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Abstract

Time-resolved imaging of molecules and materials made of light elements is an emerging field of transmission electron microscopy (TEM),
and the recent development of direct electron detection cameras, capable of taking as many as 1,600 fps, has potentially broadened the scope
of the time-resolved TEM imaging in chemistry and nanotechnology. However, such a high frame rate reduces electron dose per frame,
lowers the signal-to-noise ratio (SNR), and renders the molecular images practically invisible. Here, we examined image noise reduction
to take the best advantage of fast cameras and concluded that the Chambolle total variation denoising algorithm is the method of choice,
as illustrated for imaging of a molecule in the 1D hollow space of a carbon nanotube with ∼1 ms time resolution. Through the systematic
comparison of the performance of multiple denoising algorithms, we found that the Chambolle algorithm improves the SNR by more than
an order of magnitude when applied to TEM images taken at a low electron dose as required for imaging at around 1,000 fps. Open-source
code and a standalone application to apply Chambolle denoising to TEM images and video frames are available for download.
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Introduction

Video recording of molecular motions and chemical reactions
with a single-molecule atomic-resolution real-time transmission
electron microscopic (SMART-EM) technique has emerged as a
new technology for the study of mobile molecules and nanoscale
assemblies (Nakamura, 2017). The SMART-EM technique
enables us to record the time evolution of individual chemical
events occurring in a one-dimensional (1D) test tube of a single-
walled carbon nanotube (CNT) and on an outer surface of a CNT.
This method can be used to perform statistical analysis of atom-
istic structure and dynamics of molecules over several hundred
molecules. The in situ kinetic study of chemical reactions
(Okada et al., 2017), mechanistic investigation of molecular crys-
tal formation (Harano et al., 2012), and capturing and analyzing
minute reaction intermediates (Xing et al., 2019) have illustrated
the potential of the SMART-EM methodology in chemistry and
nanoscience. This video technology has posed a new challenge
of acquiring video images of fast moving or reacting molecules,
so that we can visually and quantitatively study the dynamics of
the observed chemical events. To this end, we need the highest
possible frame rate with the highest possible image contrast.

The most advanced electron-counting direct-detection comple-
mentary metal oxide semiconductor (CMOS) cameras are capable
of taking as many as 1,600 fps (Liao et al., 2014), but their latent
potential has not, so far, been fully realized, because a high frame
rate reduces the electron dose per frame, lowers the
signal-to-noise ratio (SNR), and renders the molecular images
practically invisible. For example, the 1,600-fps CMOS camera
(K2-IS, Gatan) at 400,000× on screen magnification receives an
electron dose per frame of only 10,000 electrons/nm2 even at
the detector-safe electron dose rate (EDR) of 160 × 105 elec-
trons/nm2/s. Hence, a single-frame molecular image of two [60]
fullerene (C60) molecules and their [2 + 2] cycloadduct (C120) in
a CNT (Figs. 1a, 1b) is entirely obscured by noise with a signal-
to-noise ratio (SNR) of 0.05. For fast imaging of mobile
molecules and molecular clusters, we cannot use the widely
used contrast enhancement methods for static objects such as
symmetry-imposing and lattice-averaging protocols (Zhu et al.,
2017). To solve the problem, we decided to explore computational
image processing of raw transmission electron microscopy (TEM)
images (Kushwaha et al., 2012). There has been, however, no sys-
tematic study on denoising algorithms suitable for low SNR TEM
videos. We report herein that the Chambolle total variation
denoising algorithm (Chambolle, 2004; Munezawa et al., 2019)
significantly improves the SNR (SNR = 0.05 in Fig. 1b to 0.3 in
Fig. 1e) of low electron dose TEM videos and images. When com-
bined with a 1,600 fps camera, this technique allows us to rou-
tinely record molecular motions as slow as 1.9 ms/frame while
maintaining a high SNR. The potential of the camera with
0.625 ms/frame is realized nearly to its maximum as illustrated
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for imaging of C60 molecules in the 1D hollow space of a CNT
(Fig. 1a).

Materials and Methods

Sample Preparation

Three samples of [60]fullerene (C60) in a CNT were used in this
study. C60 molecules encapsulated in a CNT (C60@CNT) (Okada
et al., 2017) were chosen as the molecular specimen in this study
because the hollow and spherical morphology of C60 is suitable
for the quantitative evaluation of TEM image quality by SNR
and edge analyses. The first two datasets, labelled as C60@CNT1
and C60@CNT2, were used to evaluate the effect of electron
dose on image quality and evaluate the effect of various denoising
algorithms in restoring image quality. The third dataset, labelled as
C60@CNT3, was used to determine the effectiveness in restoring
low signal images captured at ultra-high frame rates.

