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Automorphic Orthogonal
and Extremal Polynomials

A. L. Lukashov and F. Peherstorfer

Abstract. It is well known that many polynomials which solve extremal problems on a single interval

as the Chebyshev or the Bernstein-Szegö polynomials can be represented by trigonometric functions

and their inverses. On two intervals one has elliptic instead of trigonometric functions. In this paper

we show that the counterparts of the Chebyshev and Bernstein-Szegö polynomials for several intervals

can be represented with the help of automorphic functions, so-called Schottky-Burnside functions.

Based on this representation and using the Schottky-Burnside automorphic functions as a tool several

extremal properties of such polynomials as orthogonality properties, extremal properties with respect

to the maximum norm, behaviour of zeros and recurrence coefficients etc. are derived.

1 Introduction and Notation

Let l ∈ N, ak ∈ R for k = 1, . . . , 2l, a1 < a2 < · · · < a2l, and put

E =

l
⋃

k=1

[a2k−1, a2k], H(x) =

2l
∏

k=1

(x − ak),

and set

1

h(x)
=

{

1
π sgn

(
∏l

k=1(x − a2k−1)
)/√

−H(x) for x ∈ E,

0 elsewhere .

The symbols R and S denote monic polynomials of degree r, respectively, s, that sat-
isfy the relation

R(x)S(x) = H(x)

and ρν denotes a real polynomial of degree ν that has no zero in E, i.e.,

ρν(x) = c

ν∗
∏

k=1

(x − wk)νk

where c ∈ R \ {0}, ν∗ ∈ N0, νk ∈ N for k = 1, . . . , ν∗, ν =
∑ν∗

k=1 νk, wk ∈ C \ E, for
k = 1, . . . , ν∗, and the wk’s are real or appear in pairs of conjugate complex numbers.
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Furthermore we set

ρν,k(x) = ρν(x)/(x − wk)νk for k = 1, . . . , ν∗,

and
Ξν∗ = {(ε1, . . . , εν∗) : εk ∈ {−1,+1} for k = 1, . . . , ν∗}.

For given R, ρν , and ε ∈ Ξν∗ we define the following linear functionals on the
space of real polynomials P:

LR,ρν ,ε(p) =

ν∗
∑

k=1

1 − εk

(νk − 1)!

( pR

ρν,k

√
H
) (νk−1)

(wk) for p ∈ P,(1)

ΨR,ρν ,ε(p) =

∫

p
R

ρνh
dx + LR,ρν ,ε(p) for p ∈ P(2)

where we make the additional assumption that εk+1 = εk if wk and wk+1 are complex

conjugate and where that branch of
√

H is chosen that is analytic on C\E and satisfies

sgn
√

H(y) = sgn

l
∏

k=1

(y − a2k−1) for y ∈ R \ E.

We use g( j) to denote the jth derivative of g. If there is no confusion possible, we

omit the index ν and we write Ψρ,ε instead of Ψ1,ρ,ε.
In this paper we give, in terms of automorphic Schottky-Burnside functions, an

explicit representation of the polynomials pn = xn+· · · , n ∈ N, which are orthogonal
with respect to ΨR,ρ,ε, that is, which satisfy

ΨR,ρ,ε(x j pn) = 0 for j = 0, . . . , ñ,

where ñ ≥ n − 1. Let us note that ñ > n − 1 is possible since the linear functional
need not be definite. It is known (see, for example, [34]) that for given R, ρν , ε there

exist a unique sequence of so-called basic integers (in), with i0 := 0 < i1 < i2 < · · · ,
and a unique sequence of polynomials pin

with pin
= xin + · · · , n ∈ N0, such that

(3) ΨR,ρ,ε(x j pin
) = 0, j = 0, . . . , in+1 − 2,

and
ΨR,ρ,ε(xin+1−1 pin

) 6= 0,

and the pin
satisfy a recurrence relation of the type

(4) pin
(x) = din

(x)pin+1
(x) − λin

pin−1
(x) for n ∈ N,

where λin
∈ R \ {0}, din

∈ Pin−in−1
(Pn denotes the set of polynomials of degree at

most n), pi0
= 1 and pi−1

= 0. From (4) it follows immediately that

(5) λin+1
= ΨR,ρ,ε(xin+1−1 pin

)/ΨR,ρ,ε(xin−1 pin−1
).
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Furthermore the sequence of basic integers with respect to ΨR,ρ,ε satisfies

(6) in + 1 ≤ in+1 ≤ in + l

(which is more exact than the estimate before relation (1.3) in [34, p. 462]). This
follows from the relation following relation (4.10) in [34], because otherwise the

expression on the left-hand side there cannot vanish at all zeros of ρν , which is a
contradiction.

Polynomials orthogonal with respect to ΨR,ρ,ε have been characterised by the sec-
ond author in [34, 35], see also [32, 33]. Note if εk = 1 for k = 1, . . . , ν∗, that is,

LR,ρ,ε ≡ 0, R and ρν are such that R/hρν > 0 on inte(E), and thus in = n for n ∈ N,
then the orthogonality condition (3) becomes

(7)

∫

E

x j pn(x)

√

∣

∣

∣

∣

R(x)

S(x)

∣

∣

∣

∣

dx

|ρν(x)| = 0 for j = 0, . . . , n − 1.

The orthogonal polynomials from (7) are sometimes called Akhieser polynomials,
since they have been studied in the sixties in ([4, 5, 51]) for the case ∂R ≡ l − 1.

Let us note that already Abel [1], Jacobi [23], Halphen [21] and I. L. Ptashitzkiı̆
[42] studied certain types of continued fraction expansions of the functions

√
H(z),

(√
H(z)−

√

H(y)
)

/(z− y), which are closely related to the functions ΨH,ρ,1

(

1
z−x

)

.
Polynomials orthogonal with respect to ΨR,ρ,ε are important from different points

of view. Taking a look at the orthogonality condition (7) we see that they can be
considered as the counterparts of the so-called Bernstein-Szegö polynomials which
are orthogonal on [−1, 1] with respect to weight functions of the form (1 − x)α ·
(1 + x)β/ρ(x), where α, β ∈ {−1/2, 1/2} and ρ ∈ P is positive on [−1, 1]. Let

us recall that the whole theory of Szegö and Bernstein (see [10, 50]) concerning the
asymptotic behaviour of orthogonal polynomials whose support consists of one in-
terval is based on the Bernstein-Szegö polynomials.

