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ON APPROXIMATIONS OF SMALL JUMPS
OF SUBORDINATORS WITH PARTICULAR
EMPHASIS ON A DICKMAN-TYPE LIMIT
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Abstract

Let X be a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift)
with infinite Lévy measure, let Xε be the sum of jumps not exceeding ε, and let
µ(ε) = E[Xε(1)]. We study the question of weak convergence of Xε/µ(ε) as ε ↓ 0,
in terms of the limit behavior of µ(ε)/ε. The most interesting case reduces to the
weak convergence of Xε/ε to a subordinator whose marginals are generalized Dickman
distributions; we give some necessary and sufficient conditions for this to hold. For a
certain significant class of subordinators for which the latter convergence holds, and
whose most prominent representative is the gamma process, we give some detailed
analysis regarding the convergence quality (in particular, in the context of approximating
X itself). This paper completes, in some respects, the study made by Asmussen and
Rosiński (2001).
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1. Preliminaries and motivation

In this section we provide most of the basic notation, concepts, and facts that will be used
in this paper, as well as a considerable amount of motivation. An elementary familiarity with
the theory of Lévy processes is presupposed. For a detailed account of the theory, we refer the
reader to the classical monograph of Sato [14].

Throughout this paper, X = {X(t) : t ≥ 0} will be a pure-jump subordinator with infinite
Lévy measure ν, andXε (ε ↓ 0) will be the process consisting of those jumps ofX not exceeding
ε (its Lévy measure is thus the restriction of ν to (0, ε]). The expectation and variance of
Xε(1) will be denoted by µ(ε) and σ 2(ε), respectively. Explicitly, µ(ε) = ∫

(0,ε] xν(dx) and
σ 2(ε) = ∫

(0,ε] x
2ν(dx) (cf., e.g. [14, p. 163]). It is natural to look for a weak limit ofXε/µ(ε).

This is obviously important from the point of view of approximating the small jump part, Xε,
which is often needed. The reason why we consider only the ν((0,∞)) = ∞ case is very
simple: for pure-jump compound Poisson subordinators, the limit, assuming that µ(ε) > 0 for
all ε > 0, is trivially the zero process.

We will write �[ψ(ε)] to denote the Lévy measure of Xε/ψ(ε), where ψ(ε) = µ(ε) or
ψ(ε) = ε, unless otherwise indicated. To be more precise, the argument of ψ can be extended
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to include εn, ε̃n, etc. Thus, for example, �[ε̃k] is the Lévy measure of Xε̃k/ε̃k , even if ε̃k is
defined equal to ε/2k−1. Obviously, and importantly, �[ψ(ε)] is concentrated on (0, ε/ψ(ε)].
By ‘⇒’ we denote weak convergence in the space D[0,∞) of càdlàg functions endowed with
the Skorokhod topology (for details, we refer the reader to [9] and reference 198 therein),
and by ‘

d−→’ we denote convergence in distribution of random variables (RVs). Of particular
importance in this paper is a pure-jump subordinator that we denote by Xc�, characterized by a
Lévy measure �c� given by

�c�(dx) = 1(0,1](x)
c

x
dx, c > 0 fixed. (1.1)

It follows that, for any a > 0, aXc� has Lévy measure 1(0,a](x)cx−1 dx (cf. (1.2), below).
We further denote by Xc� the class of pure-jump subordinators X such that Xε/ε ⇒ Xc�; if
we wish to leave c unspecified, we denote the class by X�. The most important example
of a process in X� is the gamma process, as follows immediately from Corollary 2.3. This
process has Lévy density ρ(x) = 1(0,∞)(x)ce−λxx−1 (c, λ > 0), and will be denoted 	c,λ.
Accordingly, X(t) ∼ gamma(ct, λ), t > 0, meaning that X(t) has density function f (x; t) =
λctxct−1e−λx/	(ct), x > 0.

We recall that a sequence of Lévy processes cannot converge to anything but a Lévy
process (the stationary, independent increments property holds in the limit due to convergence
of characteristic functions). In particular, a sequence of subordinators cannot converge to
anything but a subordinator, since subordinators are the only Lévy processes with marginal
distributions supported on R+. Moreover, it is well known that the weak convergence of Lévy
processes reduces to the weak convergence of the marginal distributions at t = 1 (see, e.g. [9,
Corollary VII.3.6]). Thus, Xε/ψ(ε) converges weakly to some subordinator Y if and only if
Xε(1)/ψ(ε)

d−→ Y (1).
For a subordinator Y with drift β ≥ 0 and Lévy measure Q, the Laplace transform of Y (t)

is given by (see, e.g. Equation (21.1) of [14])

E[e−uY (t)] = exp

[
t

(
−βu+

∫
(0,∞)

(e−ux − 1)Q(dx)

)]
, u ≥ 0. (1.2)

In accordance with [10, Chapter 15], we say that Y is a subordinator with characteristics (β,Q).
A very useful tool for determining convergence of infinitely divisible distributions on R+
(i.e. marginal distributions of subordinators) is Theorem 15.14(ii) of [10]. This theorem, adapted
to our setting, yields the following statement. Let Y be a subordinator with characteristics
(β,Q), and fix any h > 0 with Q({h}) = 0. Then Xε(1)/ψ(ε)

d−→ Y (1) if and only if the
following two conditions hold:

(i) limε↓0
∫
(0,h] x�[ψ(ε)](dx) = β + ∫

(0,h] xQ(dx),

(ii) limε↓0�[ψ(ε)]((x, ε/ψ(ε)]) = Q((x,∞)) for all x > 0 with Q({x}) = 0.

Condition (ii) can be denoted as �[ψ(ε)]
v→ Q (read ‘�[ψ(ε)] converges vaguely to Q’).

Let B((0, ε/ψ(ε)]) denote the Borel subsets of (0, ε/ψ(ε)]. By identifying the jumps of
Xε/ψ(ε) whose size lies in B ∈ B((0, ε/ψ(ε)]) with those of X whose size lies in ψ(ε)B
(= {ψ(ε)x : x ∈ B}), we find that the measures �[ψ(ε)] and ν are related by

�[ψ(ε)](B) = ν(ψ(ε)B) for all B ∈ B((0, ε/ψ(ε)]). (1.3)
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Equivalently to (1.3), for any nonnegative measurable function f , it holds that

∫
B

f (x)�[ψ(ε)](dx) =
∫
ψ(ε)B

f
( x

ψ(ε)

)
ν(dx) for all B ∈ B((0, ε/ψ(ε)]). (1.4)

Remark 1.1. The continuity of the parameter ε is very significant. We haveXε/ψ(ε) ⇒ Y as
ε ↓ 0 if and only if Xεn/ψ(εn) ⇒ Y for any sequence εn ↓ 0. We shall see later on that the
limit as ε ↓ 0 of µ(ε)/ε, if it exists in [0,∞], determines the weak limit of Xε/µ(ε) as ε ↓ 0.
But, if µ(ε)/ε does not converge to a limit in [0,∞] then different choices of sequences εn ↓ 0
may lead to different weak limits of Xεn/µ(εn) (see, e.g. Examples 3.8 and 3.9). This point
is nicely illustrated in [2, Section 4] in the context of approximating small jumps of arbitrary
Lévy processes.

We now introduce the generalized Dickman distribution. Adapting the terminology and
notation of [13], we shall say that a RV Z has a generalized Dickman distribution with shape
parameter θ > 0, denoted by Z ∼ GD(θ), if its Laplace transform is given by (see [13,
Proposition 3])

E[e−uZ] = exp

[
θ

∫ 1

0

e−ux − 1

x
dx

]
, u ≥ 0. (1.5)

The RV Z is commonly represented as [13, Equation (8)]

Z = U
1/θ
1 + (U1U2)

1/θ + (U1U2U3)
1/θ + · · · , (1.6)

where theUi are independent and identically distributed (i.i.d.) uniform(0, 1)RVs. From (1.5),
it follows that the one-dimensional distributions of the process Xc� are GD: Xc�(t) ∼ GD(ct),
t > 0.

Suppose that µ(ε)/ε → c as ε ↓ 0 (0 < c < ∞). Then, by our Theorem 2.1, Xε/µ(ε) ⇒
c−1Xc� as ε ↓ 0. More elegantly and conveniently, Xε/ε ⇒ Xc�. A thorough characterization
of the class Xc�, in terms of the Lévy measure ν of X, is provided in Proposition 2.1. The
attractiveness of the approximation Xε ∼= εXc�, the one valid for processes X ∈ Xc�, is due to
the facts described in the next four paragraphs.

The GD distribution (and, in particular, its probability density and distribution functions)
has been extensively studied in the literature. It occurs, among others, in number-theoretical
[7], [18] and combinatorial [1] contexts. It also appears in connection with the Poisson–
Dirichlet distribution [6], [8]. Many of the basic properties of the GD distribution can be
found in [1, Section 4.2], [6], [7], [13], [15], [17, pp. 90–95], and [18]. (Of particular
importance is the GD(1) distribution, whose density is a normalization of the celebrated
Dickman function.) Two simple examples of sequences Zn of RVs that converge in distribution
to Z ∼ GD(θ) are: Zn = ∑n

i=1 exp[−(n/θ)Ui] where the Ui are i.i.d. uniform(0, 1) [18,
p. 501] and Zn = n−1 ∑n

i=1 iWi , where the Wi are independent Poisson with means E[Wi] =
θ/i [1, Theorem 4.6]. Some recent results where the GD distribution arises as the limit in
distribution of certain sequences of RVs are Theorem 1 of [13] and the theorems in [11].
Our example of the class X� joins the growing list of instances where the GD distribution is
encountered as a limit law (here, in an infinite-dimensional sense). The extensive collection
of results on this distribution is potentially of great use with regard to the class X�; in fact,
results in [18] and [7] on the maximum and asymptotic behavior of the GD density function
are fundamental in the proof of the asymptotic formula (4.17) in our Theorem 4.2.

https://doi.org/10.1239/jap/1253279849 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279849


On approximations of small jumps of subordinators 735

The process Xc� admits the following series representation in the time interval [0, T ]:

Xc�(t) =
∞∑
j=1

(U1 · · ·Uj)1/(cT ) 1{Ûj≤t}

(see [4]), where {Uj } and {Ûj } are independent sequences of i.i.d. uniform(0, 1) and i.i.d.
uniform(0, T )RVs, respectively. Thus,Xc� can be easily simulated on [0, T ], with high accuracy
and short processing time if cT is not too large. The fact that the RV Xc�(t) is easy to simulate
can be of great use in evaluating probabilities of interest using Monte Carlo simulations (in this
context, see the definition of bc,α(x, t) in Theorem 4.2, and the paragraph relating to Table 1 in
Section 4). It is important to note here that the distribution function (DF) of Xc�(t) is not easily
calculated by analytical or partially analytical methods for values of x far from the origin (see
the end of Section 4).

