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Abstract

Let £ be a Banach space whose dual E* has the approximation property, and let m be an index. We show
that E* has the Radon-Nikodym property if and only if every m-homogeneous integral polynomial from
E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear
polynomials.
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Many authors have studied nuclear and integral polynomials between Banach spaces
(see, for example, [2-5,7]). In the present paper, we continue this study obtain-
ing a characterization of the Radon-Nikodym property in terms of these classes of
polynomials, as well as factorization and composition results for these and related
classes.

First, we extend to the polynomial setting the following well-known result due to
Grothendieck:

THEOREM 1 ([11, Theorem VIII.4.6]). Let E be a Banach space such that E* has
the approximation property. Then E* has the Radon-Nikodym property if and only
if every integral operator on E is nuclear. In this case, the integral and the nuclear
norms coincide.

We also give results about the composition of integral polynomials with weakly
compact operators and of weakly compact polynomials with integral operators. We
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characterize the polynomials that factorize through a nuclear operator into a Hilbert
space.

We show that, as in the linear case, the nuclear polynomials factorize through
diagonal polynomials from tx, into l\ and also from c0 into t\. Using this result,
we show that a polynomial P is nuclear if and only if it may be written in the form
P = Q o T where T is a compact operator and Q is a Pietsch integral polynomial.

Finally, we show that not every nuclear polynomial is 1-dominated and obtain a
sufficient condition for this to happen.

Throughout, E, F, G, X, Y and Z denote Banach spaces, E* is the dual of E,
and BE stands for its closed unit ball. By N we represent the set of all natural numbers
and by K the scalar field (real K or complex C). The notation E = F means that E and
F are isometrically isomorphic. The definition of the Radon-Nikodym property may
be found in [11, Definition IE. 1.3]. Recall that E* has the Radon-Nikodym property
if and only if E is an Asplund space. By an operator from E into F we always mean
a bounded linear mapping. We use _Sf (E, F) for the space of all operators from E
into F.

Given m e N, we denote by &(mE, F) the space of all w-homogeneous (continu-
ous) polynomials from E into F endowed with the supremum norm given by

\\P\\ =sup{||P(jc)|| :x e BE) for all P e &(mE, F).

Recall that with each P e &(mE, F) we can associate a unique symmetric m-linear
(continuous) mapping P : Ex W x E -*• F so that

P(x) = P(x,W.,x) (x e E).

For the general theory of polynomials on Banach spaces, we refer to [12] and [16].
Given 1 < r < oo, a polynomial P e £?(mE, F) is r-dominated [15] if there exists

a constant it > 0 such that, for all n e N and (*,)?=1 C E, we have

mlr In \mlr

Note that, for m = 1, we obtain the class of (absolutely) r-summing operators.
If T e Jif(E, F) is r-summing, the least of the constants k that satisfy the above
inequality for m = 1 is denoted by nr(T).

An /n-linear mapping T : E x W. x E —> F is nuclear [2] if there are bounded
sequences (xy*(.)~, C E* (1 <j < m) and (y,-)~1 C F with
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such that

T(xu... ,xm) =

The nuclear norm of T is
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XJ e E, 1 <j < m).

where the infimum is taken over all sequences satisfying the definition.
A polynomial P e £?(mE, F) is nuclear [2] if it can be written in the form

(1) P(x) = £*;(*)"?,• (xeE),

1=1

where (**) c £* and (>>,) C F are bounded sequences such that

We denote by ^*N(m£, F) the space of all m-homogeneous nuclear polynomials
from E into F endowed with the nuclear norm

|| P || N:= infill** Illy,-|l,

where the infimum is taken over all sequences (x*) C E* and (>»,) C F which satisfy
(1) and (2). We denote by ^V(E, F) the space of all nuclear operators from E into F.

The following definition of integral m-linear mapping was given in [7] and extends
the one given in [17] for multilinear functionals.