But Bernstein-Szegö polynomials have also the remarkable property, due to

Markov and Bernstein [3, 12, 43], that they are minimal polynomials on [−1, 1]
with respect to the maximum-norm and weight function 1/

√
1 − x2ρ, where ρ ∈ P

is positive on [−1, 1]. The minimal polynomials are also called Chebyshev-Markov

polynomials.

Now, in the case of several intervals, the polynomials orthogonal with respect to
ΨR,ρ,ε share many properties with the Bernstein-Szegö polynomials; see, for instance,
[35], where an overview is given also. However things become more involved; for in-
stance the minimal property with respect to the max-norm holds under additional

conditions only, see [35] and below. More precisely, if the polynomial pn, orthog-
onal with respect to 1/ρh, with ρ > 0 on E, has maximum orthogonality, that is,
is orthogonal to Pn+l−1 and not only to Pn−1, then pn is also that monic polyno-
mial for which pn/

√
ρ has minimal max-norm on E among all functions of the form

(xn + an−1xn−1 + · · · + a0)/
√
ρ, and in addition pn/

√
ρ has maximal number of ex-

tremal points on E, namely n + l. As usual a point y ∈ E is called an extremal point

of f ∈ C(E) on E if | f (y)| = ‖ f ‖C(E). The converse statement is valid too. The cor-
responding minimal polynomials with the maximal number of extremal points were
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investigated by the authors in [30, 31] and [34, 35, 40] respectively. Related results
and applications may be found in [6, 11, 18, 19, 24, 26, 32, 33, 37, 41, 47, 51, 53, 54]

and in surveys [25, 27, 29, 36, 39, 46].
In this paper we use so called automorphic Schottky-Burnside functions. Proba-

bly, N. I. Akhieser was the first one who used such functions for the description of
minimal polynomials with respect to the max-norm, that is, for the description of

Zolotarev polynomials with three given leading coefficients [2]. Recently such auto-
morphic functions have been used by the first author ([30, 31]) for the description of
the minimal polynomials with respect to the max-norm and weight function 1/

√
ρ

just mentioned above.

Note also that automorphic functions were used for the representation and quali-
tative analysis of the behaviour of the solutions of integrable equations for small gaps
and small intervals [9, p. 174–177], respectively. Here we give not only the represen-
tations of orthogonal polynomials in terms of automorphic functions but use them

also heavily as a tool for proving the location of the zeros of the orthogonal polyno-
mials and limit properties of the recurrence coefficients. Furthermore we show how
notions from potential theory as Green’s functions and capacity, can be expressed
with the help of Schottky-Burnside functions.

In the case of two intervals Schottky-Burnside functions degenerate into elliptic
functions. From this point of view several statements of this paper about the polyno-
mials orthogonal with respect to ΨR,ρ,ε can be considered as counterparts of results
given in [38] by the second author with the help of elliptic functions.

This paper is organized as follows. First we derive an explicit representation of
polynomials orthogonal with respect to ΨR,ρ,ε in terms of Schottky-Burnside auto-
morphic functions. This enables us to determine the exact number of zeros of the
orthogonal polynomials in each interval E j = [a2 j−1, a2 j], j = 1, . . . , l. As an-

other consequence we obtain a criterion on the zeros of an arbitrary polynomial
ρ, ρ > 0 on int (E) such that the polynomial orthogonal with respect to Ψρ,ε is a
minimal polynomial with respect to the max-norm and weight function 1/

√
ρ. In

the third section we study the question when there are zeros in the gaps [a2 j , a2 j+1],

j ∈ {1, . . . , l−1}. We prove that for a given ρwith 1/hρ > 0 on int (E) and arbitrary
given m ∈ {0, . . . , l − 1}, there is a subsequence (nk) of the natural numbers such
that each polynomial pnk

, k = 1, 2, . . . , orthogonal with respect to Ψρ,ε has m zeros
in [a1, a2l]\El which do not accumulate to E if the harmonic measures of the intervals

E j at z = ∞ are independent over the rationals. In this connection let us mention
a recent related result by S. P. Suetin [49], who has shown that under the same as-
sumption there exists a subsequence (nk) such that all zeros of (pnk

) accumulate to
E. Finally, we give explicit expressions for the recurrence coefficients and prove that

they have an innumerable set of limit points.
Let us remember first the main points of the Schottky-Burnside automorphic

functions theory. There are expositions of that theory in [7, Chapter 14], [9, Chap-
ter 5], [11]. In [7] they are called Schottky functions and in [8] Burnside functions.

Because of the many important contributions by W. Burnside [13, 14] to that theory,
we call them Schottky-Burnside functions.

Denote by G(K1, . . . ,Kl−1) ⊂ C any domain which is the upper half of the com-
plex plane without disjoint circles K1, . . . ,Kl−1, lying inside it with its centers on the
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imaginary axis. The domain G(K1, . . . ,Kl−1) together with the domain symmetric to

it with respect to the real axis and together with the real axis and
⋃l−1

j=1 ∂K j is called
the fundamental domain T of a Schottky group Γ, see [17]. The generators of the

group Γ are the Möbius maps Ti(z) =
(

R2
i /(z − ōi)

)

+ oi , i = 1, . . . , l − 1, where
oi denotes the center and Ri the radius of the circle Ki , i = 1, . . . , l − 1. The group
Γ consists of the mappings Γ = {Ti}∞i=0, T0(z) ≡ z. Recall that a function f is called
automorphic if it is a single-valued meromorphic function on the complex sphere C̄

without the singular points of the group Γ and such that for any T ∈ Γ the identity
f
(

T(z)
)

= f (z) holds for z ∈ T.
Now we introduce the following W. Burnside’s functions :

Ω(z, y) = (z − y)
∏

i

′
(

Ti(z) − y
)(

Ti(y) − z
)

