social homogamy (H)
JF effect of father's indexed environment on child's indexed environment
/ M effect of mother's indexed environment on child's indexed environment
b effect of non-transmitted common sibship environment on child's indexed environ-

ment
bx effect of non-transmitted common sibship environment on adult's indexed environ-

ment
i effect of child's indexed environment on the child's index.
IF effect of father's indexed environment on father's index
%M effect of mother's indexed environment on mother's index

Derived:

y1= hz + cya, correlation between the genotype and phenotype of an adult
<f> = cy + hza, correlation between the indexed environment and phenotype of an adult
a = AJUIU, correlation between an adult's indexed environment and spouse's genotype

under social homogamy
o = correlation between genotype and indexed environment of an individual
ijr = pr +pM + 2/F/M (u+pfi*), correlation between indexed environments of sibs derived from

parental environments.
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(ii) Between individuals, any given chain may contain either the solid paths or
the broken paths between mates but not both. For example, the correlation
between PF and PM involves five chains in all:

direct path between PF, P2l p
through GF, GM (hz)zm
through CP! Cu (cy)2u
through GF, Cu & CF, GM 2hzcys {s = ^J(mu))

therefore
correlation between PF, PM = p + (hz)2m + (cy)2u+ 2hzcy s

These conventions are equivalent to alternative conventions justified on
statistical grounds (Cloninger, 1979a, b).

3. THE MODEL

Fig. 2 displays the model for biological and cultural inheritance in nuclear
families under mixed homogamy. As before (Rao & Morton, 1978) we retain
specific maternal effects by distinguishing fF and fM where / denotes the effect of
a parent's environment on that provided to a child the parent rears. Direct effects
of parental phenotypes on the environment of a child are assumed negligible since
they were not significant even for IQ (Rao & Morton, 1978). Intergenerational
differences in genetic and environmental effects are maintained: whereas the
genetic and environmental heritabilities in childhood are h2 and c2 respectively,
they are h2z2 and c2y2 in adulthood. Separate indices (IF, Iv) are retained for the
parents.

Apart from mixed homogamy for assortative mating, the most significant
deviation of this model from our previous models is in representing the sibship
environment. Previously we postulated one sibship environment common for all
members of the sibship, and estimated this by one index (average of the index
values for all members of the sibship). Realizing that this is only approximate,
we now introduce different environments for different members of a sibship which
are partly transmitted from the previous generation (CF, CM) and partly deter-
mined by a non-transmitted sibship environment (B). Accordingly, we now have
one index for each member of a sibship. This model is illustrated with two full
sibs in Fig. 2. All the 14 functionally independent parameters are defined in
Table 1. Note that the parameter x has a different meaning from Rao, Morton
& Yee, (1976): Whereas the correlation between sibling environments due to non-
transmitted factors is b2 in childhood, it is b2x2 for adult sibs. From Fig. 2, the
correlation between a genotype and a child's indexed environment of any child
(reared together) is

( j) ( / + / ) / 2 = a

assuming equilibrium. This correlation (a) is therefore not an independent para-
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meter. Remembering that y and <fi also involve a, solution of the following quad-
ratic equation yields a as a function of other parameters:

phzcy = o,

where
Aphzcy '

A = (fF+f3I)/(2-fF-fMU

(1)

Only one root is admissible, with absolute value less than unity and the same sign
as the product of A and the correlation between mates (PF and PM).

Fig. 2. Treatment of mixed homogamy in nuclear familes. P, G, C, I denote pheno-
type, genotype, indexed environment and index respectively. Subscripts F and M
denote father and mother, 1 and 2 denote two children respectively. B denotes non-
transmitted common environment for a sibship. Table 1 defines the parameters of
the model: y = hz + cya, (j> — cy + hza, s =

Correlation between the indexed environments of two sibs (Cx and C2 in Fig. 2)
is easily derived from Fig. 2 as b2 + yjr where

t = /§•+/&+ 2/WJ/ («+*>08) (2)

measures the correlation between sibling environments derived from parental
environments. Correlation between Cx and C2 is b2x*+ \{r if the sibs are adults.