An m-linear mapping T : E x W x E -> F is (Grothendieck) integral if there
exists a constant C > 0 such that, for every n e N and all families (*//)?= i C £
(1 < 7 < m) and (/,*)"=, C F*, we have

< C sup

For m = 1, we obtain the integral operators [11, Definition VIII.2.6]. The integral
norm || Tlh is the infimum of all constants C that satisfy the definition.
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In [22], T is said to be integral if there exists a regular /-""-valued countably
additive, Borel measure <£, of bounded variation, on the product BE. x
endowed with the weak-star topology, such that

(m)
x BF

(3) T(xu... ,xn) = f
J BF* X — )

l... ,x*)

for all Xj 6 E (1 < j < m). The integral norm of T is the infimum of the variation
of &, taken over all measures <£ as above.

From [7] and [22] it is easy to see that both notions of integral m-linear mapping
are equivalent and that the two definitions of integral norm coincide.

We say that a polynomial P e £?(mE, F) is (Grothendieck) integral if there exists
a constant C > 0 such that, for every n e N and all families (x,-)?_, C E and
(f*)U C F \ we have

< C sup

The symbol &\(mE, F) denotes the space of all m-homogeneous integral poly-
nomials from E into F, endowed with the integral norm \\P\\\ := inf C, where the
infimum is taken over all constants C that satisfy the definition. By * / ( £ , F) we
denote the space of all integral operators from E into F.

An m-linear mapping T : Ex W xE ->• F is Pietsch integral [2] if it can be
written in the form (3), where $ is F-valued. The Pietsch integral norm || 7||P, of T
is the infimum of the variation of the measures &.

A polynomial P e £?(mE, F) is Pietsch integral [2] if it can be written in the form

P(x) = c*(x)]md&(x*) (x e E)

where $ is an F-valued regular countable additive Borel measure, of bounded vari-
ation, defined on (BE., weak-*). The Pietsch integral norm of P is \\P\\n :—
inf \&\(BE>), where | ^ | is the variation of Sf, and the infimum is taken over all
measures satisfying the definition.

In the literature, the concept 'integral polynomial' has been used sometimes for what
we call Pietsch integral polynomials and sometimes (as we do) for the (Grothendieck)
integral polynomials.

Every nuclear polynomial is Pietsch integral, and every Pietsch integral polynomial
is integral. Moreover, if P is nuclear, we have ||P||i < | |P | |PI < H^HN-

We use the notation ®mE := E® .(/7). ®E for the m-fold tensor product of E,
®"E := £(g>e .(?'. ®(E for the w-fold injective tensor product of E, and ®"E for the
m-fold projective tensor product of E (see [9] for the theory of tensor products). By
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<g>™£ := E<g>s W ®SE we denote the w-fold symmetric tensor product of E, that is,
the set of all elements u e ® m £ of the form

n
u = ^ A.;*;® W ®xj (n e N, A.,- e K,xj e £ , 1 < j < n).

; = i

By <8>™s£ we denote the closure of <g>™£ in <g>™£. Analogously, ® " 4 £ is the closure
of <8™E in ®"£ . For symmetric tensor products, we refer to [13].

If P e &(mE, F), we define its linearization T : ® " £ -> F by

( , * , < 8 > .(7>. gu , ) = ^ X t P { X i )

for all A.,- € DC, ,̂- € £ (1 < i < n).
The following lemma will be needed.

LEMMA 2 ([9, Theorem 16.6]). Suppose that E* has the Radon-Nikodym property
and the approximation property. Then ( £ ®e F)* = £* <8>n F* ^?r every Banach
space F.

We can now prove the following

THEOREM 3. Suppose that E* has the approximation property. Then the following
assertions are equivalent:

(a) E* has the Radon-Nikodym property.

(b) For every m 6 N and every Banach space F, wehave £?N(mE, F) = ^,(mE, F).
(c) There is m € N such that, for every Banach space F, we have ^9

N(mE, F) =
&>i(mE, F).

Moreover, if these conditions are satisfied, we have

\\P\\,<\\P\\N<^-r\\P\\i
ml

for every P e &>,(mE, F).