(

Ti(z) − z
)(

Ti(y) − y
) , [14, Section 2],(8)

exp Φi(z) =
z − ci

z − ci−1

∞
∏

j=1
j 6=i

z − c j−1i

z − c j−1

, [13, Section 4].(9)

Here and everywhere later, c j = T−1
j (∞), ci−1 = Ti(∞), ci−1 j = Ti

(

T−1
j (∞)

)

, and
prime near signs of products means that of each pair of inverse substitutions T and

T−1, only one is to be taken in the infinite product and i > 0.
According to [31, Lemma 2] it is possible to find for a given system of intervals E

a unique domain G(K1, . . . ,Kl−1) with K1 = {z : |z − i| ≤ R1} such that the region
G(K1, . . . ,Kl−1) is mapped conformally onto C \ E by the automorphic function

(10) x = φ(u) = (a1 − a2)

∞
∏

i=0

(

u − Ti(0)
) 2

(

u − Ti(ξ)
)(

u − Ti(ξ̄)
) + a2

where ξ is such that φ(ξ) = ∞. Let us observe now that the images of the parts of
the imaginary axis which are in G(K1, . . . ,Kl−1) are mapped by φ onto the parts of
the real axis from C \ E, in particular, ξ is purely imaginary.

Indeed, from [52, Theorem IX.36] it follows that the conformal mapping of

G(K1, . . . ,Kl−1) onto C \ E is unique. But it is obvious that the mapping φ(−ū) will
be a conformal mapping of G(K1, . . . ,Kl−1) onto C \ E, too. Hence φ(u) = φ(−ū),
and for <u = 0 we have =φ(u) = 0, proving the claim.

Now let us extend φ into the lower halfplane by the Riemann-Schwartz symmetry

principle as usual by φ(ū) = φ(u). The mapping u → −u may be considered as a
composition of two symmetries in C: one with respect to the imaginary axis and the
other one with respect to the real axis. But to both symmetries in the plane z = φ(u)
there corresponds a symmetry with respect to the real axis, so φ(−u) = φ(u), i.e. φ
is even.

For the following it is more convenient to use another normalization of the fun-
damental domain T, namely instead of o1 = i we require

lim
u→∞

Ω
2(u, 0)

Ω(u, ξ)Ω(u,−ξ)
= 1.
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Then φ from (10) becomes the following form:

(11) φ(u) = (a1 − a2)
Ω

2(u, 0)

Ω(u, ξ)Ω(u,−ξ)
+ a2.

The points u = oi + (−1) jRi , i = 1, . . . , l − 1, j = 1, 2 correspond under the

map (11) to the points x = a2i+ j , and the left and right semi-circumferences of ∂Ki

correspond to the upper and lower edges of the intervals [a2i+1, a2i], i = 1, . . . , l− 1,
a1 = φ(∞), a2 = φ(0), and the left and right half of the real axis correspond to
the upper and lower edge of the interval [a1, a2]. Let us observe that the mapping

u → −u corresponds to the hyperelliptic involution on the Riemann surface of the
function w =

√
H(z) (i.e. the change of the branch of the square root).

We will need also the following properties of the functions (8), (9) under the sub-
stitutions of the group Γ:

Ω
(

Tp(z), y
)

Ω(z, y)
≡ (γpz + δp)−1 exp

{

Φp(z) − Φp(y) +
app

2

}

, [14, p. 292],(12)

exp Φi

(

Tp(z)
)

exp Φi(z)
≡ exp(n1ai1 + n2ai2 + · · · + nl−1ail−1), [13, p. 66].(13)

Here Tp(z) =
αpz+βp

γpz+δp
, αpδp − βpγp = 1 is the so-called normal form of Tp(z), apq are

the values of the integrals
∫

A ′

q Aq

θ(z, cp−1 ) dz

over the paths A ′
qAq, which neither cut themselves nor each other, make the domain

T schlicht, and which are outside of circles K1, . . . ,Kl−1,K
′
1 , . . . ,K

′
l−1; K ′

j being sym-
metric to K j with respect to the real axis, Aq = oq+iRq,A

′
q = ōq−iRq, q = 1, . . . , l−1.

For the following we shall use also the notations Aq = oq − iRq,A
′
q = ōq + iRq, q =

l, . . . , 2l − 2. Furthermore, the function θ(z, a) is defined by the equation

θ(z, a) =

∞
∑

i=0

(γiz + δi)
−2

αi z+βi

γi z+δi
− a

(i.e., as a Poincaré theta-series). The integers n1, . . . , nl−1 are defined as follows: if
z ∈ T then any path between z and Ti(z) which does not cut the barriers A ′

pAp, p =

1, . . . , l − 1, includes portions which are reconcilable with homologues of some of

the original barriers A ′
1A1, . . . ,A

′
l−1Al−1 taken either positively or negatively; then,

finally, among these homologues that of A ′
1A1 occurs n1 times, that of A ′

2A2 n2 times
and so on. In the following we shall use the fact that for i = 1, . . . , l − 1 in (13) the
numbers nk are equal to −δk,p , k, p = 1, . . . , l − 1, since for such p the above path

contains only ApA ′
p. The numbers apq above have the following properties

1. apq = aqp, p, q = 1, . . . , l − 1 [13, p. 64–65],
2. apq ∈ R, p, q = 1, . . . , l − 1 (since the group Γ is symmetric [13, Section 7]).
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In fact the matrix
(

−1

2
apq

)

is nothing else than the matrix of periods for the corresponding hyperelliptic Rie-
mann surface [13, p. 71–72].

Finally we denote by v j ∈ G(K1, . . . ,Kl−1), for j = 1, . . . , ν∗, the points which
correspond to the zeros w j of ρν , that is,

(14) w j = φ(v j) = (a1 − a2)
Ω

2(v j , 0)

Ω(v j , ξ)Ω(v j ,−ξ)
+ a2.