The class X� is rich and contains several interesting examples. The most prominent examples
are the 	c,λ process and the process aXc� (a > 0). As follows trivially from our Corollary 2.3
(and has already been shown in [4]), any Lévy density ρ satisfying ρ(x) ∼ c/x as x ↓ 0
corresponds to a process X ∈ Xc� (f ∼ g means f/g → 1). It follows that Xc� contains a
fundamental class of self-decomposable subordinators; see Example 3.1. Interesting examples
of processes X ∈ Xc� with discrete Lévy measure are easily obtained using Proposition 2.2.
Moreover, if Z is a Lévy process of the form Z = X1 − X2, where X1 ∈ X

c1
� and X2 ∈ X

c2
�

are independent, and if Zε consists of those jumps of Z not exceeding ε in absolute value, then
one is led to the approximation Zε ∼= ε[Xc1

� − X
c2
� ] with Xc1

� and Xc2
� independent; indeed,

Zε/ε ⇒ X
c1
� −Xc2

� . The primary example of such a process Z is the variance gamma process;
see Example 3.12.

We shall see in Theorem 2.1 that if µ(ε)/ε converges to 0 or ∞ as ε ↓ 0, then Xε/µ(ε)
converges weakly as ε ↓ 0 to the zero process or the unit drift process t , respectively. Moreover,
by the same theorem, the weak convergence of Xε/µ(ε) implies the convergence of µ(ε)/ε
to a limit in [0,∞] in the case where ν is continuous near the origin. These facts, taking into
account the µ(ε)/ε → c ∈ (0,∞) case already considered, underline the basic importance of
the process Xc� in our context.

Remark 1.2. As described later on in this section and in Example 3.12, approximations of
small jumps of gamma and variance gamma processes, similar to the ones presented in the
present paper, have already been identified in the literature. The benefits of our approach will
be evident.

As stated in the abstract, this paper completes, in some respects, the study in [2]. There, the
authors considered approximations of small jumps of Lévy processes by a Brownian motion
with small variance and drift. For simplicity and to highlight the relationship to the present
paper, we suppose that the process is a pure-jump subordinator with infinite Lévy measure (the
general case is very similar). Combining Theorem 2.1 and Proposition 2.1 of [2], we infer the
following statement. Let W be a standard Brownian motion, and let Aε be the drift process
defined by Aε(t) = µ(ε)t . Then

Xε − Aε

σ(ε)
⇒ W as ε ↓ 0 (1.7)

if and only if, for each κ > 0,

σ(κσ(ε) ∧ ε) ∼ σ(ε) as ε ↓ 0. (1.8)
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Condition (1.8) is implied by

lim
ε↓0

σ(ε)

ε
= ∞. (1.9)

Moreover, if ν is continuous near the origin then (1.8) and (1.9) are equivalent.

Remark 1.3. Even if lim infε↓0(µ(ε)/ε) = 0, which implies that lim infε↓0(σ (ε)/ε) = 0 by
σ 2(ε)/ε2 ≤ µ(ε)/ε, then (1.8), and, hence, (1.7) also, can still hold. See Example 3.7.

Now we are ready to show the relationship to our work. The weak convergence in (1.7), if
it holds, leads to the following approximation (useful for simulation purposes):

X(t) ∼= µ(ε)t + σ(ε)W(t)+Xε(t), t ≥ 0, (1.10)

whereXε := X−Xε (a compound Poisson process with Lévy measure ν | {x>ε}) is independent
of W . In Proposition 2.3 we show that (1.7) implies that σ(ε)/µ(ε) → 0 and, in turn, that
Xε/µ(ε) converges weakly to the unit drift process t . Thus, even if the normal approximation
for Xε is valid, we can neglect the Brownian term σ(ε)W(t) in (1.10) and still get satisfactory
approximations/simulations. As an example, for the strictly α-stable subordinator (0 < α < 1)
in Example 3.1, it holds that σ(ε)/µ(ε) = (1 −α)εα/2/√(2 − α)b (b > 0). Here we note that
the weak convergence of Xε/µ(ε) to the unit drift process does not necessarily imply (1.7).
See Example 3.11. The above facts only add importance to the question of weak convergence
of Xε/µ(ε).

Remark 1.4. Conforming to [2], we should have defined Xε to be the sum of jumps whose
sizes are strictly less than ε, and, accordingly,µ(ε) = ∫

(0,ε) xν(dx) andσ 2(ε) = ∫
(0,ε) x

2ν(dx).
However, it can be easily realized that this distinction plays no role here. (Of course, this distinc-
tion is irrelevant for Lévy measures which are continuous near the origin.) The guiding principle
behind this fact is that, for any ε > 0, arbitrarily small but fixed, (0, ε] = ⋂

δ>0(0, ε + δ]
and (0, ε) = ⋃

δ>0(0, ε − δ].
As Corollary 2.5 states (and follows readily from above), the normal approximation of small

jumps is not valid (that is, (1.7) does not hold) for processes in X�. It has already been pointed
out [5] that in the case where X is a gamma process (1.7) does hold if we replace W by some
other (Lévy) process. Let X be a 	c,λ process. By Example 5.2(a) of [5], adapted to our
notation,

Xε − Aε

σ(ε)
⇒ Y c as ε ↓ 0, (1.11)

where Y c admits the Lévy–Khintchine representation (see, e.g. [14])

E[exp[iuY c(1)]] = exp

[
iau+

∫
R

(eiux − 1 − iux 1[−1,1](x))π(dx)
]
, u ∈ R,

with a = c(1 − √
2/c) ∧ 0 and π(dx) = 1(0,√2/c](x)cx−1 dx. (The proof was based on

Theorem 15.14(i) of [10]—a commonly used result for showing convergence of infinitely
divisible distributions on R.) From this, using the fact that π(dx) is the Lévy measure of
(2/c)1/2Xc�, we can find Y c(t)

d= −(2c)1/2t + (2/c)1/2Xc�(t). The connection with our result,
Xε/ε ⇒ Xc�, is then established by noting that σ(ε) ∼ (c/2)1/2ε and Aε(t)/σ (ε) → (2c)1/2t
as ε ↓ 0. It is worth noting that in simple cases it may be preferable to use Lévy’s continuity
theorem rather than Theorem 15.14 (part (i) or (ii)) of [10] to show weak convergence of Lévy
processes (on R or R+, respectively). For example, with X as above, we obtain the desired
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convergence Xε/ε ⇒ Xc� as ε ↓ 0 (and, hence, also (1.11)) using the continuity theorem for
Laplace transforms applied to

E

[
exp

[
−u

(
Xε(1)

ε

)]]
= exp

[∫ 1

0
(e−ux − 1)

ce−λεx

x
dx

]
, u ≥ 0.

However, as we would expect, the heavier tool of [10] (Theorem 15.14(ii) for the purposes of
this paper) is, in general, the more appropriate one to use.

The rest of the paper is organized as follows. In Section 2 we state and prove the general
results of this paper. The main results are Theorem 2.1 and Proposition 2.1. Both have already
been mentioned above, the second as characterizing the class Xc�. In this section we also derive
the asymptotics of ν((ε,∞)) and P(X(t) ≤ ε) as ε ↓ 0 for processes X ∈ Xc� (Proposition 2.4
and Theorem 2.2, respectively). Section 3 is devoted to examples related to Sections 1 and 2.
In Section 4 we concentrate on the class of pure-jump subordinators X with Lévy density ρ
such that c − xρ(x) = xαL(x) for some constant α > 0 and function L slowly varying at 0.
We recall the definition of slow variation (at 0) in that section. This class, which is contained in
Xc�, contains some significant class of self-decomposable subordinators, in particular the 	c,λ
process. These get extra focus. We analyze the difference between the DFs of X(t) and its
approximation formed by replacing Xε(t) by εXc�(t), and the difference between the DFs of
Xε(t)/ε and Xc�(t). A brief account of the calculation of the GD probability distribution and
density functions concludes the paper.

2. General results

With the preliminaries established at the beginning of Section 1, we now state and prove our
first main result. Corollary 2.1, below, then follows immediately.

Theorem 2.1. The following statements hold, as ε ↓ 0.

(a) If µ(ε)/ε → c, where 0 < c < ∞, then Xε/µ(ε) converges weakly to c−1Xc�.

(b) If µ(ε)/ε → 0 then Xε/µ(ε) converges weakly to the zero process.

(c) If µ(ε)/ε → ∞ then Xε/µ(ε) converges weakly to the unit drift process.

Finally, suppose that none of the above conditions on µ(ε)/ε is satisfied. Then the following
statement holds.

(d) If ν is continuous near the origin thenXε/µ(ε) necessarily fails to converge. Otherwise,
Xε/µ(ε) may or may not converge. Moreover, if lim supε↓0(µ(ε)/ε) = ∞ then the only
possible limit is the unit drift process.

Proof. We divide the proof into steps A–D, corresponding to statements (a)–(d) above.
Step A. We assume thatµ(ε)/ε → c, c > 0 real. It suffices to prove thatXε/ε ⇒ Xc�. Now,

Xc� has characteristics (0,�c�); so substituting from definition (1.1) and applying conditions (i)
and (ii) from Section 1, the latter convergence holds if and only if

lim
ε↓0

∫
(0,1]

x�[ε](dx) = c (2.1)

and, for all 0 < x < 1,

lim
ε↓0

�[ε]((x, 1]) = c log

(
1

x

)
. (2.2)
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Since
∫
(0,1] x�[ε](dx) = E[Xε(1)/ε] = µ(ε)/ε, condition (2.1) is satisfied. To prove the

second condition, let us first define (finite) measures ηε and η on (0, 1] by ηε(dx) = x�[ε](dx)
and η(dx) = 1(0,1](x)c dx. Fix any 0 < x ≤ 1. Then, by (1.4) and µ(ε)/ε → c,

ηε((0, x]) =
∫
(0,x]

u�[ε](du) = x

εx

∫
(0,εx]

uν(du) → cx = η((0, x]),

from which it follows that
∫
(x,1] u

−1ηε(du) → ∫
(x,1] u

−1η(du). Therefore,
∫
(x,1]�[ε](du) →∫ 1

x
(c/u) du, and condition (2.2) is established.
Step B. We assume that µ(ε)/ε → 0. Analogously to conditions (2.1) and (2.2) above,

Xε/µ(ε) converges weakly to the zero process if and only if

lim
ε↓0

∫
(0,1]

x�[µ(ε)](dx) = 0 (2.3)

and, for all x > 0,

lim
ε↓0

�[µ(ε)]
((
x,

ε

µ(ε)

])
= 0. (2.4)

A straightforward application of (1.4) yields
∫
(0,1] x�[µ(ε)](dx) = µ(ε)−1

∫
(0,µ(ε)] xν(dx) for

ε/µ(ε) ≥ 1. Since the right-hand side isµ(µ(ε))/µ(ε), condition (2.3) is satisfied. The second
condition, (2.4), is proved as follows. Fix x > 0. If ε/µ(ε) > M , we have, using (1.4),

�[µ(ε)]
((
x,

ε

µ(ε)

])
= �[µ(ε)]((x,M])+�[µ(ε)]

((
M,

ε

µ(ε)

])

≤ M

xM

∫
(x,M]

u�[µ(ε)](du)+ 1

M

∫
(M,ε/µ(ε)]

u�[µ(ε)](du)

= M

x

1

µ(ε)M

∫
(µ(ε)x,µ(ε)M]

uν(du)+ 1

M

1

µ(ε)

∫
(µ(ε)M,ε]

uν(du)

≤ M

x

µ(µ(ε)M)

µ(ε)M
+ 1

M
.