4. NUCLEAR FAMILIES

Phenotypes and indices of two parents and one child generate I I = 15 cor-

relations. Phenotypes and indices of children generate 3 more correlations:
between phenotypes of children, between indices of children, and between child's
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phenotype and another child's index. Therefore, the complete model in 14 para-
meters leaves 4 degrees of freedom in nuclear families for goodness-of-fit test.
Additional d.f. are available if certain parameters (like m) are eliminated under a
null hypothesis. Also, in the absence of adult sibs the parameter x is eliminated.

Consider the correlation between mother's phenotype PM and a child's pheno-
type Px, say. The correlation between PM and Gx is, from Fig. 2,

PPUOI = $[y{l+P) + hzm + cys] (3)

and similarly, the correlation between PM and Cx is given by

Using (3) and (4) we easily get the mother-child correlation as

Table 2. Expected correlations in nuclear families under mixed homogamy (see Fig. 2)
Relation

FMT (marital)

OPT (parent-offspring)

SST (filial)

Note: s = Jmu,

Variables

PF.IF
PF,PM
PF,IM
IF,PM
IF, IM
PM,IM

PF,PC

PF,IC
IF.PC
IF,IC
PM,PC

PM,IC
IM,PC
IM, IC

(Plt Ix) or (P2, J2)
(Plt I,) or (P2,1,)

kX
y = hz + cya, 6 =

Expected correlation (p)

p + (hz)2 m + (cy)2 u + Ihzcya
(p<p + hzs + cyu) is,t
(p<p + hzs + cyu) iF

(p02 + w)ifiM
4>iM

lh[y(l+p)+hzm + cys] + c<f>{fF+pfM)
+ cfM(hz8 + cyu)

[<j>(fF +PJM) +fM(hz8 + cyu)]i
[^h(a + s + yp(j>) + cfF + C/M(U + <j>2p)]iF
\JF + /M(W +p<f>2)']iiF
%h[y( l+p) + hzm + cys] + c<j> (fM + pfF)

+ cfF(hzs + cyu)
[^(/M+P/F) +fF(hze + cyu)]i
[ih(a + s + yp(p) + C/M + cfF(u +P<P2)]IM
UM +/P(M+P4>2)]HM

(c + ha)i

ih*( 1 + m+py2) + c2(62 + f) + 2hca

-. cy + hza, ijr = fZ+fi,+ 2fpfM(u+p<&2).

which is given in Table 2. The technique represented by equations (3) to (5) is
useful, especially in deriving correlations for more remote vertical and collateral
relatives. Note that in equation (5) h and c would be replaced by hz and cy respec-
tively if Px is the phenotype of an adult child. Correlations involving the indices
are derived similarly. For example,

C J / 1 / (6)
which gives

PiMn =
Also,

PcMol= (yp<l> + 8 + a)/2 (8)
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and hence the correlation between P1 and IM is given by

PPliM = (hPcMGi +
 cPc]lIc1)iM (9)

and finally,
I' ( 1 0 )

which may be expanded using (4). In all, 18 such correlations for nuclear families
are presented in Table 2.

5. VERTICAL RELATIVES

Consider the genotypes and indexed environments of two spouses under social
homogamy as shown in Fig. 3 (a), where the common cause H of Fig 1 is replaced
by direct correlational paths. In Fig. 3 (a), m denotes the total correlation between
the genotypes of spouses, u denotes the total correlation between their indexed
environments and so on. Consider the standardized partial regression coefficients
TO*, u*, s* and t* in the regression of each variable of the mother (GM, CM)
separately on each of the father's variables (GF, CF), represented, in Fig. 3(6) by
unidirectional paths. The partial regression coefficients TO*, U*, S* and t* are
easily expressed in terms of the ambiguous correlations TO, U, S and a as follows.
The total correlation between GF and GM is m from Fig. 3 (a), and m* + at* from
Fig. 3(6). Deriving all such correlations and equating them yields the following
equations

m = m* + at*, 1
u = u* + as*, t (11)
s = s* + au* = <*+«TO*.[

Solution of these equations gives

TO* = (TO — as)/(l — a2),>

s* = (s-au)/(l-a2), ' y '
t* = (s-am)/(l-a2).)