Since the function (x − w j)(u) has poles at the points ξ and ξ̄ and zeros at the points
v j and −v j we have by the Burnside Representation Theorem [14, p. 293],

x − w j = const
Ω(u, v j)Ω(u,−v j)

Ω(u, ξ)Ω(u,−ξ)
exp

l−1
∑

k=1

m jkΦk(u), j = 1, . . . , ν∗.

Taking into account the variation of the argument along the circles ∂Ki , i = 1, . . . ,
l−1, one obtains with the help of (8), (9) and the observation that both Tk

(

T−1
j (∞)

)

and Tk(∞) lie inside or outside ∂K j simultaneously, that m jk = 0, j = 1, . . . , ν∗;
k = 1, . . . , l − 1. It gives

(15) ρν
(

φ(u)
)

= const

ν∗
∏

j=1

(

Ω(u, v j)Ω(u,−v j)

Ω(u, ξ)Ω(u,−ξ)

) ν j

.

In an analogous way we get

(16) R
(

φ(u)
)

= const

r
∏

j=1

Ω
2(u, u j)

Ω(u, ξ)Ω(u,−ξ)
exp
(

−
r
∑

j=1

r jΦ j(u)
)

,

where r j , j = 0, . . . , l − 1, is the number of zeros of R on [a2 j+1, a2 j+2]. Let us
note that if R(a1) = 0 then one of the u j ’s has to be infinite. In such a case the
corresponding factor in the product at the right-hand side of (16) must be replaced
by

Ω
2(u, o1)

Ω(u, ξ)Ω(u,−ξ)
exp
(

−2Φ1(u)
)

.

Here one should take into account the automorphity of x − a1 together with the

variation of its argument along the circle ∂K1.

For the following let us determine

(17) lim
u→ξ

1

φ(u)

Ω(u,−ξ)

Ω(u, ξ)
= τ−1.
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It follows easily by (11) that

(18) τ = (a1 − a2)
Ω

2(ξ, 0)

Ω2(ξ,−ξ)
.

For the reader’s convenience let us give also the expressions of some potential-
theoretic functions in terms of the Schottky-Burnside functions.

Proposition 1 The capacity of E, the Green function g of C \ E, and the harmonic

measures of E j , j = 1, . . . , l−1, are defined in terms of the Schottky-Burnside functions

by the relations

<Φp(ξ) = (ωA)p, p = 1, . . . , l − 1,(19)

cap (E) = τ exp(−ωAωT),(20)

gC\E(z,∞) = log

∣

∣

∣

∣

Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j(u)

∣

∣

∣

∣

,(21)

where ω j(∞) is the harmonic measure of the interval E j at the point ∞ with respect

to C \ E, −A is the matrix of periods for the Riemann surface corresponding to C \ E,

ω =
(

ω1(∞), . . . , ωl−1(∞)
)

, z = φ(u) and cap(E) denotes the (logarithmic) capacity

of E.

The proof of (19) will be given in Corollary 1, the proofs of (20) and (21) in the
Appendix, since we do not use them in the following.

2 The Basic Results

The starting point of our investigations is the following characterization (due to
the second author [34]) of the polynomials orthogonal with respect to ΨR,ρν ,ε by
a quadratic equation, also called Pell-equation.

Lemma 1 Let R, ρν , ε j ∈ {−1, 1}, j = 1, . . . , ν∗ be given. Then for n ≥
max{ν + 1 − l, (ν + 1 − r)/2} the following assertions hold

(a) The monic polynomial pn is orthogonal to Pn−1 with respect to the functional

ΨR,ρν ,ε if and only if there exists a monic polynomial q(n) such that

(22) Rp2
n − Sq2

(n) = ρνg(n),

and

(23) (
√

Rpn)(k j )(w j) = ε j(
√

Sq(n))
(k j )(w j) 6= 0

at the zeros w j of ρν , j = 1 . . . , ν∗, where k j is the minimal integer such that (23)

holds, and g(n) ∈ Pl−1 with a zero of multiplicity 2k j at w j for j = 1, . . . , ν∗.
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(b) The integer n is a basic integer for the functional ΨR,ρν ,ε if and only if the polynomi-

als Rpn and Sq(n) from (a) have no common zeros. Note, in this case (23) is satisfied

with k j = 0 for j = 1, . . . , ν∗.

(c) If (in) is the sequence of basic integers for the functional ΨR,ρν ,ε then

(i) for m = in the orthogonal polynomial is unique;

(ii) for ik + 1 ≤ m ≤ ik + [(ik+1 − ik + 1)/2] − 1, any polynomial pn which

is orthogonal with respect to the functional ΨR,ρν ,ε to Pm−1 has the form

pm(x) = pin
(x)$m−in

(x), where$m−in
∈ Pm−in

is arbitrary;

(iii) for ik + [(ik+1 − ik + 1)/2] ≤ m ≤ ik+1 − 1, there exist no orthogonal polyno-

mials with respect to ΨR,ρν ,ε to Pm−1.

Proof

(c) is known ([15, Proposition 1.14])

(a) For n being a basic integer the necessity part is exactly Theorem 3(a) from
[34]. The sufficiency part under the additional assumption that pn and q(n) have no
common zero follows from Theorem 1(a) and Corollary 1 from [34]. Moreover, it is

proven there that pn is orthogonal to Pn+l−2−∂g(n)
. If pn and q(n) have common zeros

then after dividing (22), (23) by $2(x), where $(x) denotes the polynomial which
vanishes exactly at the common zeros of pn and q(n) with corresponding multiplici-
ties, one obtains the relations

R( p̃n−∂$)2 − S(q̃(n−∂$))
2

= ρν g̃(n−∂$)

and

(
√

Rp̃n−∂$)(w j) = ε j(
√

Sq̃(n−∂$))(w j) 6= 0.