So clearly condition (2.4) is satisfied.
Step C. We assume thatµ(ε)/ε → ∞. The unit drift process has characteristics (1, 0), where

0 denotes the zero measure on (0,∞). Since ε/µ(ε) → 0, �[µ(ε)]
v→ 0. Hence, statement (c)

will follow once we show that

lim
ε↓0

∫
(0,ε/µ(ε)]

x�[µ(ε)](dx) = 1.

Indeed,
∫
(0,ε/µ(ε)] x�[µ(ε)](dx) = E[Xε(1)/µ(ε)] = 1. (Alternatively, it is easy to prove that

Xε(1)/µ(ε)
d−→ 1 using Chebyshev’s inequality, noting that var[Xε(1)/µ(ε)] → 0.)

Step D.We assume thatµ(ε)/ε does not meet any of the previous conditions. Let us moreover
assume that ν is continuous near 0. Hence, the monotonically increasing functionµ(ε), ε > 0,
is also continuous near 0, withµ(0+) = 0. We first claim that if lim supε↓0(µ(ε)/ε) < ∞ then
Xε/µ(ε) fails to converge. Suppose, by contradiction, that Xε/µ(ε) ⇒ Y for a subordinator
Y with characteristics (β,Q), and fix h > 0 with Q({h}) = 0 and h < lim infε↓0(ε/µ(ε)).
Applying condition (i) from Section 1, we obtain

lim
ε↓0

µ(hµ(ε))

hµ(ε)
= lim

ε↓0

1

hµ(ε)

∫
(0,hµ(ε)]

xν(dx) = 1

h
lim
ε↓0

∫
(0,h]

x�[µ(ε)](dx) = αh, (2.5)
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where αh = (β + ∫
(0,h] xQ(dx))/h. For any y in (lim infε↓0(µ(ε)/ε), lim supε↓0(µ(ε)/ε)),

there exists a sequence εyn ↓ 0 with µ(εyn)/ε
y
n = y for all n and a corresponding sequence

ε̃
y
n ↓ 0 with hµ(ε̃yn) = ε

y
n for all n. Substituting into (2.5) gives y = αh, a contradiction.

We now claim (under the starting assumptions) that Xε/µ(ε) also fails to converge if
lim supε↓0(µ(ε)/ε) = ∞. Assuming the latter, there exists a sequence εn ↓ 0 withµ(εn)/εn →
∞. Then, as in step C,Xεn/µ(εn) converges weakly to the unit drift process, which is therefore
the only possible limit of Xε/µ(ε). Suppose, by contradiction, that it is the limit. Fix any y in
(lim infε↓0(µ(ε)/ε),∞), and let 0 < a < 1/y. As before, there exists a sequence εyn ↓ 0 with
µ(ε

y
n)/ε

y
n = y for all n and a sequence ε̃n ↓ 0 with aµ(ε̃n) = ε

y
n for all n. This time we take as

the function ψ(ε) in (1.4) the function aµ(ε). For any n satisfying ε̃n/(aµ(ε̃n)) ≥ 1, we then
have ∫

(0,1]
x�[aµ(ε̃n)](dx) = 1

aµ(ε̃n)

∫
(0,aµ(ε̃n)]

xν(dx) = µ(aµ(ε̃n))

aµ(ε̃n)
= y <

1

a
. (2.6)

Since necessarily Xε̃n(1)/(aµ(ε̃n))
d−→ 1/a, we conclude from (2.6) that aµ(ε̃n)/ε̃n > 1 for

all n greater than some n0. Hence, εyn > ε̃n for all n > n0 also. Let n > n0. Then, using the
monotonicity of µ, we obtain a ≥ aµ(ε̃n)/µ(ε

y
n) = ε

y
n/µ(ε

y
n) = 1/y, a contradiction.

In order to establish statement (d), we need to provide a pair of examples. We will do a
little more. Examples 3.6 and 3.7, below, on the one hand and Examples 3.8 and 3.9, below, on
the other hand, respectively show the convergence and the failing of convergence of Xε/µ(ε),
where in all the examples ν is discrete and µ(ε)/ε does not converge to a limit in [0,∞].
Corollary 2.1. Suppose that ν has a density ρ near the origin. Then, as ε ↓ 0,

(a) if limx↓0 xρ(x) = c, where 0 < c < ∞, then Xε/µ(ε) converges weakly to c−1Xc�,

(b) if limx↓0 xρ(x) = 0 then Xε/µ(ε) converges weakly to the zero process,

(c) if limx↓0 xρ(x) = ∞ then Xε/µ(ε) converges weakly to the unit drift process.

Here we note that xρ(x) need not converge to a limit in [0,∞] in order for one of the above
convergences to hold (consider changing ρ on a set of measure zero).

Remark 2.1. Clearly, E[Xε(t)/µ(ε)] = t . Assume that µ(ε)/ε → 0. Then the interval
(0, ε/µ(ε)], on which �[µ(ε)] is supported, spreads to infinity as ε ↓ 0. Simultaneously, the
measure itself gets thinner and thinner, andXε/µ(ε) converges weakly to the zero process. Let
us show that the big jumps are those that keep E[Xε(t)/µ(ε)] constant. Fix anyM > 0 (large).
If ε/µ(ε) ≥ M then

∫
(0,M]

x�[µ(ε)](dx) = M

µ(ε)M

∫
(0,µ(ε)M]

xν(dx) = M
µ(µ(ε)M)

µ(ε)M
→ 0,

from which our claim follows. As for the opposite case, µ(ε)/ε → ∞, the jump sizes tend to
0 as ε ↓ 0, but their increased intensity keeps the expectation constant, andXε/µ(ε) converges
weakly to the unit drift process.

The next corollary will be extended in our second main result, Proposition 2.1.

Corollary 2.2. The only possible limit laws of Xε/ε, as ε ↓ 0, are Xc� (for any c > 0) and
the zero process. The first convergence holds if and only if µ(ε)/ε → c, while the second
convergence holds if and only if µ(ε)/ε → 0.
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Proof. Suppose that Xε/ε ⇒ Y for some subordinator Y with characteristics (β,Q), and
fix 0 < h ≤ 1 with Q({h}) = 0. Applying condition (i) from Section 1, we obtain

lim
ε↓0

µ(hε)

hε
= lim

ε↓0

1

hε

∫
(0,hε]

xν(dx) = 1

h
lim
ε↓0

∫
(0,h]

x�[ε](dx) = αh,

where αh = (β + ∫
(0,h] xQ(dx))/h. Thus, µ(ε)/ε tends to some nonnegative constant (αh,

independent of h). Now rewrite Xε/ε as (µ(ε)/ε)(Xε/µ(ε)) and consider statements (a) and
(b) of Theorem 2.1 to conclude the corollary.

The analogue of Corollary 2.1 for the process Xε/ε is straightforward. In particular, we
have the following result.

Corollary 2.3. Suppose that ν has a density ρ near the origin. If limx↓0 xρ(x) = c, where
0 < c < ∞, then Xε/ε ⇒ Xc� as ε ↓ 0.

As before, we note that the above condition is only a sufficient one.
We now further characterize the class Xc� in terms of the Lévy measure of X.

Proposition 2.1. Each of the following conditions is necessary and sufficient for Xε/ε to
converge weakly to Xc� as ε ↓ 0.

1. limε↓0(1/εp)
∫
(0,ε] x

pν(dx) = c/p for all p > 0.

2. limε↓0(1/εp)
∫
(0,ε] x

pν(dx) = c/p for some p > 0.

3. limε↓0 ν((εx, ε]) = c log(1/x) for all 0 < x < 1.

Proof. We have just seen that Xε/ε ⇒ Xc� if and only if µ(ε)/ε → c. Thus, in order to
establish the proposition, it suffices to show that conditions 1, 2, and 3 are equivalent. We now
show, in steps 1 and 2, that condition 2 implies condition 3, which in turn implies condition 1
(implies condition 2).

Step 1. By (1.3), condition 3 is equivalent to limε↓0�[ε]((x, 1]) = ∫ 1
x
(c/u) du for all

0 < x < 1—which can be rewritten as �[ε]
v→ �c�. Now assume that p satisfies condition 2.

We repeat the technique used in step A of Theorem 2.1, in a generalized form. Define (finite)
measures ηε and η on (0, 1] by ηε(dx) = xp�[ε](dx) and η(dx) = 1(0,1](x)xp−1c dx. Fix any
0 < x ≤ 1. Then, by (1.4) and the assumption on p,

ηε((0, x]) =
∫
(0,x]

up�[ε](du) = xp

(εx)p

∫
(0,εx]

upν(du) → cxp

p
= η((0, x]),

from which it follows that
∫
(x,1] u

−pηε(du) → ∫
(x,1] u

−pη(du). Hence,
∫
(x,1]�[ε](du) →∫ 1

x
(c/u) du, and condition 3 is established. Thus, condition 2 implies condition 3.
Step 2. Now assume that condition 3 holds, and fix any p > 0. Define ε̃k = ε/2k−1, and

apply (1.4) to obtain, for every N = 1, 2, . . .,

1

εp

∫
(ε/2N ,ε]

xpν(dx) = 1

εp

N∑
k=1

∫
(ε̃k/2,ε̃k]

xpν(dx) =
N∑
k=1

1

2(k−1)p

∫
(1/2,1]

xp�[ε̃k](dx).