These C60@CNT samples were prepared as follows: CNT pow-
der was heated in air in an oven gradually from 296 to 793 K for
12 min, kept at 793 K for 1 min, heated from 793 to 823 K for
20 min, and kept at 823 K for 20 min to remove the terminal
caps of CNTs oxidatively. For encapsulation of C60 molecules,
the opened CNTs (0.2 mg) and C60 powder (0.2 mg) were sealed
in a glass tube (Pyrex ϕ6 mm) under a pressure of 2 × 10−4 Pa and
gradually heated from 296 to 573 K over 1 h, then to 673 K over
1 h, and kept at 673 K for 72 h. The resulting C60-containing
CNTs were separated mechanically from remaining C60 powder,
washed with toluene to remove C60 from the surface, and dried

in vacuum. C60@CNT thus obtained was a black solid (0.3 mg).
We dispersed the C60@CNT in toluene (0.05 mg/mL) in a vial
in a bath sonicator for 1 h to soften it, so that we could secure
good contact between the CNTs and the carbon surface of the
grid (essential for temperature control). A 10-μL solution of the
dispersion was deposited on a copper grid mesh with a lacy car-
bon (NS-C15, Okenshoji Co., Ltd.) placed on a paper that absorbs
excess toluene. The TEM grid was dried in vacuum (60 Pa) to
remove solvent for 2 h. To ensure reproducibility, we used the
same sample grid of C60@CNTs in a series of experiments.

TEM Imaging

Atomic-resolution TEM observation was carried out on a JEOL
JEM-ARM200F TEM equipped with a spherical aberration cor-
rector for imaging, Gatan OneView and K2-IS cameras, and at
an acceleration voltage of 80 kV, under 1 × 10−5 Pa in the speci-
men chamber. Experiments were carried out on a double-tilt hol-
der (JEOL EM-01030RSTH). To remove volatile impurities from
the specimen, the holder was heated at 573 K for 30–60 min with-
out electron irradiation before setting a desired temperature. After
the stage temperature settled to the target value, we waited for an
additional 30 min to minimize thermal drift.

The C60@CNT1 and C60@CNT2 datasets were imaged using
the OneView camera under the varying EDR. The raw images
were 2,048 × 2,048 pixels (binning 2 mode) with a 32-bit depth
and a pixel edge length of 0.0213 nm at 1,000,000× magnification.
For C60@CNT1, ten images were taken at ten different EDRs
ranging from 1 × 105 to 130 × 105 electrons/nm2/s for a total of
100 images. For C60@CNT2, ten images were taken at 18 differ-
ent EDRs ranging from 1 × 105 to 123 × 105 electrons/nm2/s for a
total of 180 images. Each image was taken with an exposure time
of 0.5 s (2 fps). The C60@CNT3 dataset was recorded by the
Gatan K2-IS direct electron detection camera. The raw images
were 414 × 1,920 pixels with a pixel edge length of 0.021 nm at
400,000× magnification. Each image was taken with an exposure
time of 0.000625 s (1,600 fps). The OneView camera uses a scin-
tillator to convert electrons to photons during the acquisition pro-
cess, which introduces an intrinsic convolution and blurs the
resulting image. The K2-IS uses direct electron detection to pro-
duce clearer images.

Image Pre-Processing and SNR Calculation

Before denoising, some preprocessing were performed on the raw
images. Images were cropped to the relevant area and rescaled to
8-bit tiff-formatted files from the original 32-bit Digital
Micrograph file format. 8-bit images were required by the imple-
mentations of some denoising algorithms used here. Rescaling to
an 8-bit format resulted in some signal loss, but did not affect the
relative amounts of denoising achieved with the different methods
nor the calculated SNR values to the significant digits reported
here. Some of the images contained illumination differences
across the image due to the non-uniform spatial distribution of
electron flux from the electron beam. This effect was more pro-
nounced at higher EDRs. These pixel intensity trends in the
image were removed, so that they would not affect the results.
In order to remove these trends, a second-order 2D polynomial
surface was fit to each image’s pixel intensity values using a
least-squares fitting method (Price-Whelan et al., 2018). The
polynomial fit was subtracted by its mean value to normalize it
to a mean of zero and then the result was added to the original

Fig. 1. Noise reduction of single-molecule TEM images by superimposition and
denoising algorithm. (a) Molecular model of two C60 molecules and a [2 + 2] dimer
in a CNT. (b) A single-frame image of C60 molecules and a [2 + 2] dimer in a CNT
at 1,600 fps on a scintillator-free CMOS sensor (K2-IS, Gatan). (c) Superimposition
of 50 frames of the 1,600 fps video. (d) The same frame of b after denoising by
the Chambolle algorithm. (e) Three-frame denoising and superimposition by the
Chambolle algorithm. Scale bar is 1 nm.
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image. Sections of these preprocessed images for C60@CNT1 are
shown in Figure 3 under the column labelled “Original”.

Many methods exist for calculating the SNR in images, and
although there is no agreed upon standard, methods have been
developed for medical imaging (Dietrich et al., 2007), where the
vacuum can be taken as the noise and a region of interest
(ROI) is taken as the signal. Here, the region containing the C60

molecules represents the signal. The SNR can be calculated
using equation (1), where Smean and Nmean are the mean pixel
intensity in the ROI and vacuum, respectively, and NRMS is the
root mean square of pixel intensities in the vacuum.