Hence by the proven part p̃n−∂$ is orthogonal to Pn+l−2−∂g̃(n−∂$)
, but n + l − 2 −

∂g̃(n−∂$) = n + l − 2 − (∂g(n) − 2∂$) ≥ n − 1 + ∂$, and the orthogonality of
pn = p̃n−∂$$ to Pn−1 follows by the definition of ΨR,ρν ,ε. Concerning the necessity
part for nonbasic integers let us note that by (c)(ii) for any integer m, ik + 1 ≤ m ≤
ik + [(ik+1 − ik + 1)/2] − 1, the polynomial pm(x) can be represented as pm(x) =

pin
(x)$m−in

(x), with $m−in
∈ Pm−in

. Since by [34, Theorem 3(a)]

(24) Rp2
in
− S(Y pin

+ ρν p[1]
in

)2
= ρνg(in)

with ∂g(in) = in + l − in+1, and by [15, Proposition 1.19] p[1]
m (x) = pin

(x)$m−in
(x),

one obtains after multiplying (24) by $2
m−in

the relation

(25) Rp2
m − S(Y pm + ρν p[1]

m )2
= ρνg(m),

where g(m) = g(in)$
2
m−in

and ∂g(m) = ∂g(in) + 2∂$m−in
≤ l − 1, which proves the

necessity part for such m.

(b) follows easily from the proof of (a).

The basic theorems for what follows are the next two.
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Theorem 1 Let R, ρν , ε j ∈ {−1, 1}, j = 1, . . . , ν∗, be given, let pn(x) = xn + · · · ∈
Pn and qm ∈ Pm, and assume that Rpn and Sqm have no common zero and satisfy the

relations

(26) Rp2
n − Sq2

m = ρνg(n),

and

(27) (
√

Rpn)(w j) = ε j(
√

Sqm)(w j)

at the zeros w j , for j = 1, . . . , ν∗, of ρν , where g(n) ∈ Pl−1. Write

Ωn(u) =
Ω

n(u,−ξ)

Ωn(u, ξ)

ν∗
∏

j=1

Ω
ν j
2

(1+ε j )(u, v j)Ω
ν j
2

(1−ε j )(u,−v j)

Ω(u,−ξ)
(28)

·
r
∏

j=1

Ω(u,−ξ)

Ω(u, u j)

∂g(n)
∏

j=1

Ω(u, b(n)
j )

Ω(u,−ξ)
exp

l−1
∑

j=1

m(n)
j

2
Φ j(u),

where b(n)
j ∈ T, j = 1, . . . , ∂g(n) and m(n)

j ∈ Z, j = 1, . . . , l−1 are given by the system

of equations

(29) exp
(

2(2n − ν − ∂g(n) + r)Φp(ξ) + 2

ν∗
∑

j=1

ε jν jΦp(v j)

−
l−1
∑

j=1

m(n)
j a j p − 2

∂g(n)
∑

j=1

Φp(b(n)
j )
)

= 1, p = 1, . . . , l − 1.

Then, for 2n + r ≥ ν + ∂g(n),

2pn(x) = cn

(

Ωn(u) + Ωn(−u)
)

,(30)

2

√

S(x)

R(x)
qm(x) = cn

(

Ωn(u) − Ωn(−u)
)

,(31)

where cn is given by

(32) 2/cn = lim
u→ξ

Ωn(u)

φn(u)
.

Furthermore, denoting by Gn the leading coefficient of g(n), we have for 2n+r > ν+∂g(n),

(33) Gn = 4τ 2n−ν−∂g(n)+r

ν∗
∏

j=1

(

Ω(ξ, v j)

Ω(ξ,−v j)

) ε jν j r
∏

j=1

Ω(ξ, u j)

Ω(ξ,−u j)

·
∂g(n)
∏

j=1

Ω(ξ,−b(n)
j )

Ω(ξ, b(n)
j )

exp
(

−
l−1
∑

j=1

m(n)
j Φ j(ξ)

)

.

If R(a1) = 0 then one factor in (28) has to be replaced in the same way as in (16).
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Proof If there is no possibility of confusion, we omit the indices n,m, ν. Put

(34) Ψ(u) =

(

p(x) +

(

√

S(x)

R(x)

)

q(x)

) 2/

ρ(x)g(x),

where x = φ(u) is the mapping function from (11). Then the function Ψ(u) is

defined on the domain G(K1, . . . ,Kl−1). The values of the function Ψ(u)R(x) con-
sidered as a function of x differ on different edges of cuts [a1, a2], . . . , [a2l−1, a2l]
by complex conjugation only and have modulus one according to (26). Hence it
is possible to extend by the Riemann-Schwartz Symmetry principle the function

Ψ(u)R
(

φ(u)
)

up to an automorphic function with respect to the corresponding
Schottky group Γ. Since x(u) is automorphic, the extended function Ψ(u) will be
automorphic too. Moreover by the evenness of the function x = φ(u) and by ap-
plying twice the Riemann-Schwartz Symmetry principle (to the real and imaginary

axes) we deduce

(35) Ψ(−u) =

(

p(x) −
(

√

S(x)

R(x)

)

q(x)

) 2/

ρ(x)g(x) =
1

R2(x)

1

Ψ(u)
.

From (35) we conclude that if u is a zero of Ψ(u) and not a zero or pole of R
(

φ(u)
)

then −u is a pole of Ψ(u), and vice versa. Keeping this in mind we find from (34)
that

(i) u = ξ (which corresponds to x = ∞) is a pole of multiplicity 2n − (ν + ∂g) of

Ψ(u).

In conjunction with (35) this shows that

(ii) u = −ξ is a zero of multiplicity 2n − (ν + ∂g) + 2r of Ψ(u).

From the definition of ρ, from (27), (34), and (35) it follows that

(iii) u = −v j is a zero (pole) of multiplicity ν j of Ψ(u), if ε j = +1(−1);
(iv) u = v j is a zero (pole) of multiplicity ν j of Ψ(u), if ε j = −1(+1).

Furthermore, with the help of (16),(34) and (35) and recalling the usual conven-
tion for the automorphic functions theory (only one from the boundary points of T,

which are homologues to each other, belongs to T), we obtain

(v) u = u j is a double pole of Ψ(u).