Since condition 3 is equivalent to �[ε]
v→ �c�, it follows that

∫
(1/2,1]

xp�[ε](dx) →
∫ 1

1/2
xp

(
c

x

)
dx =

(
c

p

)
(1 − 2−p).
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Using the triangle inequality and noting that ε̃k ≤ ε, we conclude that, for every η > 0, there
exists a δ > 0, independent of N , such that

∣∣∣∣ 1

εp

∫
(ε/2N ,ε]

xpν(dx)−
N∑
k=1

(
1

2p

)k−1
c

p

(
1 − 1

2p

)∣∣∣∣ < η

for every 0 < ε < δ. Thus, letting N → ∞, we arrive at condition 1.

Remark 2.2. When p ∈ N, conditions 1 and 2 of Proposition 2.1 can be rewritten as follows:
limε↓0 κp,ε = κp for all, respectively some, p ∈ N, where κp,ε and κp are the pth-order
cumulants of the RVs Xε(1)/ε and Xc�(1), respectively (cf. [16, p. 35]).

Remark 2.3. We can easily show that condition 3 of Proposition 2.1 cannot be weakened to
‘limε↓0 ν((εx, ε]) = c log(1/x) for some 0 < x < 1’.

Remark 2.4. By Proposition 2.1, µ(ε)/ε → c if and only if ν((εx, ε]) → c log(1/x) for all
0 < x < 1, where 0 < c < ∞. It is useful to note that the same is true also for c = 0. The
‘if’ part can be proved using the same technique as in step 2 of Proposition 2.1 (for p = 1),
and the ‘only if’ part follows from

∫
(εx,ε] ν(du) ≤ x−1ε−1

∫
(εx,ε] uν(du). The last inequality

also shows that µ(ε)/ε → ∞ if ν((εx, ε]) → ∞ for some 0 < x < 1. However, the inverse
implication is not true. As an example, let X be the subordinator of Example 3.11, below, for
which it holds that µ(ε)/ε → ∞. For any 0 < x < 1, we have, for sufficiently large and even
n, ν((εnx, εn]) = 0, where εn = 1/(n2n

2
), proving our claim.

The most important examples of subordinators X ∈ X� arise from Corollary 2.3. Yet, there
are also interesting examples where the Lévy measure is discrete.

Proposition 2.2. Let ϕ be a strictly decreasing differentiable function on [k0,∞), k0 ∈ N,
such that ϕ(x) → 0 and ϕ(x + 1)/ϕ(x) → 1 as x → ∞. Furthermore, suppose that λ is a
monotone decreasing continuous function on [k0,∞), satisfying

c := lim
x→∞

ϕ(x)λ(x)

−ϕ′(x)
∈ (0,∞). (2.7)

Let the Lévy measure of X be concentrated on the set {ϕ(m) : m = k0, k0 + 1, . . .}, with
ν({ϕ(m)}) = λ(m). Then Xε/ε ⇒ Xc� as ε ↓ 0.

The following pairs of ϕ and λ satisfy the above conditions. In all cases, c = θ/r .

• ϕ(x) = 1/ logr (x), λ(x) = θ/(x log(x)), r > 0.

• ϕ(x) = 1/(logq(x)xr), λ(x) = θ/x, r > 0, q ∈ R.

• ϕ(x) = xqe−xr , λ(x) = θxr−1, 0 < r < 1, q ∈ R.

Proof of Proposition 2.2. Clearly, ϕ and λ are both strictly positive on [k0,∞). From (2.7),
it follows easily that

∫ ∞
k0
ϕ(x)λ(x) dx < ∞ and

∫ ∞
k0
λ(x) dx = ∞. Since ϕλ and λ are

monotone, it also holds that
∑∞
m=k0

ϕ(m)λ(m) < ∞ and
∑∞
m=k0

λ(m) = ∞. Thus, ν is a
valid Lévy measure for X. Now let ϕ(m + 1) ≤ ε < ϕ(m), m ≥ k0 integer. Hence,
µ(ε) = ∑∞

i=m+1 ϕ(i)λ(i), from which it follows that

ϕ(m+ 1)

ϕ(m)

∫ ∞
m+1 ϕ(x)λ(x) dx

ϕ(m+ 1)
<
µ(ε)

ε
<

ϕ(m)

ϕ(m+ 1)

∫ ∞
m
ϕ(x)λ(x) dx

ϕ(m)
.

https://doi.org/10.1239/jap/1253279849 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279849


742 S. COVO

Under assumptions (2.7) andϕ(m+1)/ϕ(m) → 1, we have, using l’Hôpital’s rule,µ(ε)/ε → c

as ε ↓ 0. Thus, Xε/ε ⇒ Xc�.

Corollary 2.4. Let ϕ, λ, and c be as in Proposition 2.2, and let Nn,i be independent Poisson
processes with rates λ(n+ i). Define a sequence Xn = {Xn(t) : t ≥ 0} of processes by

Xn(t) =
∞∑
i=0

ϕ(n+ i)

ϕ(n)
Nn,i(t), n = k0, k0 + 1, . . . .

Then Xn ⇒ Xc� as n → ∞. In particular,
∑∞
i=0 (n/(n+ i))rNn,i ⇒ X

θ/r
� for all r > 0,

where the Nn,i have rates θ/(n+ i).

Proof. LetX be as in Proposition 2.2, and set εn = ϕ(n). Thus, in particular,Xεn/εn ⇒ Xc�
as n → ∞. The jump sizes of Xεn/εn are ϕ(n + i)/ϕ(n), i = 0, 1, 2, . . ., and their rate is
λ(n+ i). Hence, Xεn/εn has the same law as Xn, and the claim follows.

Recall the discussion in Section 1 on the normal approximation of Xε. We claimed the
following.

Proposition 2.3. The weak convergence (1.7) implies that σ(ε)/µ(ε) → 0 and, in particular,
that Xε/µ(ε) converges weakly to the unit drift process.

Proof. Suppose by contradiction that (1.7) holds but σ(ε)/µ(ε) 
→ 0. Then there exists
some a > 0 and a sequence εn ↓ 0 such that σ(εn)/µ(εn) ≥ a for all n. It follows that
(Xεn(1) − µ(εn))/σ (εn) ≥ −1/a, in contradiction to (1.7). The rest of the assertion is now
evident by dividing the numerator and denominator of the left-hand side of (1.7) by µ(ε).

Since X ∈ Xc� implies that Xε/µ(ε) ⇒ c−1Xc� as ε ↓ 0, we obtain the following result.

Corollary 2.5. The normal approximation of small jumps is not valid for processes in X�.

Suppose now that ν is continuous near the origin, and recall the statement after (1.9). Since
σ 2(ε)/ε2 ≤ µ(ε)/ε, µ(ε)/ε → ∞ is a necessary condition for (1.7) to hold. (Alternatively,
this fact is a consequence of Proposition 2.3 combined with Theorem 2.1.) However, it is not
a sufficient condition, as Example 3.11, below, shows.

The following proposition is important, among others, from a simulation point of view (as
will be explained in Section 4). It also inspired Theorem 2.2, below.

Proposition 2.4. For any X ∈ Xc�, it holds that

ν((ε,∞)) ∼ c log

(
1

ε

)
as ε ↓ 0. (2.8)

Proof. It suffices to prove this for ν((ε, 1]). Define ak = ν((2−k, 2−k+1]) − c log(2) and
partition (2−n, 1] as

⋃n
k=1(2

−k, 2−k+1] to obtain |ν((2−n, 1]) − nc log(2)| ≤ ∑n
k=1 |ak|. By

condition 3 of Proposition 2.1, |an| → 0 as n → ∞, and, hence, n−1 ∑n
k=1 |ak| → 0 also.

Thus, ν((2−n, 1]) ∼ nc log(2) as n → ∞. Now write 2−(n+1) ≤ ε < 2−n to conclude that
ν((ε, 1])/(c log(1/ε)) is bounded from above and below by ν((2−(n+1), 1])/(nc log(2)) and
ν((2−n, 1])/((n+ 1)c log(2)), respectively, and so the proposition follows.

As pointed out by the referee, the second example in Example 3.2, below, shows that (2.8)
is not a sufficient condition for X ∈ Xc�.
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In the particular case where X is a 	c,λ process, ν((ε,∞)) can be found explicitly, using a
standard representation of the function E1(s) = ∫ ∞

s
e−uu−1 du, to be

ν((ε,∞)) = c

(
log

(
1

λε

)
− γ +

∞∑
k=1

(−1)k+1(λε)k

k! k
)
, (2.9)

where γ here and below stands for Euler’s constant.
For completeness, we now state and prove the following simple yet powerful result.

Theorem 2.2. Suppose that X ∈ Xc�. Fix t > 0, and define

K(x; t) = exp

[
t

(
c log

(
1

x

)
− ν((x, 1])

)]
, x ∈ (0, 1).

Then K(·; t) is slowly varying at 0, and it holds that

P(X(t) ≤ x) ∼ exp[t (−γ c − ν((1,∞)))]
	(ct + 1)

xctK(x; t) as x ↓ 0. (2.10)

Proof. By condition 3 of Proposition 2.1, both e−tν((ax,x]) if a < 1 and etν((x,ax]) if a ≥ 1
converge to etc log(a) as x ↓ 0. It follows that K(ax; t)/K(x; t) → 1 as x ↓ 0, for any fixed
a > 0. That is, K(·; t) is slowly varying at 0. In order to conform to our setting, we now
replace x by ε. Letting A denote the event that X has no jump larger than ε before time t ,
whose probability is equal to exp[−tν((ε,∞))], we obtain

P(X(t) ≤ ε) = P(X(t) ≤ ε,A)

= P(A)P(Xε(t) ≤ ε)

= P

(
Xε(t)

ε
≤ 1

)
exp[−tν((1,∞))]εctK(ε; t).

Since Xε(t)/ε
d−→ Xc�(t), it remains to show that P(Xc�(t) ≤ 1) = exp[−γ ct]/	(ct + 1). In

fact, P(Xc�(t) ≤ y) = exp[−γ ct]yct /	(ct + 1) for all y ∈ [0, 1]; cf., e.g. (4.21), below.