SNR = |Smean − Nmean|
NRMS

. (1)

Since the signal is calculated from an ROI, which may have been
corrupted by denoising, this metric is useful for determining rel-
ative amounts of noise in an image, but does not necessarily show
that the signal has been preserved. Large amounts of denoising
can corrupt the signal by significantly reducing edge contrast or
changing the apparent shape and size of features even as the
SNR is increased.

Signal Preservation Calculation

Since the SNR does not show whether the original signal is pre-
served, it is also necessary to quantify the signal preservation
after applying denoising. An ideal denoising protocol will remove
noise while fully preserving the sample’s features. In this work, the
signal preservation was quantified by analyzing the preservation
of molecule morphology and by analyzing the preservation of fea-
ture edges.

The morphology preservation of the C60 molecules was quan-
tified with a signal score. For each algorithm, the optimum
parameter setting was the setting that produces the highest signal
score. The steps to calculate the signal score are illustrated in
Figure 2. In this process, a template of the true C60 morphology
was placed on each molecule, and the signal score was calculated
based on the number of matching pixels between the template
and the image. A circle detection algorithm using Hough trans-
forms (Yuen et al., 1990) was used to automatically locate the
C60 molecules in each image. C60 fullerene molecules have a
diameter of 0.7 nm (Sloan et al., 2000), and the C60@CNT1
and C60@CNT2 images have pixel edge lengths of 0.0213 nm,
and thus the circle detection algorithm was set to find circles
with a radius of 17 pixels. Circles detected using this algorithm
are shown in Figure 2a. A separate template was automatically
generated for each image based on the detected circles. An exam-
ple of such a template is shown in Figure 2b. Wherever a circle
was detected, two concentric circles were placed in the template.
The outer circle, which represents the molecule ring, had a radius
of 17 pixels and was filled with a pixel value of 0 (shown as black).
The inner circle represents the interior of the C60 molecule, had a
radius of 7 pixels, and was filled with a pixel value of 1 (white).
An inner radius of 7 pixels was chosen as an appropriate size
after many manual measurements on the unprocessed high
EDR images. All template pixels that lie outside the circles were
set to a value of 2 (shown as gray). Separately, each image was
binarized using Otsu’s method (Otsu, 1979), such that darker pix-
els were set to a value of 0 and brighter pixels set to a value of 1 as
shown in Figure 2c. Finally, the signal score was the number of
matching pixel values when comparing the binary image with

the template image. Matching pixels are shown in Figure 2d high-
lighted in orange. The signal score was normalized by dividing by
the number of circles detected. The maximum possible score in
this case is 889, which is the number of pixels that can fit inside
a circle with a radius of 17 pixels. A score of 445 or lower means
that there is no signal since completely random noise is likely to
match half the pixels. The final signal score was scaled to values
between 0 and 1 with zero representing 445 matching pixels.

Edge preservation was determined from the derivative of pixel
intensity profiles. A line was placed parallel to the CNT running
along the center of the C60 molecules. The pixel intensity profile is
the plot of the pixel value along the line. In an image, an edge is
the location of a sudden change in contrast, which here represents
the edges of the molecules or the CNT. During denoising, these
edges can become blurred, such that there is a gradual contrast
change instead of a sharp change. If the contrast change at an
edge is gradual, then it difficult to precisely locate the edge of a
molecule, which greatly reduces the accuracy of size measure-
ments. Edge sharpness was quantified by the magnitude of the
derivative of the intensity profile across a molecule edge.

Denoising Algorithms

In total, nine denoising algorithms were applied and evaluated
with and without downsampling for a total of 18 tests on each
image in each dataset. The tested denoising algorithms were the
mean, median, Gaussian, and bilateral (Tomasi & Manduchi,
1998) filters; the Chambolle (Chambolle, 2004) and Bregman
(Osher et al., 2005) total variation denoising algorithms; nonlocal
means denoising (Buades et al., 2005); Wiener–Hunt deconvolu-
tion (Hunt, 1971); and low rank approximation with singular
value decomposition (Wold et al., 1987; Lin et al., 2010). Image
corruption can include noise and blur where noise is the
quasi-random change of individual pixel values, and blur is the

Fig. 2. Calculation of the signal score using circle detection and mask fitting. (a) An
image from C60@CNT1 taken at the highest EDR with the detected circles outlined in
red. (b) The mask generated from the circle fits where black, white, and gray pixels
have a value of 0, 1, and 2, respectively. (c) A binarized version of the original image
after thresholding with Otsu’s method. Matching pixels in (b) and (c) are highlighted
in orange in (d). The final signal score is the number of orange pixels in (d) divided by
the number of circles detected and scaled between 0 and 1.
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spreading of a point source of brightness described by the point
spread function (PSF) and limits the intrinsic resolution of the
microscope. Any denoising algorithm assumes a certain model,
often a mathematical equation, which defines the relationship
between the captured image, the nature of the corruption, and
the ideal image that would have been captured by a perfect micro-
scope system. The algorithm solves for or approximates the solu-
tion to the assumed ideal image based on this model.