Since by (26) Ψ(u) or Ψ(−u) vanishes at the zeros of g
(

φ(u)
)

, if ∂g ≥ 1, it follows
with the help of (35) that

(vi) Ψ(u) has also zeros b1, . . . , b∂g and poles −b1, . . . ,−b∂g .
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Summing up (i)–(vi) we get by the Burnside Representation theorem for auto-
morphic functions [14, p. 293] that Ψ(u) has a representation of the form

(36) Ψ(u) = d

[

Ω(u,−ξ)

Ω(u, ξ)

] 2n−ν−∂g ∂g
∏

j=1

Ω(u, b j)

Ω(u,−b j)

ν∗
∏

j=1

[

Ω(u,−v j)

Ω(u, v j)

] ε jν j

·
r
∏

j=1

Ω
2(u,−ξ)

Ω2(u, u j)
· exp

l−1
∑

j=1

m ′
jΦ j(u).

Next we obtain as in (15),(16) that g has a representation of the form

(37) g
(

φ(u)
)

= c

∂g
∏

j=1

Ω(u, b j)Ω(u,−b j )

Ω(u, ξ)Ω(u,−ξ)
,

where c ∈ C, and that

Ψ̃(u) = g
(

φ(u)
)

Ψ(u)R
(

φ(u)
)

is automorphic since φ(u) and Ψ(u) are automorphic too.
Writing down the condition of automorphity for Ψ̃(u) gives because of (12), (13)

the following relation

(38) exp
(

(2n − ν − ∂g + r)
(

Φp(ξ) − Φp(−ξ)
)

− 2

∂g
∑

j=1

Φp(b j)

+

ν∗
∑

j=1

ε jν j

(

Φp(v j) − Φp(−v j)
)

−
l−1
∑

j=1

m jap j

)

= 1, p = 1, . . . , l − 1,

where m j = m ′
j − r j , j = 1, . . . , l − 1. Relation (38) in fact is the same as (29), since

<Φp is odd. Indeed, for any j = 1, . . . , l − 1 and for any z ∈ C T j(−z) = −T j(z),

hence the collection of Tk(−z), k = 1, . . . , coincides with −Tk(z), k = 1, . . . . Now
from (13) one obtains

exp Φ j(−z) =
−z − o j

−z + o j

∞
∏

k=1
k6= j

−z − Tk

(

T−1
j (∞)

)

−z − Tk(∞)
(39)

=
z − o j

z − o j

∞
∏

k=1
k6= j−1

z − Tk

(

T−1
j−1 (∞)

)

z − Tk(∞)
= exp Φ j−1 (z).

But

Φ j−1 (z) =

∫ z

0

θ(z, o j) dz = −
∫ z

0

θ(z, o j−1 ) dz = −Φ j(z),
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proving the oddness of <Φp.
Hence we obtain using the fact φ(−u) = φ(u),

(

pn ±
√

S

R
qm

) 2

=
Ψ̃(±u)ρ

(

φ(u)
)

R
(

φ(u)
) = c̃nΩ

2
n(±u),

where c̃n ∈ C and Ωn is defined in (28). Thus

(40)
(

pn ±
√

S

R
qm

)

(

φ(u)
)

= cnΩn(±u).

Recalling that pn, and thus by (26) also qm, are monic, we obtain

2 = lim
x→∞

(

pn +

√

S

R
qm

)/

xn
= cn lim

u→ξ

Ωn(u)

[φ(u)]n
,

which gives relation (32).

In order to obtain (33) we observe firstly that by (26) and (37)

gρ/R = c2
nΩn(u)Ωn(−u),

and hence

Gn = lim
x→∞

g(x)ρ(x)

R(x)xν+∂g−r
= c2

n lim
u→ξ

Ωn(u)Ωn(−u)

[φ(u)]ν+∂g−r
.

Straightforward calculation using (17) and

(41) Ω(−z, y) = Ω(z,−y)

(which can be obtained analogously to the oddness of <Φp) now gives relation (33).

To prove the uniqueness of the solution of (29) one should observe that all consid-
erations in the proof of Theorem 1 may be inverted, that is, if (29) holds then Ψ from
(36) is automorphic and pn and qm given by (30) and (31) are polynomials which
satisfy (26) and (27) hence the uniqueness follows from the assumption about the

absence of common zeros and from Lemma 1.

For the case l = 2 analogue considerations were used in [38] to obtain corre-
sponding statements in terms of elliptic theta functions. That result is in fact a par-

ticular case of Theorem 1, what can be seen as in [2] by degeneracy of automorphic
functions for l = 2 into elliptic theta functions.

Using the fact that − exp Φp(z)/2, p = 1, . . . , l−1, represent independent Abelian
integrals of the first kind [13, p. 66] it follows that (29) can also be considered as a

Jacobi inversion problem (compare [33, 49, 51]) in the variables b(n)
j . Let us observe

that similar representations for pin
for the case ε = (1, 1, . . . , 1) were obtained in

[33, Theorem 5.1] in terms of Riemann theta-functions.
Now we are ready to determine the number of zeros in the intervals E j =

[a2 j+1, a2 j+2], j = 0, . . . , l − 1 of the orthogonal polynomials.

Notation Let Z(pn, [a2 j+1, a2 j+2]) := #{x ∈ [a2 j+1, a2 j+2] : pn(x) = 0} denote the
number of zeros of pn in the interval [a2 j+1, a2 j+2].
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Theorem 2 Let R, ρν , ε j ∈ {−1,+1}, j = 1, . . . , ν∗ be given, let (in) be the sequence

of basic integers with respect to ΨR,ρν ,ε and let (pin
) be the sequence of monic polynomials

of degree in orthogonal with respect to ΨR,ρν ,ε. Suppose that in+1 + in + r ≥ ν + l + 1.