Our presentation of Theorem 2.2 is deliberate. For if X in this theorem is moreover self-
decomposable (see Example 3.1, below) with underlying function k (k(0+) = c), then the
definition of K(x; t) becomes

K(x; t) = exp

[
t

∫ 1

x

c − k(u)

u
du

]
, x ∈ (0, 1),

and ν((1,∞)) is equal to
∫ ∞

1 k(x)x−1 dx, and so, by setting t = 1 in (2.10), we actually
get the asymptotic formula, Equation (53.22), of [14] for the DF of such self-decomposable
distributions, whose proof essentially constitutes the bulk of the proof of Theorem 53.6 of [14],
which provides an analogous formula for the density function. It is worth mentioning that the
constant

∫ 1
0 (e

−x − 1)x−1 dx + ∫ ∞
1 e−xx−1 dx appearing in the constants κ of [14, Theorems

53.6 and 53.8] is merely the constant −γ (appearing in our (2.10)). We also note that if X is a
	c,λ process then P(X(t) ≤ x) ∼ λctxct /	(ct + 1) as x ↓ 0, which is readily seen from the
corresponding density function.
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3. Examples

Example 3.1. LetX be a nonzero pure-jump self-decomposable subordinator (see [14] for the
definition and properties of self-decomposable distributions and processes). It is characterized
by an absolutely continuous Lévy measure with density

ρ(x) = k(x)

x
1(0,∞)(x),

where k(x) (nonnegative and satisfying
∫ ∞

0 (x ∧ 1)(k(x)/x) dx < ∞) is monotone decreasing
on (0,∞) with k(0+) ∈ (0,∞] (cf. [14, Corollary 15.11]). By Corollary 2.1, Xε/µ(ε)
converges weakly to the unit drift process if and only if k(0+) = ∞ and to c−1Xc� if and
only if k(0+) = c < ∞; the latter holds if and only if Xε/ε ⇒ Xc�. If k(0+) = ∞,
the normal approximation of small jumps is valid (σ 2(ε)/ε2 → ∞). This is the case, for
example, if X is a (strictly) α-stable subordinator, 0 < α < 1, i.e. it has Lévy density ρ(x) =
bx−(1+α) 1(0,∞)(x), b > 0. The primary examples for the case k(0+) = c < ∞ are the process
aXc� (a > 0) and the 	c,λ process. From the fact that a′Xc� has Lévy measure 1(0,a′](x)cx−1 dx
(a′ > 0), it follows immediately that

(aXc�)ε
law= εXc� for all 0 < ε ≤ a.

Thus, in some sense, the small jump part of aXc� is not approximated at all. The gamma case
will be worked out in detail in the next section.

Example 3.2. We have already noted that Xε/ε ⇒ Xc� as ε ↓ 0 can hold with a Lévy density
ρ not satisfying limx↓0 xρ(x) = c. As a nontrivial example, let ρ satisfy ρ(x) = (1 +
sin(1/x))(c/x) near 0+, and apply condition 3 of Proposition 2.1. On the other hand, if
we take ρ(x) = (1 + sin(m log(x)))(c/x) near 0+, which somewhat resembles the previous
one if m is large, then Xε/ε fails to converge (to any law), and, moreover, the same holds even
for Xε/µ(ε). This assertion follows immediately from Corollary 2.2 and Theorem 2.1, using
the fact that µ(ε)/ε in this case does not converge to a limit in [0,∞] (which can be verified by
explicit integration or by virtue of Remark 2.4, showing that ν((εx, ε]) does not have a limit
for some 0 < x < 1).

We now introduce an interesting class of subordinators for whichXε/µ(ε) converges weakly
to the zero process. Example 3.4, below, is some discrete counterpart.

Example 3.3. Suppose that X has Lévy density ρ satisfying ρ(x) = x−1L(x) on some
finite interval (0, A), where L is slowly varying at 0 with limx↓0 L(x) = 0 and, as required,∫ δ

0 x
−1L(x) dx = ∞ for all δ ∈ (0, A). We will not take advantage of the slow variation

of L here. The typical examples, however, possess this property. Define log1(x) = log(x)
and, recursively, logk(x) = log(logk−1(x)). Examples of functions L that satisfy the above
conditions are L(x) = | log(x)|−p, 0 < p ≤ 1, L(x) = [logk(| log(x)|)]−r , k ∈ N, r > 0,
and L(x) = | log(x)|−p[logk(| log(x)|)]−r , 0 < p ≤ 1, k ∈ N, 0 < r ≤ 1 or r > 0 according
as p = 1 or p < 1, respectively. Since limx↓0 xρ(x) = 0, Xε/µ(ε) converges weakly to the
zero process.

Example 3.4. Suppose that X has Lévy measure concentrated on the set {e−m : m ∈ N} such
that ν({e−m}) = 1/h(m) for all sufficiently large m, where h(u) = 1/L(e−u) with L as in
Example 3.3. Furthermore, assume that h is increasing. (Note that

∫ ∞
(1/h(u)) du = ∞

and, hence, ν is infinite.) Examples of such functions h are h(u) = up, 0 < p ≤ 1,
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h(u) = [logk(u)]r , k ∈ N, r > 0, and h(u) = up[logk(u)]r , 0 < p ≤ 1, k ∈ N,
0 < r ≤ 1 or r > 0 according as p = 1 or p < 1, respectively. It can be shown that∫ ε/e

0 L(x) dx < µ(ε) <
∫ eε

0 L(x) dx. In particular, µ(ε)/ε → 0.

We now give a discrete counterpart of the α-stable case mentioned in Example 3.1.

Example 3.5. Fix 0 < α < 1 and b > 0, and let the Lévy measure of X be given by
ν({x}) = (b/α) 1{m−1/α : m∈N}(x). It can be shown that µ(ε) ∼ (b/(1 − α))ε1−α as ε ↓ 0. The
right-hand side is exactly µ(ε) of the α-stable subordinator from Example 3.1, and the normal
approximation of small jumps is valid (indeed, σ 2(ε)/ε2 → ∞).

Examples 3.6–3.9, below, refer to the end of the proof of Theorem 2.1. Example 3.7 also
refers to Remark 1.3.

Example 3.6. Let the Lévy measure of X be given by ν({x}) = 1{a−m : m∈Z+}(x), a > 1. For
any a−(n+1) ≤ ε < a−n, n ∈ Z+, we find that a−(n+m)/µ(ε) = (a − 1)a−m, m ∈ N, so that
�[µ(ε)] is given by�[µ(ε)]({x}) = 1{(a−1)a−m : m∈N}(x). Now let ε ↓ 0. Whileµ(ε)/ε fluctuates
in the interval (1/(a−1), a/(a−1)],Xε/µ(ε) trivially converges weakly since the underlying
Lévy measure is constant across ε. With regard to Remark 1.1 and Corollary 2.2, we note that
here Xεn/εn

law= X, where εn = a−n (n ∈ N), and so, in particular, Xεn/εn converges weakly
to a nonzero process other than Xc�.

Example 3.7. We now show the convergence of Xε/µ(ε) in the case when µ(ε)/ε does not
converge to a limit in [0,∞] and lim supε↓0(µ(ε)/ε) = ∞. From Theorem 2.1(d) we a priori
know that the limit will be the unit drift process. Let the Lévy measure of X be concentrated
on the set {2−m2 : m ∈ N} with ν({2−m2}) = m, and write 2−(n+1)2 ≤ ε < 2−n2

, n ∈ N. Set
εn = 2−(n+1)2 and obtain µ(εn)/εn → ∞ as n → ∞; hence, as we have already seen in the
proof of Theorem 2.1, Xεn/µ(εn) converges weakly to the unit drift process. The same holds
forXε/µ(ε) as ε ↓ 0 sinceXε/µ(ε) = Xεn/µ(εn). Nevertheless, µ(ε)/ε fluctuates in (0,∞).
As for Remark 1.3, we need to show that (1.8) holds. Fix κ > 0 and consider the (nontrivial)
case κσ(ε) < ε. Then (1.8) follows by checking that εn < κσ(ε)(< ε) for sufficiently large
n, where ε and εn are as above.

We now give the nonconvergent counterparts of Examples 3.6 and 3.7.

Example 3.8. Let the Lévy measure of X be given by

ν({x}) = 1{2−m : m=0,2,4,...}(x)+ 2 · 1{2−m : m=1,3,5,...}(x).

Set εn = 2−n, n ∈ Z+. If n is even, we find that 2−(n+m)/µ(εn) = 3
8 2−m, m ∈ Z+; hence,

�[µ(εn)] is given by�[µ(εn)]({x}) = 1{(3/8)2−m : m=0,2,4,...}(x)+ 2 · 1{(3/8)2−m : m=1,3,5,...}(x). If
n is odd, we find that 2−(n+m)/µ(εn) = 3

10 2−m, m ∈ Z+, and, hence,

�[µ(εn)]({x}) = 2 · 1{(3/10)2−m : m=0,2,4,...}(x)+ 1{(3/10)2−m : m=1,3,5,...}(x).

Thus, the sequences Xεn/µ(εn), n even, and Xεn/µ(εn), n odd, trivially converge weakly to
different limits. In this example, µ(ε)/ε fluctuates in the interval ( 4

3 ,
10
3 ].

Example 3.9. Let the Lévy measure of X be concentrated on the set {2−m : m ∈ N}, with
ν({2−m}) = m if

√
m ∈ N and 1 otherwise. Set εn = 2−n. If

√
n ∈ N then µ(εn)/εn >

n (→ ∞), and so Xεn/µ(εn) converges weakly to the unit drift process. If
√
n− 1 ∈ N,

Xεn/µ(εn) converges weakly to a pure-jump subordinator, say Y , with Lévy measure Q given
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by Q({x}) = 1{2−m : m∈N}(x). This is shown as follows. First observe that εn/µ(εn) < 1
2 (for

all n ∈ N). Hence,
∫
(0,h] x�[µ(εn)](dx) = E[Xεn(1)/µ(εn)] = 1 for all h > 1

2 . Since also∫
(0,h] xQ(dx) = 1, condition (i) from Section 1 is satisfied. Now assume that

√
n− 1 ∈ N and

fix M ∈ N. Let xm = 2−(n+m)/µ(εn), m = 0, 1, . . . ,M , be the M + 1 largest mass points of
�[µ(εn)]. Then �[µ(εn)]({xm}) = 1 if n is sufficiently large and xm = 2−(m+1)rn, where rn can
be made arbitrarily close to 1 by increasing n. We conclude that condition (ii) from Section 1
holds as well, that is, �[µ(εn)]

v→ Q. Thus, Xεn/µ(εn) ⇒ Y (
√
n− 1 ∈ N). In this example,

µ(ε)/ε fluctuates in (1,∞).

The following example further illustrates the point made in Remark 1.1 about the significance
of ε being a continuous parameter.

Example 3.10. DefineB = ⋃
m∈{1,3,5,...}(αm+1, αm], αm = 1/2m

2
, and letX have Lévy mea-

sure ν(dx) = 1B(x)(c/x) dx. Let εn = αn/n, n odd. For any 0 < a < b < ∞,
ν((εna, εnb]) = c log(b/a) for all sufficiently large n; moreover, ε−pn

∫
(0,εn] x

pν(dx) → c/p

(as n → ∞, odd) for every p > 0. It follows, in particular, that Xεn/εn ⇒ Xc�. However, for
any even n, we have ν((αn+1, αn]) = 0, and, hence, obviously,Xε/ε 
⇒ Xc�. With εn as above,
we also have Xεn/µ(εn) ⇒ c−1Xc�, but Xε/µ(ε) 
⇒ c−1Xc�.