Notice that in the absence of genotype-environment correlation (a = 0), all the
partial regression coefficients will be equal to the corresponding correlations
(m* = TO, u* = u and s* = t* = s =. ^j(mu)). In the absence of genotypic cor-
relation (TO = 0, and hence s = «J(mu) = 0), TO* = t* = 0, u* > 0, but s* < 0.
In general, when TO and u are both positive, TO* and s* will have the same sign,
and u*, t* will both have the opposite sign. Finally, it may be mentioned that the
correlation between GM and CM is a* + m*s* + t*u* + a(m*u* + s*t*) = a by
definition. Therefore,

a* = a — s(m + u—2as).

Conversion of two-headed correlations (TO, U, S) into unidirectional paths (TO*,
u*, s*, t*) avoids much confusion and uncertainty in tracing correlations beyond
nuclear families. I t should be remembered, however, that both methods are
equivalent ways of expressing marital correlations. More details of this approach
are given elsewhere (Cloninger, 1979a). In the ancestral generation we shall always
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use marital correlations m, u and s, and in subsequent generations we shall
use the marital partial regressions m*, u*, s* and t* appropriately. Similarly, in
dealing with phenotypic homogamy it should be noted that the partial regression
p* of either parent's phenotype on that of the other is the same as p. This justifies
drawing this path either as a two-headed arrow or as a unidirectional path as
Cloninger et al (1979) did. This is not causation, but merely represents functional
dependence due to selection as discussed in detail elsewhere (Cloninger, 1979a, b).
We shall denote this path by a two-headed arrow in the ancestral generation, and
by a unidirectional path in subsequent generations.

m*

(a) Direct correlational paths between
spouses

(6) Unidirectional paths represented by
standardized partial regression coeffi-
cients (mother's variables on those of
the father)

Fig. 3. Representing ambiguous correlations m, u and s (a) in terms of standardized
partial regression coefficients m*, u*, s* and t* (b). O and C denote genotype and
indexed environment, subscripts F, M denote father and mother respectively.

Consider a simple three-generation family shown in Fig. 4, consisting of paternal
grandparents (generation 3), parents (generation 2) and a child (generation 1).
Let K2 denote the total value of all backward paths between G2F and Plt and A2

denote the same between C2P and Px. It is clear that equation (3) also gives
pp3iloiF in Fig. 3, and further, equation (4) yields Pp3UciP- Therefore, the correlation
between the phenotypes of paternal grandmother and a grandchild is simply

2F- (13)

Note that K2 and A2 are special kinds of compound paths (not involving ambiguous
correlations, and never changing direction) and therefore equation (13) does not
correspond to multiplication of correlations which is not permissible in path
analysis. It is easy to derive the following quantities from Fig. 4:

4>phz) 1
+ ypcy)\

K2 =
and A2 = c[fF +fM(u*

(14)

and therefore the paternal grandmother-grandchild correlation is obtained by
inserting equations (14), (3) and (4) into (13):

(15)x+P/F) +fF
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Sex-labelling of every parent is important in the presence of maternal effects.
Bearing this in mind, the correlation between vertical relatives separated by n
generations may be written down as

Pvn = (16)

where i #= j = M or F, n = 1 for parent-offspring, n = 2 for grandparent-
grandchild, etc., and, Kx = h or Az, Ax = c or cy depending on whether the
descendent is a child or an adult, and

Kn = i(l + m* + yphz)Kn_x +/z(s* + fohz)An_x, \
An = [fk+fiiu* + <t>Pcy)]An_1 + %(t* + ypcy)Kn_1,f

where k 4= I = F or M depending on the sexes of the intermediate parents.