Then pin
satisfies an equation of the form

(42) Rp2
in
− Sq2

(in) = ρνg(in),

with ∂g(in) = gin
∈ {0, . . . , l − 1} and the following representations hold

2Rp2
in

ρνg(in)
− 1 =

ψin
(u) + ψin

(−u)

2
,(43)

2
√

H(x)
q(in)(x)pin

(x)

ρν(x)g(in)(x)
=
ψin

(u) − ψin
(−u)

2
.(44)

where

(45) ψin
(u) =

(

Ω(u,−ξ)

Ω(u, ξ)

) 2in−ν−gin +r gin
∏

j=1

(

Ω(u,−b(in)
j )

Ω(u, b(in)
j )

) δ(in)
j

ν∗
∏

j=1

(

Ω(u,−v j)

Ω(u, v j)

) ε jν j

exp

l−1
∑

j=1

(m(in)
j + r j)Φ j(u),

x and u are connected by (11). The points b(in)
j ∈ G(K1, . . . ,Kl−1), with <b(in)

j = 0,

j = 1, . . . , gin
; the integers m(in)

j ∈ Z, j = 1, . . . , l − 1, and the δ(in)
j ∈ {−1,+1},

j = 1, . . . , gin
are given uniquely by the system of equations

(2in − ν − gin
+ r)<Φp(ξ) +

ν∗
∑

j=1

ε jν jΦp(v j) −
l−1
∑

j=1

m(in)
j

a j p

2
(46)

+

gin
∑

j=1

δ(in)
j <Φp(b(in)

j ) = 0, p = 1, . . . , l − 1.

Finally, the number of zeros of p(in) and the m(in)
j ’s, j = 1, . . . , l − 1, given by (46),

are related in the following way:

(47)

2Z(pin
, [a2 j+1, a2 j+2]) =

{

m(in)
j if r j = 2 and p2

in
(a2 j+1) + p2

in
(a2 j+2) = 0,

m(in)
j − r j , otherwise.

Moreover,

2Z(pin
, [a1, a2]) = −

l−1
∑

j=1

m(in)
j +

ν∗
∑

j=1

ε jν j +

g(in)
∑

j=1

δ(in)
j + (2in − ν − g(in) + r).

https://doi.org/10.4153/CJM-2003-024-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-024-6


590 A. L. Lukashov and F. Peherstorfer

Proof In view of (42) we have at the zeros x(in)
j =: φ(b(in)

j ), where b(in)
j ∈

G(K1, . . . ,Kl−1) and <b(in)
j = 0,

(48) pin
(x j,n) = δ(in)

j (
√

Hqin
)(x j,n), j = 1, . . . , gin

,

where δ(in)
j ∈ {−1, 1}. Taking a look at the function Ψ from (34) it follows that (36)

becomes

(49)

Ψin
(u) = d

[

Ω(u,−ξ)

Ω(u, ξ)

] 2in−ν−g(in)
g(in)
∏

j=1

(

Ω(u, b(in)
j )

Ω(u,−b(in)
j )

) δ(in)
j

ν∗
∏

j=1

[

Ω(u,−v j)

Ω(u, v j)

] ε jν j

·
r
∏

j=1

Ω
2(u,−ξ)

Ω2(u, u j)
· exp

l−1
∑

j=1

(m(in)
j + r j)Φ j(u).

Putting
ψin

(u) = Ψin
(u)R

(

φ(u)
)

it follows by (34) and (35) that

(50) ψin
(u) ± ψin

(−u) = c

(

R
(

pin
+
√

S
R

q(in)

) 2 ± R
(

pin
−
√

S
R

q(in)

) 2

ρνg(in)

)

(

φ(u)
)

which gives with the help of (24) relations (43), (44) up to a constant factor.

Now let us observe that

lim
x→∞

(

2Rp2
in

ρνg(in)
− 1

)

· 1

xr+2in−ν−gin
=

2

Gin

,

where

Gin
= 4τ 2in−ν−gin +r

ν∗
∏

j=1

(

Ω(ξ, v j)

Ω(ξ,−v j)

) ε jν j
gin
∏

j=1

(

Ω(ξ, b(in)
j )

Ω(ξ,−bin

j )

) δ(in)
j

· exp−
l−1
∑

j=1

(m(in)
j + r j)Φ j(ξ)

and

lim
u→ξ

ψin
(u)

(

φ(u)
) r+2in−ν−gin +r

= lim
u→ξ

(

Ω(u,−ξ)

Ω(u, ξ)φ(u)

) 2in−ν−gin +r

·
gin
∏

j=1

(

Ω(ξ,−b(in)
j )

Ω(ξ, b(in)
j

) δ(in)
j

ν∗
∏

j=1

(

Ω(ξ,−v j)

Ω(ξ, v j)

) ε jν j

exp−
l−1
∑

j=1

(m(in)
j + r j)Φ j(ξ),
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hence (43) and (44) follow.
To find the numbers m(in)

j one has to count the variation of the argument ofψin
(u)

along the circumferences ∂K1, . . . , ∂Kl−1. Indeed, it follows from (9), (11) that

∆ argu∈∂K j
ψin

(u) = 2πm(in)
j .

Now we calculate the variation of the argument in (45) in another way. Namely,

by (45)

2πm(in)
j = ∆ argx∈K j

(

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in)

)

(x),

where K j is the interval [a2 j+1, a2 j+2] which is run around twice (its lower edge in the
positive direction and its upper edge in the negative direction). First let us observe
that for any zero xk ∈ (a2 j+1, a2 j+2) of pin

one has locally by writing down the Taylor

expansion for R(p +
√

S/Rq)2/ρg (omitting the indices) near a zero xk of p:

(51) R(p +
√

S/Rq)2/ρg = −1 + c(x − xk)β + · · · .

Of course that expansion is valid for our fixed branch at only one side of the cut
[a2 j+1, a2 j+2]. At the same side one has

(52) R(p −
√

S/Rq)2/ρg = −1 + c1(x − xk)β + · · · .

After multiplying both relations with the help of (42) it follows easily that c1 = c.
Substracting (52) from (51) gives

2
√

H
qp

ρg
= R

(

p +

√

S

R
q
) 2/

ρg − R
(

p −
√

S

R
q
) 2/

ρg(53)

= 2c(x − xk)β + · · · .

But by assumption the polynomials q and p have no common zeros, hence β = 1.