Assume that ν is continuous near the origin. The following example serves as a counter
example showing that µ(ε)/ε → ∞—and, hence, also the convergence ofXε/µ(ε) to the unit
drift process—is not a sufficient condition for (1.7) to hold, though necessary.

Example 3.11. Define αm = 1/2m
2
, m ∈ N, and let the Lévy measure of X be concentrated

on
⋃
m∈{1,3,5,...}(αm+1, αm] with ν(dx) = 2m

2+βm dx on (αm+1, αm], β ∈ (2, 4) fixed. (Here
ν is indeed an infinite Lévy measure of a subordinator.) We claim that µ(ε)/ε → ∞ as
ε ↓ 0. A sketch of the proof is as follows. Let αn+1 ≤ ε < αn. If n is even, show that∫ αn+1
αn+2

xν(dx)/ε → ∞ as n → ∞. If n is odd, write ε as ε = 1/2(n+θ)2 with θ ∈ (0, 1]. Then
consider the expressions

∫ ε
αn+1

xν(dx)/ε if θ ≤ (6−β)/4 and
∫ αn+2
αn+3

xν(dx)/ε if θ > (6−β)/4
to conclude thatµ(ε)/ε → ∞. To show that (1.7) fails, it suffices to show that σ 2(ε)/ε2 
→ ∞.
Indeed, if εn = αn with n even, then σ 2(εn)/ε

2
n → 0.

Example 3.12. A variance gamma process Z can be represented as Z = X1 − X2, where X1
and X2 are independent 	c,λ1 and 	c,λ2 processes, respectively (cf. [12, Equation (14)]). We
conclude that Z admits the following approximation:

Z(t) ∼= ε[Xc�1(t)−Xc�2(t)] +Xε1(t)−Xε2(t) for ε small,

where the Xc�1,2 have the same law as Xc�, the Xε1,2 are compound Poisson processes with
respective Lévy densities 1(ε,∞)(x)ce−λ1,2xx−1, and the four processes are independent.

Recall the convergence result (1.11). Its analogue for the variance gamma process is given
by [5, Example 5.2(b)], adapted to our setting, as follows:

Zε − Ãε

σ̃ (ε)
⇒ Ỹ c as ε ↓ 0,

where Zε consists of those jumps of Z not exceeding ε in absolute value, Ãε is the drift
process defined by Ãε(t) = e[Zε(t)], σ̃ 2(ε) = var[Zε(1)], and Ỹ c is a pure-jump symmetric
Lévy process with lévy measure π̃(dx) = 1{x : 0<x2≤c−1}(x)c|x|−1 dx. the connection with our
result, Zε/ε → Xc�1 −Xc�2, is made similarly as in the gamma case.
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4. Analysis of approximations for a special subclass of X

We have already described briefly in Section 1 the main content of the present section. We
begin with some preliminaries.

We denote by Yc,α, c, α > 0, the class of pure-jump subordinators with Lévy density ρ
such that δ(x) := c− xρ(x) equals xαL(x) for some function L that is slowly varying at 0 (to
put it otherwise, δ(x) is regularly varying at 0 with index α). We recall that L is said to be
slowly varying at 0 if it is a positive measurable function, defined on some finite interval (0, A),
such that L(bx)/L(x) → 1 as x ↓ 0 for all b > 0. Accordingly, δ(x) is defined for x ∈ (0, A).
An elementary property of such functions L is that xαL(x) → 0 and x−αL(x) → ∞ (x ↓ 0).
Thus, in particular, Yc,α ⊂ Xc� (by Corollary 2.3). The class Yc,α is significant primarily
since it contains any pure-jump self-decomposable subordinator whose underlying function k
satisfies k(x) = c − xαL(x) (x ∈ (0, A)) with L slowly varying at 0, in particular the 	c,λ
process where k(x) = ce−λx (and, hence, δ(x) = x1L(x), with L(x) = cλ+O(x) as x ↓ 0).

Given X ∈ Yc,α with Lévy density ρ, we let X̃(·; ε) be its approximation defined by

X̃(t; ε) = εXc�(t)+Xε(t), t ≥ 0, (4.1)

where Xε := X − Xε (compound Poisson with Lévy density ρ 1(ε,∞)) is independent of Xc�.
We always assume that ε < A. The DFs of X(t) and X̃(t; ε) are denoted by F(·; t) and
F̃ (·; t; ε), respectively. Since X has an infinite absolutely continuous Lévy measure, X(t) is
absolutely continuous [14, Theorem 27.7]; so we let f (·; t) denote its density. A central role
in our analysis is played by a compound Poisson process, which we denote by Yε, such that Yε,
Xε, and Xε are mutually independent, and

Xc�(t)
d= Xε(t)

ε
+ Yε(t). (4.2)

SinceXε/ε has Lévy density ερ(εx) on (0, 1] (e.g. by (1.3)), it follows that Yε has Lévy density
qε(x) = 1 (0,1](x)δ(εx)x−1. Put another way, Yε is compound Poisson with rate

�(ε) =
∫ 1

0

δ(εs)

s
ds =

∫ ε

0

δ(s)

s
ds =

∫ ε

0
sα−1L(s) ds ∈ (0,∞) (4.3)

and jump distribution Jε(dx) = qε(x)�(ε)
−1 dx converging to beta(α, 1) as ε ↓ 0; indeed,

using (4.4), below, we show that Jε((0, x]) → xα for all 0 < x ≤ 1 fixed. By a suitable
adaptation of [3, Proposition 1.5.10] (a part of Karamata’s theorem), we have∫ ε

0
spL(s) ds ∼ εp+1

p + 1
L(ε) as ε ↓ 0 for all p > −1. (4.4)

Letting�(x; t; ε) denote the differenceF(x; t)−F̃ (x; t; ε), we can now prove the following
result.

Theorem 4.1. Suppose that X ∈ Yc,α , with δ(x) = xαL(x) on (0, A). Fix any x > 0, t > 0,
and n ∈ N, and let 0 < ε < A. If the density f (·; t) of X(t) is bounded on [x − nε, x], then
�(x; t; ε) (strictly positive) is bounded from above and below, respectively, by

sup
u∈[x−ε,x]

f (u; t)t
∫ ε

0
sαL(s) ds +

n∑
k=2

sup
u∈[x−kε,x]

f (u; t)tk 2k−1

(k − 1)!�(ε)
kε

+ F(x; t)tn+1 2n

(n+ 1)!�(ε)
n+1 (4.5)
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and

inf
u∈[x−ε,x] f (u; t)t

∫ ε

0
sαL(s) ds −

n∑
k=2

sup
u∈[x−kε,x]

f (u; t)tk 2k−1

(k − 1)!�(ε)
kε

− F(x; t)tn+1 2n

(n+ 1)!�(ε)
n+1 −

∞∑
k=n+2

e−�(ε)t [�(ε)t]k
k! . (4.6)

If f (·; t) is left continuous at x then, in particular,

�(x; t; ε) = f (x; t)t ε
α+1L(ε)

α + 1
+ o(εα+1L(ε)) as ε ↓ 0. (4.7)

Proof. Let x, t , n, and ε be as in the theorem. By εXc�(t)
d= Xε(t)+ εYε(t), we obtain

F̃ (x; t; ε) = P(Xε(t)+ εYε(t)+Xε(t) ≤ x)

= P(X(t)+ εYε(t) ≤ x)

=
∞∑
k=0

P(X(t)+ ε[ξ1 + · · · + ξk] ≤ x)Pk(�(ε)t),

where the ξi are i.i.d. with distribution Jε (independent also ofX(t)) and the Pk(�(ε)t) are the
Poisson probabilities with mean �(ε)t . We prove only the upper bound, (4.5). The proof of
the lower bound, (4.6), is almost analogous. We omit some details that can be easily worked
out by the reader. Expanding the probabilities Pk(�(ε)t) in powers of �(ε)t and using the
inequality e−u >

∑m
k=0 (−1)kuk/k!, m odd, u > 0, we find that

�(x; t; ε) < �(ε)t[P(X(t) ≤ x)− P(X(t)+ εξ1 ≤ x)]

+
n∑
k=2

[�(ε)t]k
k∑
j=0

(−1)k−1+j ck,j P(X(t)+ ε[ξ1 + · · · + ξj ] ≤ x) (4.8)

+ [�(ε)t]n+1
�n/2�∑
j=0

cn+1,2j+(n mod 2) Pn,j (x; t; ε),

where ck,j = 1/(j ! (k−j)!), k ≥ 2, j = 0, . . . , k, and the Pn,j (x; t; ε) are certain probabilities
bounded from above by F(x; t). By conditioning on ξ1, the first expression on the right-hand
side of (4.8) equals t

∫ 1
0 [F(x; t)− F(x − εs; t)](δ(εs)/s) ds, implying that it is bounded from

above by supu∈[x−ε,x] f (u; t)t
∫ ε

0 s
αL(s) ds. To bound the second expression, we replace

P(X(t) + ε[ξ1 + · · · + ξj ] ≤ x) by P(X(t) ≤ x) if k − 1 + j is even and by P(X(t) + εk ≤
x) if k − 1 + j is odd; the fact that

∑
j∈{0,1,...,k} even ck,j = ∑

j∈{0,1,...,k} odd ck,j = 2k−1/k!
then straightforwardly leads to the middle expression in (4.5) as an upper bound. Writing∑�n/2�
j=0 cn+1,2j+(n mod 2) as

∑
j∈{0,1,...,n+1}, n+j even cn+1,j (= 2n/(n+ 1)!) now leads to (4.5)

as an upper bound for �(x; t; ε). Together with the lower bound, (4.6), and by virtue of (4.3)
and (4.4) (note that n is arbitrary), (4.7) follows immediately.

Remark 4.1. The bounds in (4.5) and (4.6) (and, hence, also (4.7)) may be subject to further
refinement. In particular, if f ′(·; t) exists and is bounded on [x − 2ε, x], then we can show,
with a little more work, that the expression

[�(ε)t]2
2∑
j=0

(−1)1+j c2,j P(X(t)+ ε[ξ1 + · · · + ξj ] ≤ x)
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(cf. (4.8)) is bounded in absolute value by supu∈[x−2ε,x] |f ′(u; t)|t2ε�(ε) ∫ ε0 sαL(s) ds, which
in turn is asymptotically equal to |f ′(x; t)|t2[εα+1L(ε)]2/(α(α+ 1)) as ε ↓ 0 if f ′(·; t) is left
continuous at x. The smoothness of f (·; t) will be discussed shortly.