PROOF, (a) =» (b). Let P e &\{mE, F). Then the associated m-linear mapping P
is integral [7], and its linearization P : ® " £ -» F is well defined and integral [22].
Since E* has the Radon-Nikodym property, by [19, Theorem 1.9] and induction, the
space (®"£)* has also the Radon-Nikodym property. By Lemma 2 and induction, we
have (<g)^£)* = ®™E*.

Since E* has the approximation property, <8>"£* has also the approximation prop-
erty [9, Exercise 5.4]. By Theorem 1, P : <g>™£ —>• F is nuclear. Clearly, the
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restriction of P to ®™SE coincides with P, which is also nuclear and hence Pietsch
integral. By [22], P is Pietsch integral. Since E is Asplund, P is nuclear (see [2,
Proposition 1] or [5, Theorem 1.4]).

(b) => (c) is obvious.
(c) =• (a). It is proved in [6] that the equality ^("E, F) = ^{"E, F) for some m

implies that J/{E, F) = <?(£\ F). Since this is true for all F, applying Theorem 1,
we have that E* has the Radon-Nikodym property.

Assume now that the three equivalent assertions hold. Let P e &\(mE, F). We
know that | |P | | , < | |P | |N . By Theorem 1, \\P\h = | | ? | | P I = ||"p||N. Hence,

mm -
< — IIPIIN (by [2])

ml

= ^ l l % i (by [1, Theorem 2.3])ml

= ^ i m i p . (by [22])
ml

m

~ ~m\
mm

~~ ~m\
mm

< —
~ ml

\\P\\i

\\P\\i

\\P\\u

(by [22])

and the proof is finished. •

We now consider the extension to the polynomial setting of the following result
[11, Theorem VIII.4.12]:

THEOREM 4. Consider the operators T e &{E, F)andS e -Sf(F, G). Then:

(a) If T is integral and S is weakly compact, then S o T is nuclear.
(b) If T is weakly compact and S is integral then S o T is nuclear into G**.

Most of the possible extensions to polynomials fail. However, we obtain:

PROPOSITION 5. Let P e &>(mE, F), S e S?(F, Y), and T e 3f(X, E). Then

(a) / / P is integral and S is weakly compact, then S o P is Pietsch integral and its
linearization S o P : <g>™^E -> Y is nuclear.
(b) / / T is weakly compact and P is integral, then P o T is nuclear into F**, and
P oT :®"sX-> F** is nuclear.
(c) If T is integral and P is weakly compact then P o T is Pietsch integral.
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PROOF, (a) Since P is integral, its linearization P : ®™SE —> F is well-defined
and integral [7]. By Theorem 4, SoP = SoPis nuclear and, hence, Pietsch integral.
By [22], So Pis Pietsch integral.

In general, 5 o P is not nuclear. For instance, the polynomial P : C[0, 1] —> C,
given by P(f) = /0' / (t)2dt, is integral. However, if S : C -> C is the identity on
C, then P = 5 o P is not nuclear [1, Remark 2.4].

(b) There are a reflexive space G, and operators A e S£{X, G) and B e .i?(G, E)
such that T = B o A [11, Corollary VIH.4.9]. Consider the operator

®mB :=

Then P o (®mB) = P o B is integral, so P o B is integral, hence it is Pietsch integral
as a polynomial with values in F**. Since G is Asplund, P o B is nuclear from G
into F** [5, Theorem 1.4]. Easily, PoT = PoBoAis nuclear with values in F**.

The operator T o (®mB) = P oB : ®™SG -> F** is Pietsch integral. Since G*
has the Radon-Nikodym property, so does (®"SG)* [19, Theorem 1.9]. Then P o B
is nuclear into F**. Therefore, P oT = To (®mT) = ~P~o(®mB) o (®mA) is nuclear
into F**.

(c) Since P is weakly compact, there are a reflexive space G, a polynomial Q e
^ ( m £ , G) and an operator fi e ££(G, F) such that P = B o Q [20, Theorem 3.7].
Since 7" is integral, Q o T is an integral polynomial [7]. As in (a), B o QoT = P o T
is Pietsch integral.