The mean filter reduces noise by averaging together pixels
within a specified neighborhood. The Gaussian filter uses
weighted averaging where the weight of neighborhood pixels
decreases with increasing distance according to the value of a nor-
malized Gaussian distribution with a specified sigma of radial dis-
tance. The median filter replaces each pixel with the median value
of pixels within a specified neighborhood, a technique that is less
sensitive to extreme value pixels. The bilateral filter uses a
weighted averaging method that weights neighborhood pixels
based on both their spatial proximity and their intensity similar-
ity. By considering intensity, this method preserves image feature
edges such as molecule edges, unlike the mean, Gaussian, and
median filters which indiscriminately blur edges. Deconvolution
algorithms such as Wiener–Hunt deconvolution seek to reduce
blur (Hunt, 1971). These methods, however, require prior knowl-
edge of the PSF and perform poorly on noisy images. Some work
has been done to estimate the PSF from microscopy images, but
the work is ongoing (Liu et al., 2011; Dalitz et al., 2015; Roels
et al., 2016). Here, a numerical Bayesian approach is applied to
iteratively estimate the PSF for the Wiener–Hunt filter (Orieux
et al., 2010). Without advances in estimating the PSF and in per-
forming deconvolution on noisy images, this method is not
expected to perform well, but is included here for completeness
and comparison with past work on EM denoising (Kushwaha
et al., 2012). The non-local means algorithm works well for
denoising images with specific repeated textures (Buades et al.,
2005). Instead of averaging together neighboring pixels, pixels
are averaged when they are surrounded by similar patches, even
if they are in different parts of the image. Low rank approximation
with singular value decomposition has also been successful in

denoising (Wold et al., 1987; Lin et al., 2010). A singular value
decomposition can be performed on an image matrix I using I
= UΣV⊤, where U and V are orthogonal matrices, and Σ is a diag-
onal matrix whose entries are called singular values. A denoised
image is reconstructed from a low rank matrix which is found
by keeping only the top specified n values of Σ, setting the rest
to zero and solving for a new I.

Total variation techniques assume that image noise takes the
form of sharp intensity differences (i.e., variation) between neigh-
boring pixels in the image and seeks to remove this variation
while producing a denoised image that is otherwise similar to
the input image. By limiting the total variation reduction subject
to the similarity between the input and output images, contrast
due to the signal, such as molecule edges, is preserved. The
total variation solution is formulated as a co-minimization prob-
lem as shown in the following equation:

u = min
u

[D(u, g)+ lV(u)] , (2)

where u is the denoised image, g is the noisy image, λ is a weight
parameter, D is a difference function, and V is a total variation
function. The weight parameter determines the preference for
more strongly reducing pixel variation or preserving the original
image. The initial total variation formulation (Rudin et al,
1992) used the L2 norm as the difference function:

D(u, g) = ∑n
i

∑m
j
(ui,j − gi,j)

2
, (3)

where n and m are the number of pixel rows and columns, respec-
tively, and i and j are the pixel indexes. For the variation function
they used:

V(u) = ∑n−1

i

∑m−1

j

��������������������������������
|ui+1,j − ui,j|2 + |ui,j+1 − ui,j|2

√
. (4)

Fig. 3. Cropped images of C60@CNT1 at various EDRs before denoising (original) and after denoising with downsampling and the specified algorithm. Here, Cham
specifies the Chambolle total variation denoising algorithm with the weighting parameter λ. The standard deviation of the bilateral kernel size is given by σ.
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However, this initial formulation is difficult to solve because it is
non-differentiable and an infinite-dimensional minimization
problem (Duran et al., 2013). Several modifications have been
proposed with adjustments to D, V, or the minimization method.
But in all cases, the essence captured in equation (2) remains,
where the total variation in the denoised image is reduced subject
to fidelity to the original image. The Chambolle method uses a
projection algorithm based on a dual formulation and is solved
with gradient decent, while the Bregman method uses an operator
splitting method (Duran et al., 2013). More details can be found
in their respective papers (Chambolle, 2004; Osher et al., 2005).

Gaussian downsampling can be applied before denoising to
resample the image to a proper sampling frequency where, accord-
ing to the Nyquist–Shannon Sampling Theorem (Jerri, 1977), the
pixel edge length should be 2.3–3 times smaller than the
point-to-point resolution of the microscope. Prior to resampling
the image to a larger pixel size, a Gaussian filter is applied with
an appropriate kernel size to eliminate image frequencies higher
than the Nyquist cutoff frequency of the resampled image. The
effects of downsampling can be seen by comparing the third and
fourth image columns in Figure 3. The results may appear to be
insignificant upon visual inspection, but this is often an important
first step. All denoising algorithms are applied to both the original
and downsampled datasets for comparison.

Open-source code and a standalone application to apply
Chambolle denoising to TEM images and video frames are avail-
able at https://github.com/JStuckner/smart_preprocess.