Before we give a corollary of the above theorem concerning the special gamma case, we
note a couple of general inequalities, starting with the following simple one:

�(x; t; ε) < (1 − e−t�(ε))F (x; t), ε ∈ (0, A), (4.9)

which holds for anyX ∈ Yc,α and x, t > 0 (this follows from F̃ (x; t; ε) > P(X(t)+εYε(t) ≤
x, Yε(t) = 0)). Note that the coefficient of F(x; t) is asymptotically tα−1εαL(ε) as ε ↓ 0 and
that uniformity in x is established by dropping F(x; t). From (4.9), it follows that

�(x; t; ε) < min{t�(ε), F (x; t)} ≤ t∗�(ε), (4.10)

where t∗ = t∗(x; ε) is the (unique) solution t of t�(ε) = F(x; t). By comparing X(t) with
the sum of [t] independent copies ofX(1) and considering the central limit theorem, we would
expect, in general and roughly speaking, appropriate values of t∗ as long as x is not too large.
Thus, uniformity in t (for x fixed) is established.

Corollary 4.1. Let X be a 	c,λ process. Fix any x > 0 and t > 0. Then,

�(x; t; ε) = λct+1xct−1e−λxct
2	(ct)

ε2 +O(ε3) as ε ↓ 0.

Proof. Here α = 1,L(s) = cλ+O(s) as s ↓ 0, and f (y; t) = λctyct−1e−λy/	(ct), y > 0.
In particular,

∫ ε
0 s

αL(s) ds = cλε2/2 +O(ε3) and �(ε) ∼ cλε. Now, by (4.5) and (4.6), it
suffices to note that supu∈[x−ε,x] |f (x; t)− f (u; t)| ≤ supu∈[x−ε,x] |f ′(u; t)|ε.

It is worth noting that in the gamma case above,�(x; t; ε) < F(x; t)λctε for all x, t, ε > 0.
This follows straightforwardly from (4.9) using the fact that L(s) = c(1 − e−λs)s−1, s > 0.

The regularity assumptions on the density f (·; t) of X(t) in Theorem 4.1 are mild and
reasonable. Let SDc denote the class of pure-jump self-decomposable subordinators with
k(0+) = c ∈ (0,∞) (k(x) as in Example 3.1). Having in mind that the class Yc,α is interesting
primarily since it contains an important subclass of SDc (as already noted), the following result
from [14] shows that much stronger regularity conditions on f (·; t) are not too restrictive. Let
X ∈ SDc. From [14, Remark 28.7] we infer the following statement. If 0 < ct ≤ 1 then
f (·; t) is continuous on (0,∞) but discontinuous at 0. If ct > 1 then, letting n = �ct� − 1,
f (·; t) is of class Cn−1 on R and of class Cn on (0,∞), but not of class Cn on R. Here,
Cn stands for the class of n times continuously differentiable functions (C0 being the class of
continuous functions).

For processes in SDc ∩ Yc,α we have the following uniform result.

Corollary 4.2. Suppose that X ∈ SDc ∩ Yc,α . If t = 1/c then 0 < f (0+; t) < ∞ and

sup
x
�(x; t; ε) ∼ f (0+; t)t ε

α+1L(ε)

α + 1
as ε ↓ 0. (4.11)

If t > 1/c is fixed then f (·; t) has a global maximum at some point a > 0 and

sup
x
�(x; t; ε) ∼ f (a; t)t ε

α+1L(ε)

α + 1
as ε ↓ 0. (4.12)
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Proof. We know that f (·; t) is continuous on (0,∞) and, moreover, on R if t > 1/c. By [14,
Theorem 53.1], the distribution ofX(t) is unimodal,X being in particular a self-decomposable
process. The unimodality of X(t) implies that f (·; t) is monotone increasing on (−∞, a)

and monotone decreasing on (a,∞), for some a ≥ 0 (cf. [14, Definition 23.2]). Assume
first that ct = 1. Then the above holds with mode a = 0 (cf. [14, (53.16)]). Moreover, it
follows from Remark 53.10(ii) of [14] that f (0+; t) in this case is finite or infinite according
to whether

∫ 1
0 (1 − tk(x))x−1 dx is finite or infinite, respectively. (We note that, by Remark

53.10(i) of [14], f (0+; t) = ∞ if ct < 1.) Since in our case 1 − tk(x) = txαL(x), say on
(0, 1), f (0+; t) is finite. Equation (4.11) then follows from (4.5) and (4.6). Assume now that
ct > 1. Then, by unimodality, f (·; t) has a global maximum at some point a > 0, and so (4.12)
follows from (4.5) and (4.6).

Corollary 4.3. Suppose that X is a 	c,λ process. If t ≥ 1/c is fixed then

sup
x
�(x; t; ε) ∼ λ2(ct − 1)ct−1e−(ct−1)ct

2	(ct)
ε2 as ε ↓ 0, (4.13)

where 00 is understood as 1 when ct = 1. Moreover, the coefficient of ε2 on the right-hand
side of (4.13) is asymptotically equal to λ2√ct/(8π) as t → ∞.

Proof. The case in which t = 1/c follows immediately from (4.11). If ct > 1, the density
of X(t) has a maximum at (the mode) a = (ct − 1)/λ, and so (4.13) follows from (4.12). The
rest of the assertion follows from 	(z) ∼ √

2πzz−1/2e−z, z → ∞.

Some discussion of simulation aspects is in order. The process X̃(·; ε), which is basically
easy to simulate, is an excellent choice for an approximating process to X, actually, regarding
processes X ∈ X in general. The above results already indicate this with respect to the
class Yc,α and, particularly, its subclass SDc ∩ Yc,α . For a general X ∈ Xc�, the associated
compound Poisson process,Xε, has rate ν((ε,∞)), which is asymptotically c log(1/ε) as ε ↓ 0
(Proposition 2.4), and, hence, relatively small in general. This is very advantageous from a
computational point of view. (For comparison, for the α-stable subordinator in Example 3.1, it
holds that ν((ε,∞)) = bα−1ε−α .) The small jump part, Xε, is quite negligible by definition,
as Xε ∼= εXc�. Yet, incorporating its approximation—which becomes significant as t gets large
enough—allows the choice of a relatively large ε. The approximation Xε ∼= εXc� will be
analyzed shortly.

At this point, it should be mentioned that there are a number of other methods by which a
gamma process can be easily/efficiently simulated; see [4, Section 4.1] for some details. Yet,
in light of our results, simulation of a 	c,λ process according to (4.1) is advisable (note thatXε

in this case has rate ν((ε,∞)) given by (2.9)).
The high quality of our results, throughout this section, owes heavily to their limited scope

of application. At this point it is of interest to make a comparison with Theorem 3.1 of [2].
Let X be a pure-jump subordinator with infinite Lévy measure ν, and define its approximation
X̂(·; ε) by the right-hand side of (1.10). Furthermore, set ϕ(ε) = σ−3(ε)

∫
(0,ε] x

3ν(dx). Then,
by [2, Theorem 3.1],

sup
x∈R

|P(X̂(1; ε) ≤ x)− P(X(1) ≤ x)| ≤ 0.7975ϕ(ε). (4.14)

(The result, with appropriate modifications, is given there for any Lévy process.) Of course,
(4.14) is designated for processes for which (1.7) is satisfied. If X ∈ Xc�, we obtain, from
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condition 1 of our Proposition 2.1, ϕ(ε) → √
8/(9c) as ε ↓ 0, so (4.14) is useless in this case.

By implicitly considering a process with Lévy measure tν, (4.14) leads us to

sup
x∈R

| P(X̂(t; ε) ≤ x)− P(X(t) ≤ x)| ≤ 0.7975t−1/2ϕ(ε).

This inequality has three useful properties. First, its scope of usefulness is very wide. In
particular, it is appropriate when condition (1.9) is satisfied, since then ϕ(ε) → 0 as ε ↓ 0.
Second, the result is uniform in x. Finally, note the decrease of the bound to 0 as t → ∞.
On the other hand, generally speaking, for t fixed, the bound is asymptotically not as good
as one would intuitively expect. Indeed, consider the typical case where X has Lévy density
ρ(x) = x−(1+α)L(x), x ∈ (0, A), where L(x) is slowly varying at 0 and α ∈ (0, 1). By
Karamata’s theorem, ϕ(ε) ∼ (2 − α)3/2(3 − α)−1εα/2/

√
L(ε) as ε ↓ 0. Setting L(x) ≡ b,

the result corresponds to the α-stable subordinator in Example 3.1. Generalizing (4.14) to
include Lévy processes on R (as given originally in [2]), better bounds are possible [2, p. 489].
For example, for stable processes with index α ∈ (0, 2) (the Lévy measure is of the form
Q(dx) = (a 1(−∞,0)(x)+ b 1(0,∞)(x))|x|−(1+α) dx, a, b ≥ 0, a + b > 0), the bound is
asymptotically a constant times εα/2 (note the improvement compared to the subordinator
case when α ∈ [1, 2)).

We are now going to consider the difference between the DFs of Xε(t)/ε and Xc�(t). These
are denoted byGε(·; t) and Fc� (·; t), respectively, and their difference at x by��(x; t; ε). Note
that ��(x; t; ε) > 0 for x > 0, by (4.2).

We begin by deriving simple bounds for ��(x; t; ε), analogous to those in (4.9) and (4.10)
for �(x; t; ε). From (4.2), considering the probability that Yε(t) is 0, we obtain

��(x; t; ε) < (1 − e−t�(ε))Gε(x; t), ε ∈ (0, A), (4.15)

for any X ∈ Yc,α and x, t > 0. Uniformity in x is established by dropping Gε(x; t). Letting
z = 1 − e−t�(ε), (4.15) givesGε(x; t) < F c� (x; t)+ zGε(x; t). Continuing iteratively, we find
that Gε(x; t) < F c� (x; t)

∑n
k=0 z

k + zn+1Gε(x; t) for all n ∈ N, leading to

Fc� (x; t) < Gε(x; t) < et�(ε)F c� (x; t) for all x, t > 0.

As before, from (4.15), it follows that

��(x; t; ε) < min{t�(ε) , Gε(x; t)} ≤ t∗�(ε),

where t∗ = t∗(x; ε) is the unique solution t of t�(ε) = Gε(x; t). It is important to note that if
x is not too large then Fc� (x; t) and, hence,Gε(x; t) decreases to 0 very rapidly as a function of
ct starting from, say, ct = x. (Note that Fc� (x; t) = F 1

� (x; ct).) This fact is easily confirmed
numerically by evaluating P(Xc�(t) ≤ x) using Monte Carlo simulations according to (1.6) with
θ = ct . The intuition is provided by the central limit theorem, taking into account the fact that
E[Xc�(t)] = ct and var[Xc�(t)] = ct/2.