We do not know if P o T is nuclear. •

Our next goal is to show that a polynomial P is nuclear if and only if it may be
written in the form P = Qo T where Q is a Pietsch integral polynomial and T is a
compact operator. To this end, we first show that every nuclear polynomial factorizes
through a diagonal polynomial from £&, into l\, and from c0 into t\. This extends the
result in the linear case, and might be well known but we have only found a mention
to a part of it in [21, page 114]. For completeness, we sketch the proof.

PROPOSITION 6. Let P e &(mE, F). The following assertions are equivalent:

(a) P is nuclear.
(b) There are operators u € S£{E,tx) and v e S£(i\, F) and a polynomial

Mx € ^("^oo, tx) of the form Mk(z) = (Kz^Zv when X = (Xn) e ix and
Z = (zn) € ioo, such that the following diagram commutes

•I 1"
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(c) There are compact operators u e ££ (£ , Co) and v € S£(JL\, F), and a polyno-
mial M'x € PF^ld of the form M'k(y) = (Ky^Zv when k = (kn) e €, and
y = (yn) e c0, such that the following diagram commutes

E -U F

• I T-

PROOF, (a) => (b). If P is nuclear, there are bounded sequences (x*) C £* and
(>>„) C F such that formulas (1) and (2) hold. Define u, Mk and v by

l

M,(O = (iix;iniy.iiz;)n.1 u = fe.) e £00)

v(en) = -—-,

where (en) is the unit vector basis of t\.
(b) => (c). Given A. = (Xn) € fb we can find a = ((*„) 6 c0, with an > 0, and

T = (rn) 6 t\ such that An = anxn for all n [18, 3, Exercise 12]. Define

(i) the operator b e Sf (€«,, c0) by fc(z) = ( a ^ z , , ) " , for z = (zn) e €oo,
(ii) the operator a e Jjf (£j, £i) by a(w) = (al

n
/2wn)™=l for iy = (wn) e £i, and

(iii) the polynomial M e ^ ( m c 0 , €,) by M(y) = (Tnyn
m)~ , for y = ( y j e c0.

Easily, a and b are compact, and Mx. — a o M o b.
(c) => (a). Since

n=\ n=\

for ally = (yn) € c0, it follows that M[ is nuclear. It is easy to prove that P = voM[ou
is nuclear. D

THEOREM 7. Given P e ^ ( m £ , F), we ftave r/iar P is nuclear if and only if there
are a Banach space G, a compact operator T e S£{E% G) and a Pietsch integral
polynomial Qe &>(mG, F) such that P = QoT.

PROOF. If P is nuclear, consider the factorization of Proposition 6,(c), and take
G — c0, T = u, and Q = v o M[. Conversely, if P = Q o T as in the statement, we
can find a reflexive space Z and operators A e ^(E, Z) and B e J?(Z, G) such that
T = B o A [11, page 260]. Then Q o B is Pietsch integral [8]. Since Z is Asplund,
Q o B is nuclear [5, Theorem 1.4]. Easily, Qo T = g o f i o A i s nuclear. •
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We now characterize the polynomials that factorize through a nuclear operator into
a Hilbert space. This extends [10, Theorem 5.31] to the polynomial setting.

PROPOSITION 8. Let P e &{mE, F). Then the following assertions are equiva-
lent:

(a) There are a Banach space G, a 2-summing operator T e ££{E, G), and a
2-dominated polynomial Qx € ^ ( m G , F) such that P = Qx o T.
(b) There are a Hilbert space H, an operator S e Jf(E, H) and a polynomial
Q e 0>rH, F) such that P = QoS.

PROOF, (a) =>• (b). Since Qx is 2-dominated, there are a Banach space Z, a
2-summing operator B € ££(G, Z), and a polynomial R e £?(mZ, F) such that
Qx = R o B [21]. Since B o T is the composition of two 2-summing operators, there
are a Hilbert space H, an operator S e Jf{E, H), and an operator U e & (//, Z)
such that B o T = Uo S [10, Theorem 5.31]. Therefore, (b) follows with Q = RoU.