Results and Discussion

The C60@CNT1 and C60@CNT2 datasets, recorded at an elec-
tron dose per image ranging from 0.5 × 105 to 65 × 105 elec-
trons/nm2, were used to evaluate the performance of the
denoising algorithms in increasing the SNR while preserving
the signal. Qualitative results of applying select denoising algo-
rithms are shown in Figure 3. The Chambolle denoising algo-
rithm applied after downsampling increased the clarity of the
C60 molecules even at an extremely low EDR. A Chambolle weight
of 0.5 seemed best at low electron doses and 0.2 seemed best at
high electron doses. The bilateral filter also increased clarity com-
pared with the original images, but not as well as the Chambolle
algorithm. The Gaussian filter appeared to remove the most noise;
however, it also blurred the edges of the molecules.

SNR Comparison

The SNR of each denoising algorithm was compared when
applied with the optimum parameter value determined by the sig-
nal score metric discussed in the "Signal Preservation
Comparison" section. Figure 4 shows the SNR of select methods
when applied with the optimum parameter. Under these condi-
tions, the Chambolle algorithm had the highest SNR, which was
nearly six times better than the original image. The Chambolle
algorithm produces the same SNR at an electron dose of 1.5 ×
105 electrons/nm2 as the unprocessed dataset had at an EDR of
65 × 105 electrons/nm2. In this case, the Chambolle algorithm
yielded an equivalent SNR as an unprocessed image taken at an
EDR increased by nearly 1.5 orders of magnitude. The Bregman
and Gaussian methods performed nearly as well as the
Chambolle by the SNR metric, while the bilateral filter and low
rank approximation methods performed moderately well. But
even while improving the SNR about half as much as the

Chambolle algorithm, the bilateral filter with downsampling still
performed similarly at an electron dose of 4.5 × 105 electrons/
nm2 as the original dataset at an electron dose of 65 × 105 elec-
trons/nm2, which was over an order of magnitude reduced elec-
tron dose. Downsampling increased the SNR in all cases.

Signal Preservation Comparison

An important metric to judge the performance of a restoration
method is how well it preserves edges, because precisely locating
the edges is indispensable for size measurements in the
SMART-EM molecular imaging. A good edge is characterized
by a large pixel intensity gradient, which we calculated by taking
the derivative of a pixel intensity profile across an edge. The pixel
intensity profiles for select denoising algorithms applied to
C60@CNT1 are shown in Figure 5. The line intensity profiles
were taken from images denoised under the optimum parameters.
The intensity profiles were plotted in blue lines and their deriva-
tives, or intensity gradients, were plotted in dashed red lines. A
smooth blue line indicates less noise. In all cases, downsampling
reduced edge sharpness. This is because downsampling re-bins
the signal into larger pixels, which are spatially less precise.

The mean, median, and Gaussian filters performed very well
when measured by their SNR and signal strength. These algorithms
removed a significant amount of noise, as seen by the smoothness
of the blue curves. The major drawback of these algorithms is that
they convolute the image, blurring points and edges. When denois-
ing with these algorithms, the magnitude of the pixel intensity gra-
dient across the edge was very small, as shown by the dashed red
lines. Instead of having a sharp edge at a single location, the mol-
ecule gradually fades into the background, making it extremely dif-
ficult to perform high accuracy measurements of the molecule’s
size. The size and shape of the molecule was not preserved, and
thus an important piece of the signal was corrupted by these
denoising algorithms. The rough intensity profile of the low matrix
approximation method along with small derivative magnitudes
shows that this method was not effective in noise removal or
edge preservation. The bilateral filter, having been designed specif-
ically for edge preservation, performed the best in this regard. The
derivative magnitudes of bilateral filtering were 2–3 times larger

Fig. 4. SNR of original images and with several applied denoising algorithms at vary-
ing EDR. Denoising was applied with parameters set to remove the most noise while
optimally preserving the signal.
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than for Gaussian smoothing. The Chambolle algorithm performed
almost as well as the bilateral filter for edge preservation.

Chambolle Superimposition

The C60@CNT3 dataset, which was recorded at 1,600 fps at the
maximum detector-safe EDR of 213 × 105 electrons/nm2/s, was
used to evaluate the performance of the denoising algorithms
on high fps, low-dose images. Images and videos taken at such
high framerates had an electron dose per frame of only 0.133 ×
105electrons/nm2 and a very low SNR due to the short exposure
time for each frame. The conventional method of increasing the
SNR in this case is to superimpose neighboring frames by averag-
ing each pixel value between frames. Such superimposition
reduces the temporal resolution of the dataset by a factor equal
to the number of frames superimposed. This type of superimpo-
sition gives the appearance of motion blur if an object has moved
within the superimposed frames. It has been shown that
Chambolle denoising can increase the SNR of each frame, but
the algorithm can also be applied to superimposition. When
using Chambolle superimposition, only pixels that are sufficiently
similar between frames are combined. Through this approach
motion blur was limited. Figure 6 compares the SNR after apply-
ing superimposition and Chambolle denoising to C60@CNT3.
The red curve with small circle markers shows the SNR increase
by applying superimposition by the typical averaging method to
the dataset with no denoising. After superimposing 100 images,
the SNR increased from about 0.1–0.6 with a 100-fold decrease
in temporal resolution. Applying Chambolle denoising at a weight
of 0.5 and no superimposition produced an SNR of 0.49 with no
loss of temporal resolution. Using the average superimposition
method, 68 frames were superimposed to generate an SNR of
0.5 representing a nearly two orders of magnitude improvement
in temporal resolution at the same SNR by using the
Chambolle algorithm. The solid curves with circle markers