Fig. 4. Path diagram for grandchild (subscript 1) and paternal grandparents
(subscript 3) under mixed homogamy. Paths irrelevant to grandparent-grandchild
correlation are omitted.
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6. COLLATERAL RELATIVES

For collateral relatives not involving multiple spouses, we shall denote the
marital relationships in terms of m*, u*, s*, t* even in the ancestral generation.
Phenotypic correlations are also shown as unidirectional paths. Fig. 5 displays
the path diagram for two full sibs (brother and sister, subscripted as IF and 2M
respectively), their spouses and one child for each couple. Apart from other more
remote relatives such as like in-laws and unlike in-laws (Rao et al. 1976),
correlations for uncle—niece and first cousins can be derived from Fig 5, taking
care to label the sex properly.

The direct correlational paths between the genotypes and environments of the
sibs (G1F, G2M, C1F, C2M) are derived from Fig. 2, where b is replaced by bx since
these are adult sibs. The phenotypic correlation between paternal aunt and niece
(nephew) is easily seen to be

za] A
2,

(18)

where K2 and A2 are given by equation (14), and i/r is given by equation (2).
Similarly, equation (18) also yields maternal uncle-niece (nephew) correlation with

Fig. 5. Path diagram for cross first cousins under mixed homogamy. x/r = / £ + / ! +
2/F/M(W+ <j>2p) denotes the correlation between indexed environments of sibs derived
from those of the parents. Subscripts 1 and 2 denote the two sibs in the original
generation. In subsequent generations, the first digit of the subscript identifies the
original generation, and the second digit for the generation number within the
vertical line.

K2 and A2 replaced by K2 and A'2 where sexes are reversed. By a similar argument
we get the phenotypic correlation for cross first cousins as

PPUPK = Ul + ™+Py2)K2K2+(b*xZ+ir)AzA2 + a(K2A2 + A2K2), (19)

where K2 and A2 are as given in (14), and sexes are reversed in K'2 and A2.
By a slight generalization, one could easity obtain the phenotypic correlation

for an individual (say P2iu) a n ( i w^n descendent of her sib. This is actually given by
equation (18) where K2 and A2 are replaced by K^ and An respectively. Similarly,
the phenotypic correlation between with and nth. descendents of an ancestral pair

https://doi.org/10.1017/S0016672300018310 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018310


Mixed homogamy 185

is given by a slight rearrangement of equation (19):

Pmn = ^ + m+P72)KmK + (b^+^)AmA: + a(KmA'n + KAm), (20)

where sexes are properly labelled for all intermediate parents.

7. OTHER RELATIVES

By a variation of Figs. 2 and 5 it is possible to derive the expected correlations
for a variety of other useful relationships such as twins, sibs reared apart, foster
sibs, half-sibs, children of MZ twins and so on. Some of these are presented in
Table 3.

For example, for foster sibs reared together, the correlation is easily derived
from Fig. 2 by eliminating the four genetic paths from parental genotypes to those

Table 3. Expected correlations for other types of relatives

Relation Expected correlation

MZ twins reared together by parents A2 + c2(62 + rjr) + 2hca

MZ twins reared apart, one by true parents (A2 + Juzc)0

Full sibs reared apart, one by true parents [iA2(l + m+py2) +hac}6

Full sibs, reared apart by foster parents U>>2{t + m + py2)/2']62

Foster sibs reared together c2d2(b2 + i/r)

Foster sibs reared together by parents of one [c2(62 + ijr) + hac]6

Offspring-parent living apart lhd[y(l +p) + hzm + cys]

Offspring-foster father* cd[0(fp+pfM) + fix(hzs + cyu)]

Paternal half-sibs reared together by parents ofonef [i&2(l + 3m+2y2p + y2p2) + c2(b2 + rjr)
/

J[l-hcfM(a-s-vp2<?>)]

Paternal half-sibs reared separately by own parentsf ih2(l + 3m + 2y2p + y2p2)

+ 2hca - hcfM(a -s-vp2<f>)

Children of male MZ twins % K%+ 20,^^ + (62a;2 + i/r)A2

* Reversing subscripts F and M gives offspring-foster mother.
t Reversing subscripts F and M gives maternal half-sibs.
% K2 and A2 are given by equation 12; reversing the roles of sex in K2 and A2 gives the

correlation for children of female MZ twins.
Note: xjr = f}+fM+2fFfM(u+p<t>2) .

of the children (foster) and remembering to multiply by the ratio of standard
deviations d = 1/V(1 — 2hca) (Rao, Morton & Yee, 1974): thus we get the foster-sib
correlation as c2d2(b2+ijr) where ijr is given by (2). Random placement of the
foster children is assumed.