(b) =^ (a). Since 5 is nuclear, there are operators u e S£(E, c0), M e ^V{ca, £0 ,
and v 6 jSf (£i, H) such that S = voM ou (Proposition 6). Then, M o u is nuclear and
therefore 2-summing. The operator i; 6 S£{1\, H) is 2-summing [10, Theorem 3.4],
so the polynomial Q o v is 2-dominated [21]. We have proved (a) with G = l\,
T = M o u, and Qx — Q o v. •

COROLLARY 9.IfTe Sf(E, G) is 2-summing and Qx € &>(mG, F) is 2-domin-
ated, then Qx o T is nuclear.

PROOF. By Proposition 8, there are a Hilbert space H, an operator S e *V(E, H)
and a polynomial Q e &>(mH, F) such that Qx o T = Q o S. By [14, 3.1.9],
the composition of a nuclear operator with a polynomial is nuclear, so <2i o T is
nuclear. •

REMARK 10. Not every nuclear polynomial satisfies the assertions of Proposition 8.
Indeed, if P € &N(™E, F) satisfies Proposition 8, then we may write P = Q o S with
5 a nuclear (hence, 1-summing) operator. So, P is 1-dominated [21]. Theorem 11
gives many examples of nuclear polynomials which are not 1-dominated and hence
they cannot factorize through a nuclear operator.

If P e &TE, F) is 2-dominated and T e J?(F, G) is 2-summing, the composition
T o P is not necessarily nuclear. Indeed, let i : tx ->• (-2 be the natural inclusion, and
let R : l2 -»• K be the polynomial given by /?(*) = X ^ i *«• Since / is 1-summing,
it is 2-summing, and so P :— R o i is 2-dominated [21]. If T : K -> K is the identity
on DC, which is obviously 2-summing, we have that P = T o P is not nuclear [4,
Proposition 2.3].
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We now investigate conditions for a nuclear polynomial to be 1-dominated. We first
obtain a characterization of the 1-dominated diagonal polynomials from £«, into l\.

THEOREM 11. Let Mx € ^(m£oo,^i) be given by Mx{x) = (A.,,*™)*, for all
x = (xn) e £(», where X = (Xn) 6 £j. 7/ien Mx is \-dominated if and only ifk 6 £i/m.

PROOF. Suppose that X € l\/m. If the field is complex, let T 6 -Sf (€«,, £0 be given
by T(x) = {\Xn\

xlmei6«lmxn)™=x for all x = (*„) e €«,, where Xn = |An|e'9». Define
P 6 &rim, 10 by P(*) = ( * ; ) ~ , for all x = (*„) e C and let i : £, -> €m be
the natural inclusion. Since i is 1-summing, P o i o T € «52>(m£Oo. ̂ 1) is 1-dominated
[21]. Now,

So Mx is 1-dominated.
If the field is real, we write M>, — A/M + Mv with \x = (/xn) and v = (vn), where

/j.n > 0 and vn < 0 for all n. Then, by the above argument, MM and Mv are 1-dominated
and so is Mk.

Conversely, suppose that Mx is 1-dominated. Then there are a space F, a 1-summing
o p e r a t o r T e JC(ioo, F) and a p o l y n o m i a l Q e &>{mF, l x ) s u c h t h a t Mk = Q o T
[21]. Then, since 7 is 1-summing, we have

\K\l/m =

n=l

sup

sup

for all r e N. Therefore, ^Z~ , |A.n|
1/m is convergent. D

This theorem shows that, unlike the linear case, a nuclear polynomial is not neces-
sarily 1-dominated.

Finally, we obtain a sufficient condition for a nuclear polynomial to be 1-dominated.
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COROLLARY 12. Let P e &N{mE, F), so it satisfies (1) and (2). Suppose

n = l

Then P is 1 -dominated.

PROOF. Since P is nuclear, by Proposition 6, it admits a factorization through a
diagonal polynomial Mk e ^>(m£oo, ^i), where

K = \\x*n\n\yn\\ (n€N).

By Theorem 11, Mk is 1-dominated. By [15, Theorem 9], P is 1-dominated. •

The authors are grateful to the referee for carefully reading the manuscript.
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