show the effects of simultaneous Chambolle denoising and
Chambolle superimposition limited to the specified number of
frames for superimposition. The dotted curves with circle markers
show the results of first superimposition by the average method
followed by Chambolle denoising of the superimposed frames.
While the SNR is increased by average superimposition followed
by Chambolle denoising, Chambolle superimposition is recom-
mended where possible because it will often preserve temporal
changes that would be lost by average superimposition. For

Fig. 5. Select line intensity profiles of a high EDR C60@CNT1 image after denoising with the optimum parameters. Solid blue curves indicate a pixel intensity
profile. Dashed red curves indicate intensity gradient. The blue line on inset image indicates the location of the line intensity profile.

Fig. 6. Plot showing the improvement in the SNR of C60@CNT3 by frame superimpo-
sition compared with the effective exposure time. Solid lines with circle markers were
downsampled and then simultaneously superimposed and denoised by the
Chambolle algorithm. Dashed lines with circle markers were downsampled, then
superimposed by the average superimposition method, and finally denoised by
the Chambolle algorithm. The red line with small circle markers shows the improve-
ment in the SNR by using average superimposition at the expense of temporal reso-
lution. For comparison, the SNRs of OneView images from C60@CNT1 at varying
electron doses are plotted in blue with square markers.
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comparison, the SNR of C60@CNT1 is plotted in blue with
square markers. Without superimposition, denoising using a
Chambolle weight of 0.5 produced an SNR equivalent to the
OneView images taken at a nearly equivalent EDR of 44 × 105 elec-
trons/nm2/s. Superimposing three frames at the same condition
produced an SNR of almost 0.8, which is nearly equivalent to
the SNR of the OneView images taken at the highest EDR the
camera could accept of 130 × 105electrons/nm2/s. This repre-
sented a 50-fold increase in temporal resolution.

Application Examples

The effectiveness of the Chambolle superimposition and denois-
ing method for improving the quality of high frame rate videos
is obvious upon visual inspection as shown in Figure 1.
Without denoising or superimposition (Fig. 1b), a single image
taken for 0.625 ms appeared to be purely noise. It is only after
superimposing 50 frames by a pixel averaging method (Fig. 1c),
for an equivalent exposure time of 31.25 ms, that the molecules

became clear enough to see (SNR = 0.20), but the details of faster
dynamic phenomenon were lost. Figure 1d shows a single frame
denoised by the Chambolle algorithm with an SNR of 0.15,
which is comparable to that of the 50-frame averaging superimpo-
sition. Using simultaneous 3-frame Chambolle superposition and
denoising further improved the image (Fig. 1e), with an exposure
time of 1.875 ms. With 1/17 of the exposure time, we improved
the SNR value from 0.20 in Figure 1c to 0.30 in Figure 1e.
While SNR gain by superimposition or longer exposure time is
large since the SNR gain is proportional to the square root of
the exposure time, the time resolution is inversely proportional
to the exposure time. Thus, SNR improvement by longer exposure
time or superimposition of many images needs to be avoided in
fast molecular imaging to prevent the loss of time resolution
(Nakamura, 2017; Okada et al., 2017).

Figure 7 illustrates an application to the imaging of conforma-
tion changes of a molecule composed of a biotin end group con-
nected to the tip of a carbon nanohorn (CNH) through a series of
flexible organic chains. The biotin molecule (Fig. 7a) continuously

Fig. 7. Denoising of individual frames for single-molecular videos. (a) Structure of a biotin molecule attached on CNH. (b) Raw images of video frames of the biotin
molecule (acceleration voltage 120 kV). A series of TEM images was obtained at intervals of 0.65 s with an exposure time of 0.4 s followed by a readout time of
0.25 s (non-irradiated). Raw images are adapted from Gorgoll et al. (2015). (c) Chambolle denoised images of (b). (d) Structure of a perfluoroalkyl fullerene. (e) Raw
images of the perfluoroalkyl fullerenes in CNT (acceleration voltage 120 kV). A series of TEM images was obtained at intervals of 2.1 s with an exposure time of 0.5 s
followed by a readout time of 1.6 s (non-irradiated). Original images are adapted from Harano et al., (2014). (f) Chambolle denoised images of (e). Numbers denote
time in seconds after starting the video recording. Scale bar is 1 nm.
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moves on a CNH during observation and gave different pictures
in each frame of the video (Fig. 7b). The images taken on a
charge-coupled device (CCD) sensor with a scintillator (Gatan
Ultrascan 1000) contained significant noise (SNR of 0.19), and
the conformation of the molecule was difficult to identify in
some frames, (e.g. frame 31.9 s). The application of Chambolle
denoising to the video made the molecular shape stand out from
the background (SNR of 1.73), and the conformational changes
in the molecule are distinctly recognizable (Fig. 7c). This result
indicates that the noise reduction allowed us to obtain more dynamic
information from SMART-EM video images recorded on conven-
tional CCD devices. Figures 7e and 7f show another example compar-
ing the original and denoised video frames of molecules in a CNT.