For half-sibs we assume, as before (Rao el al. 1976) that multiple spouses are
as similar to each other with respect to social homogamy as either one is to their
common spouse. This is facilitated by showing H (social homogamy) as a direct
cause of the genotypes and indexed environments of the three spouses, with a
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path *Jm to each genotype and Ju to each indexed environment. Two cases are
of special interest: half-sibs reared separately by own parents, and half-sibs reared
together by parents of one. These two cases are easily distinguished by substituting
the contribution of one uncommon parent to one half-sib's indexed environment
by that of the other uncommon parent.

For the MZ twin design of Nance, Corey & Boughman (1978) we can derive some
interesting correlations from Fig. 5 by writing only one genotype for the twin
pair (say, G instead of GIF and G2M in Fig. 5). For example, labelling sexes properly,
the correlation between an MZ twin and co-twin's child is

p = yK2 + A2[hza + cy(b* x2 + f) ] (21)

and the correlation between children of MZ twins is

p = Kl + 2aK2A2 + Al{b2x2+f). (22)

Equations (21) and (22) hold for male MZ twins. Substitution of K2 and A2 by
K'2 and A2 yields the same for female MZ twins.

8. STATISTICAL ANALYSIS

Given a set of sample correlation coefficients (rt, i = 1, 2, ..., m) and their
sample sizes (nit i = 1, 2, ..., m), we propose to take the joint log-likelihood as

\n L = — x2/% + constant,
m

where f(x) is a suitable function of x, and a2 is the variance of f(x). The two
appropriate forms are

(x wither2 = (l-p2)2[n,
fix) = I l+xJ \z = |In—— with cr2 = lln*,

I 1 —x '

where n* = n—3 for interclass correlations, and n* = n— 1-5 for intraclass cor-
relations. Whenever correlations are based on pairs of observations we use the
z transforms, and f(x) = x otherwise.

We have suggested earlier that the z-transforms be bias-corrected prior to data
analysis. Such refinements have negligible effect on the results (Goldberger, 1978),
and will be neglected hereafter. We have also proposed quadratic forms involving
correlations between correlations whenever correlation coefficients are estimated
from the same sample (Rao et al. 1979). However, methods with and without
correlations between correlations gave substantially similar results for a number
of traits (Rao et al. 1979; Morton et al. 1978; Gulbrandsen et al. 1979; Krieger et al.
1978). This justifies equation (23) which ignores correlations between correlations.
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9. DISCUSSION

Assortative mating as treated here enables for the first time tests of hypotheses
on the nature of assortment. The two null hypotheses of interest are m = u = 0
which corresponds to phenotypic assortative mating, and p — 0 which represents
social homogamy. Experience so far has been limited to these two extremes. We
have been using social homogamy with primary interest in physiological traits
such as lipoprotein concentrations (Rao et al. 1979), blood pressure (Morton et al.
1978; Krieger et al. 1979) and uric acid (Gulbrandsen et al. 1979). Others have been
using phenotypic assortative mating with primary interest in behavioural traits
such as IQ (Wright, 1978; Cloninger et al. 1979; Jencks, 1972). Analyses of IQ
data under these two extremes gave different results, but it could not be asserted
whether this was due to differences in the modeling of assortative mating, cultural
inheritance, or intergenerational differences. The model of mixed homogamy
presented here is capable of resolving such uncertainties.

Treatment of indices may be generalized by adding a path from genotype to
index. This path coefficient measures the product of two quantities: square-root
of genetic heritability for the index, and correlation between the genotypes of
phenotype and index. If the path coefficient is found to be significant by a likeli-
hood ratio test, data analyses should incorporate it.

A FORTRAN computer program incorporating these methods is being developed,
which will be used to analyse several data sets including IQ. These results will be
presented in a subsequent paper.
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draft.
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