We now prove a more sophisticated estimate for Gε(x; t).
Theorem 4.2. Suppose that X ∈ Yc,α . Define bc,α(x, t) = t P(x − U1/α ≤ Xc�(t) ≤
x), x, t > 0, where U is uniform(0, 1) independent of Xc�(t). Then, for any fixed x, t > 0,

��(x; t; ε) ∼ bc,α(x, t)
εαL(ε)

α
as ε ↓ 0. (4.16)
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Moreover,

sup
x
bc,α(x, t) ∼ α

α + 1

√
t

πc
as t → ∞. (4.17)

Proof. Fix x, t > 0. By (4.2),

��(x; t; ε) = P

(
Xε(t)

ε
≤ x

)
− P

(
Xε(t)

ε
+ Yε(t) ≤ x

)

= P

(
Xε(t)

ε
≤ x

)
−

∞∑
k=0

P

(
Xε(t)

ε
+ (ξ1 + · · · + ξk) ≤ x

)
Pk(�(ε)t),

where, as before, the ξi are i.i.d. with distribution Jε (independent also of Xε(t)) and the
Pk(�(ε)t) are the Poisson probabilities with mean �(ε)t . Hence,

��(x; t; ε) = �(ε)t

[
P

(
Xε(t)

ε
≤ x

)
−P

(
Xε(t)

ε
+ξ1 ≤ x

)]
+O(�(ε)2) as ε ↓ 0. (4.18)

Recall that Jε converges to the beta(α, 1) distribution as ε ↓ 0. Thus, in particular, Xε(t)/ε +
ξ1

d−→ Xc�(t)+ U1/α , with U ∼ uniform(0, 1) independent of Xc�(t). Hence,

��(x; t; ε) = �(ε)t[P(Xc�(t) ≤ x)− P(Xc�(t)+ U1/α ≤ x)] + o(�(ε)) as ε ↓ 0,

and (4.16) follows. As for (4.17), let f c� (·; t) denote the density of Xc�(t). If t (→ ∞) > 1/c,
f c� (·; t) is continuous on R and continuously differentiable on (0,∞) (sinceXc� ∈ SDc), and we
know [18, pp. 500–501] that it attains its maximum at a (unique) pointa = a(ct) ∈ (ct− 1

2 , ct)—
the mode. By [7, Theorem 2, Equation (4.2)],

f c� (u; t) = 1 +O((u+ ct)−1/3)√
2πctβ

exp

[
−uξ + ct

∞∑
k=1

ξk

k! k
]

uniformly in u ≥ 1, ct ≥ 1, where ξ is the unique nonzero solution of eξ − 1 = (u/ct)ξ

(assuming that u 
= ct) and β = eξ (ξ−1 −ξ−2)+ξ−2. It follows that f c� (a; t) and f c� (a−1; t)
are asymptotically 1/

√
πct as t → ∞. Finally, conditioning on U1/α ∼ beta(α, 1) and

then applying the mean value theorem, we obtain bc,α(x, t) = t
∫ 1

0 f
c
� (υ; t)αsα ds, where υ =

υ(x, t, s) ∈ (x − s, x), from which (4.17) now straightforwardly follows.

The following result is a slight refinement of (4.16) in the case whereX is a gamma process.

Proposition 4.1. Suppose that X is a 	c,λ process. Then, for any fixed t > 0,

��(x; t; ε) = b1,1(x, ct)λε +O(ε2) as ε ↓ 0, (4.19)

uniformly in x > 0.

Proof. Here �(ε) = cλε + O(ε2) and δ(s) = c(1 − e−λs). By (4.15), P(Xε(t)/ε ≤
x)− P(Xc�(t) ≤ x) is bounded from above by t�(ε) (for all ε > 0). Hence, by (4.18),

��(x; t; ε) = cλεt P(Xc�(t) ≤ x)−�(ε)t P

(
Xε(t)

ε
+ ξ1 ≤ x

)
+O(ε2) as ε ↓ 0,
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Table 1: Approximation of supx b1,1(x, t) (A) versus the (rounded) asymptotic counterpart
√
t/(4π) (B),

for various values of t .

t

0.25 0.30 0.40 0.50 0.75 1.00 1.75 2.50 5.00

A 0.1351 0.1507 0.1772 0.1993 0.2438 0.2807 0.3722 0.4453 0.6302
B 0.1410 0.1545 0.1784 0.1995 0.2443 0.2821 0.3732 0.4460 0.6308

where ξ1 (independent ofXε(t)) has distribution Jε(ds) = 1(0,1](s)δ(εs)s−1�(ε)−1 ds. More-
over, here and in the sequel, theO(ε2) term is bounded in absolute value byMε2 for sufficiently
small ε, where M depends on t (fixed) but not on x. By conditioning on ξ1 and then using the
bound t�(ε) as above, we find that

�(ε)t P

(
Xε(t)

ε
+ ξ1 ≤ x

)
= cλεt

∫ 1

0
P(Xc�(t) ≤ x − s) ds +O(ε2) as ε ↓ 0,

from which (4.19) straightforwardly follows, noting that b1,1(x, ct) = cbc,1(x, t).

Remark 4.2. We can show that the O(ε2) term in (4.19) is asymptotically equal to

1
2 (ctλε)

2[P(Xc�(t) ≤ x)− 2 P(Xc�(t)+ U ≤ x)+ P(Xc�(t)+ U + V ≤ x)]
− 1

4ct (λε)
2[P(Xc�(t) ≤ x)− P(Xc�(t)+ U1/2 ≤ x)], (4.20)

where U and V are i.i.d. uniform(0, 1), independent also ofXc�(t). (The proof takes advantage
of (4.19) itself.) The analysis of (4.20) is beyond the scope of our study.

In light of Proposition 4.1, it is worth examining the function ψ(t) := supx b1,1(x, t),
beyond what formula (4.17) gives. Using Monte Carlo simulations, we have concluded that this
function can be approximated rather well by its asymptotic counterpart

√
t/(4π) (t → ∞), quite

surprisingly, starting from a relatively very small value of t (with the maximum attained near
x = t). We have chosen certain values of t in the range [0.25, 5], and the results are presented
in Table 1. If t is small, so isψ(t) (≤ t). Otherwise, the approximationψ(t) ∼= √

t/(4π) keeps
ψ relatively small, as long as t is not too large. For example, ψ(10) ∼= 0.89, ψ(50) ∼= 1.99,
and ψ(100) ∼= 2.82.

An explicit (but complicated) formula for the DF of Xε(t)/ε in the case where X is a 	1,λ
process, practical for values of x not far from the origin, was obtained in [4, Section 4.2]. (The
adaptation to general c > 0 is straightforward.)

To conclude this paper, we shall give a brief account of the calculation of the GD(θ)
distribution and density functions. Further details can be found in [4].

Let Hθ(·) denote the GD(θ) DF. Approximation of Hθ(x) by Monte Carlo simulations
according to (1.6) may be a good idea in general. The series for Z in (1.6) should be truncated
at some order M = M(θ), which is increasing in θ and must be chosen appropriately with
respect to the desired accuracy and computational time.

The function Hθ(x) can also be evaluated as a finite sum of multiple integrals. We know
from the discussion of smoothness with respect to the class SDc that Hθ(·) ∈ C�θ�−1(R) and
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H
(�θ�)
θ (·) ∈ C0((0,∞)). By [4, Proposition 4.2], for all j = 0, 1, . . . , �θ�,

H
(j)
θ (x) = e−γ θ

	(θ + 1 − j)

×
{
xθ−j +

�x�−1∑
k=1

(−θ)k
∫
Bk(x)

(
x −

k∑
i=1

ui

)θ−j du1 · · · duk
u1 · · · uk

}
, x > 0,

(4.21)

where Bk(x) = {u ∈ R
k : 1 < u1 < · · · < uk, u1 + · · · + uk < x}. A convolution form of this

equation is given in [4, Equation (4.10)].
The drawback of (4.21) is obvious from a computational point of view. However, it may

be quite useful if θ is relatively not large. Numerical calculations for θ = k/2, k = 1, . . . , 8,
indicated that both the tail 1 − Hθ(x) and the derivatives H(j)

θ (x) decay to 0 very rapidly for
x greater than some ‘reasonable’ value. (Asymptotic results as x → ∞ can be found in [18,
p. 500; Theorem 3(ii); p. 508], where Hθ is denoted jκ .)

Theorem 1 of [6] provides a recursive algorithm useful for numerical computation of the
GD(θ) density function. By comparison with (4.21) (or its convolution form indicated above),
it can be generalized to arbitrary j = 0, 1, . . . , �θ� as follows:

H
(j)
θ (x) = e−γ θxθ−j

	(θ + 1 − j)

{
1 +

�x�−1∑
k=1

(−θ)kKk
(

x − k

x − k + 1
; θ − j

)}
, x > 0,

where Kk(v; θ − 1) = vθ+k−1 ∑∞
j=0 akj v

j , 0 < v < 1; the coefficients {akj } (which depend
on θ ) are defined recursively in that theorem.

We further note from [4] that a result in [18, p. 497] gives, for j = 0, 1, . . . , �θ�,

H
(j)
θ (x) = xθ−j

{
kj−θH (j)

θ (k)− θ

∫ x

k

zj−θ−1H
(j)
θ (z− 1) dz

}
, k < x ≤ k + 1 (k ∈ N),

thus generalizing the familiar (numerically useful) representation of the GD(θ ) density function,
given e.g. in [1, Equation (4.26)] or [13, Equation (16)].

The formulae for H(j)
θ (x) suggest a Taylor expansion of order �θ� − 1 around a > 0:

Hθ(x) =
�θ�−1∑
j=0

H
(j)
θ (a)

j ! (x − a)j + H
(�θ�)
θ (ξ)

�θ�! (x − a)�θ�, x > 0,

where ξ is some point between x and a. A natural choice would be a = θ (the mean). Figure 1
of [4] illustrates the practical potential of such an expansion.

Acknowledgements

My special thanks go to Mr and Mrs Shapack for funding my fellowship. I also wish to
thank the anonymous referee for a detailed reading of the manuscript and valuable suggestions
to shorten an earlier draft, and Professor Ely Merzbach, my MSc and PhD supervisor.

References

[1] Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic
Approach. European Mathematical Society, Zürich.
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