Conclusions

Aberration-corrected TEMs have significantly increased the spa-
tial resolution of SMART-EM imaging, while high frame rate
CMOS cameras have reduced the temporal resolution to the 1
ms range. However, low EDR images resulting from a high
frame rate (or cryogenic TEM techniques) produce noisy images
with a reduced SNR. We examined a variety of methods poten-
tially applicable to denoising SMART-EM images and show that
the Chambolle denoising algorithm produced the optimal balance
of noise removal and signal preservation. At optimal parameter
settings, it produced restored images with the highest SNR, a
signal strength statistically equivalent to the best, and was second
only to the bilateral filter in edge preservation. The bilateral filter
is recommended when precise edge-to-edge measurements are
required but produced only a moderate increase in the SNR and
signal strength. Gaussian downsampling is an important first
step if the data are sampled with a higher frequency than the
ideal Nyquist sampling rate. It was shown to increase the signal
strength and the SNR when applied before denoising, but it
also decreases edge sharpness. The Chambolle algorithm was
also effective in denoising high framerate video datasets. The
method reduced the need for image superimposition, thus
preserving the details of high-speed phenomenon (Shimizu et al.,
2020). Additionally, when necessary, Chambolle superimposition
allowed frames to be superimposed with less motion blur than
pixel averaging superimposition. Our results show that the
Chambolle total variation denoising algorithm can produce images
with equal or better SNR while preserving morphology features
when operating at an EDR reduced by more than an order of mag-
nitude compared with the unprocessed images.

Acknowledgments. This research is supported by MEXT (KAKENHI
19H05459), Japan Science and Technology Agency (SENTAN
JPMJSN16B1), and the National Science Foundation (EAPSI #1713989 and
DMREF #1533969). J.S. and M.M. acknowledge the use of shared facilities
at the Virginia Tech National Center for Earth and Environmental
Nanotechnology Infrastructure (NanoEarth), a member of the National
Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF
(ECCS 1542100), and a partial financial support by the grant DOE-BES
DE-FG02-06ER15786 awarded by the U.S. Department of Energy. T.S.
acknowledges financial support from the ALPS program (MEXT).

References

Buades A, Coll B & Morel J-M (2005). A non-local algorithm for image
denoising. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. San Diego,
California, USA: IEEE.

Chambolle A (2004). An algorithm for total variation minimization and appli-
cations. J Math Imaging Vis 20, 89–97.

Dalitz C, Pohle-Frohlich R & Michalk T (2015). Point spread functions and
deconvolution of ultrasonic images. IEEE Trans Ultrason Ferroelectr Freq
Control 62, 531–544.

Dietrich O, Raya JG, Reeder SB, Reiser MF & Schoenberg SO (2007).
Measurement of signal-to-noise ratios in MR images: Influence of multi-
channel coils, parallel imaging, and reconstruction filters. J Magn Reson
Imaging 26, 375–385.

Duran J, Coll B & Sbert C (2013). Chambolle’s projection algorithm for total
variation denoising. Image Process On Line 3, 311–331.

Gorgoll RM, Yücelen E, Kumamoto A, Shibata N, Harano K & Nakamura E
(2015). Electron microscopic observation of selective excitation of con-
formational change of a single organic molecule. J Am Chem Soc 137,
3474–3477.

Harano K, Homma T, Niimi Y, Koshino M, Suenaga K, Leibler L &
Nakamura E (2012). Heterogeneous nucleation of organic crystals mediated
by single-molecule templates. Nat Mater 11, 877.

Harano K, Takenaga S, Okada S, Niimi Y, Yoshikai N, Isobe H, Suenaga K,
Kataura H, Koshino M & Nakamura E (2014). Conformational analysis of
single perfluoroalkyl chains by single-molecule real-time transmission elec-
tron microscopic imaging. J Am Chem Soc 136, 466–473.

Hunt B (1971). A matrix theory proof of the discrete convolution theorem.
IEEE Trans Audio Electroacoust 19, 285–288.

Jerri AJ (1977). The Shannon sampling theorem—Its various extensions and
applications: A tutorial review. Proc IEEE 65, 1565–1596.

Kushwaha HS, Tanwar S, Rathore KS & Srivastava S (2012). De-noising fil-
ters for TEM (transmission electron microscopy) image of nanomaterials.
In 2012 Second International Conference on Advanced Computing &
Communication Technologies, pp. 276–281. Los Angeles, California, USA:
IEEE.

Liao H-G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M,
Wang L-W & Zheng H (2014). Facet development during platinum nano-
cube growth. Science 345, 916–919.

Lin Z, Chen M & Ma Y (2010). The augmented lagrange multiplier method
for exact recovery of corrupted low-rank matrices. arXiv preprint
arXiv:1009.5055.

Liu G, Yousefi S, Zhi Z & Wang RK (2011). Automatic estimation of
point-spread-function for deconvoluting out-of-focus optical coherence
tomographic images using information entropy-based approach. Opt
Express 19, 18135–18148.

Munezawa T, Goto T, Hirano S & Phung SL (2019). A study on moving
image noise removal using 3D and time-domain total variation regulariza-
tion method. In International Workshop on Advanced Image Technology
(IWAIT) 2019, vol. 11049, p. 1104913. Singapore: International Society
for Optics and Photonics.

Nakamura E (2017). Atomic-resolution transmission electron microscopic
movies for study of organic molecules, assemblies, and reactions: The
first 10 years of development. Acc. Chem. Res. 50, 1281–1292.

Okada S, Kowashi S, Schweighauser L, Yamanouchi K, Harano K &
Nakamura E (2017). Direct microscopic analysis of individual C60
dimerization events: Kinetics and mechanisms. J Am Chem Soc 139,
18281–18287.

Orieux F, Giovannelli J-F & Rodet T (2010). Bayesian estimation of regular-
ization and point spread function parameters for Wiener–Hunt deconvolu-
tion. JOSA A 27, 1593–1607.

Osher S, Burger M, Goldfarb D, Xu J & Yin W (2005). An iterative regular-
ization method for total variation-based image restoration.Multiscale Model
Simul 4, 460–489.

Otsu N (1979). A threshold selection method from gray-level histograms. IEEE
Trans Syst Man Cybern 9, 62–66.

Price-Whelan AM, Sipőcz BM, Günther HM, Lim PL, Crawford SM,
Conseil S, Shupe DL, Craig MW, Dencheva N & Ginsburg A (2018).
The Astropy Project: Building an inclusive, open-science project and status
of the v2.0 core package. arXiv preprint arXiv:1801.02634.

Roels J, Aelterman J, De Vylder J, Luong H, Saeys Y & Philips W (2016).
Bayesian deconvolution of scanning electron microscopy images using
point-spread function estimation and non-local regularization. In 38th

674 Joshua Stuckner et al.

https://doi.org/10.1017/S1431927620001750 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620001750


Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 443–447. Orlando, Florida, USA: Institute of
Electrical and Electronics Engineers (IEEE).

Rudin LI, Osher S & Fatemi E (1992). Nonlinear total variation based noise
removal algorithms. Physica D 60, 259–268.

Shimizu T, Lungerich D, Stuckner J, Murayama M, Harano K & Nakamura
E (2020). Real-time video imaging of mechanical motions of a single molec-
ular shuttle with sub-millisecond sub-angstrom precision. Bull Chem Soc
Jpn. doi:10.1246/bcsj.20200134.

Sloan J, Dunin-Borkowski RE, Hutchison JL, Coleman KS, Williams VC,
Claridge JB, York APE, Xu C, Bailey SR & Brown G (2000). The size dis-
tribution, imaging and obstructing properties of C60 and higher fullerenes
formed within arc-grown single walled carbon nanotubes. Chem Phys Lett
316, 191–198.

Tomasi C & Manduchi R (1998). Bilateral filtering for gray and color images.
In Sixth international conference on computer vision (IEEE Cat. No.
98CH36271). Bombay, India: IEEE.

Wold S, Esbensen K & Geladi P (1987). Principal component analysis.
Chemom Intell Lab Syst 2, 37–52.

Xing J, Schweighauser L, Okada S, Harano K & Nakamura E (2019).
Atomistic structures and dynamics of prenucleation clusters in MOF-2
and MOF-5 syntheses. Nat Commun 10, 1–9.

Yuen HK, Princen J, Illingworth J & Kittler J (1990). Comparative study of
Hough transform methods for circle finding. Image Vision Comput 8, 71–77.

Zhu Y, Ciston J, Zheng B, Miao X, Czarnik C, Pan Y, Sougrat R, Lai Z,
Hsiung C-E & Yao K (2017). Unravelling surface and interfacial structures
of a metal–organic framework by transmission electron microscopy. Nat
Mater 16, 532.

Microscopy and Microanalysis 675

https://doi.org/10.1017/S1431927620001750 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620001750

	Ultra-Fast Electron Microscopic Imaging of Single Molecules With a Direct Electron Detection Camera and Noise Reduction
	Introduction
	Materials and Methods
	Sample Preparation
	TEM Imaging
	Image Pre-Processing and SNR Calculation
	Signal Preservation Calculation
	Denoising Algorithms

	Results and Discussion
	SNR Comparison
	Signal Preservation Comparison
	Chambolle Superimposition
	Application Examples

	Conclusions
	Acknowledgments
	References