Now let us write relation (51) briefly as

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in)(x) + 1 ∼ x − xk

and let us note that x − xk ∼ u − φ−1
1,2 (xk). Hence, when x moves along a small

semicircle surrounding xk at one side of the real axis, u = φ−1(x) will move around a

simple curve near the circle ∂K j once. Thus the variation of the argument of (x− xk)
will be equal to the variation of the argument of u − φ−1

1,2 (xk), that is, equal to π.
Analogously, if ak ∈ {a2 j+1, a2 j+2} with R(ak) = 0 and pin

(ak) 6= 0 we have, by
taking a look at (53) that

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in) + 1 ∼
√

x − ak ∼ u − φ−1(ak);
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and if ak ∈ {a2 j+1, a2 j+2} with R(ak) = 0 and pin
(ak) = 0

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in) + 1 ∼ (x − ak)3/2 ∼
(

u − φ−1(ak)
) 3

;

hence, putting k(in)
j = Z(pin

, [a2 j+1, a2 j+2]),

(54) ∆ argx∈K j

(

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in)

)

(x) =































































4πk(in)
j for R(a2 j+1)R(a2 j+2) 6= 0,

4πk(in)
j + 2π for R(a2 j+1)R(a2 j+2) = 0, R2(a2 j+1) + R2(a2 j+2) 6= 0,

and pin
(a2 j+1)pin

(a2 j+2) 6= 0,

4πk(in)
j for R(a2 j+1)R(a2 j+2) = 0, R2(a2 j+1) + R2(a2 j+2) 6= 0,

and pin
(a2 j+1)pin

(a2 j+2) = 0,

4π(k(in)
j + 1) for R2(a2 j+1) + R2(a2 j+2) = 0 and pin

(a2 j+1)pin
(a2 j+2) 6= 0,

4πk(in)
j + 2π for R2(a2 j+1) + R2(a2 j+2) = 0, pin

(a2 j+1)pin
(a2 j+2) = 0,

and p2
in

(a2 j+1) + p2
in

(a2 j+2) 6= 0,

4πk(in)
j for R2(a2 j+1) + R2(a2 j+2) + p2

in
(a2 j+1) + p2

in
(a2 j+2) = 0.

Now let us note that the function Ω
2
in

(u) has zeros and poles of even order, hence

the function Ωin
(u) =

√
Ω

2
in

(u) is a single-valued automorphic function and in its

representation

Ωin
(u) =

Ω
in (u,−ξ)

Ωin (u, ξ)

ν∗
∏

j=1

Ω
ν j
2

(1+ε j )(u, v j)Ω
ν j
2

(1−ε j )(u,−v j)

Ων j (u,−ξ)

r
∏

j=1

Ω(u,−ξ)

Ω(u, u j)
(55)

·
gin
∏

j=1

Ω

1+δ
(in)
j

2 (u,−b(in)
j )Ω

1−δ
(in)
j

2 (u, b(in)
j )

Ω(u,−ξ)
exp

l−1
∑

j=1

m(in)
j + r j

2
Φ j(u),

the numbers (m(in)
j + r j)/2 have to be integers. Hence the third and the fifth cases in

(54) are impossible, and the assertions of Theorem 2 about the k(in)
j ’s, j = 1, . . . , l−1

are proved.

As above we have

∆ argx∈K0

(

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in)

)

(x) = −2πm(in)
0 .

On the other hand,

∆ argx∈K0

(

R
(

pin
+

√

S

R
q(in)

) 2/

ρνg(in)

)

(x) = ∆ argu∈R
ψin

(u)

= 2π
l−1
∑

j=1

m(in)
j − 2π

ν∗
∑

j=1

ε jν j − 2π

gin
∑

j=1

δ(in)
j − 2π(2in − ν − gin

+ r),

and the final part of Theorem 2 is proved.
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Corollary 1 The quantities Φp(ξ) and apq are connected by the relations

(56) 2<Φp(ξ) =

l−1
∑

j=1

ω j(∞)a j p, p = 1, . . . , l − 1,

where ω j(∞) is the harmonic measure of the interval [a2 j+1, a2 j+2], j = 1, . . . , l − 1,

at the point ∞ with respect to E.

Proof Let us take ε = (1, 1, . . . , 1) and R/hρ > 0. Then it is known [34] that in = n

and ∂g(n) = l − 1, n ≥ n0. Multiplying (46) by 1/n and taking the limit we obtain
(56) by using the fact

k(n)
j /n →

∫

[a2 j+1,a2 j+2]

dµE(x) = ω j(∞), j = 1, . . . , l − 1,

where µE is the equilibrium measure (see, for instance, [54]).

Let us note that it is possible to prove Corollary 1 with the help of the correspon-
dence between the functions Φp and the Abelian integrals of the first kind, and [49,
(26)].

Next let us characterize the case g(n) ∈ P0 which will be of particular interest in

obtaining explicit representations of minimal polynomials with respect to the max-
norm.

Theorem 3 Let R, ρν , ε j ∈ {−1,+1}, j = 1, . . . , ν∗ be given. Then there exist

polynomials pn(x) = xn + · · · ∈ Pn and qm ∈ Pm with no common zero and satisfying

the relations

Rp2
n − Sq2

m = cρν ,

where c ∈ R, and

(
√

Rpn)(w j) = ε j(
√

Sqm)(w j)

at the zeros w j( j = 1, . . . , ν∗) of ρν , if and only if there are m1, . . . ,ml−1 ∈ Z such

that

(57) <Φp(ξ) =

(

−
ν∗
∑

j=1

ε jν j<Φp(v j) +
1

2

l−1
∑

j=1

m ja j p

)/

(2n − ν + r),

p = 1, . . . , l − 1.

Proof In proving Theorem 1 we have shown that relation (29) holds; together with
the reality of exp Φp this gives the necessity part of the theorem.

For the sufficiency part, consider the function

(58) f (u) := R
(

φ(u)
)(

Ωn(u) + Ωn(−u)
)

,
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where Ωn(u) is defined in (28) after setting ∂g(n) = 0 and (57) there. Since f (u) is
an even function, being automorphic with respect to the group Γ by (11), (16), (28),

and (57), it is a rational function of x. Furthermore, it follows from (28) on recalling
that the u j ’s are the zeros of R

(

φ(u)
)

, that f as a function of x has its only singularity
at x = ∞ which is a (n+ r)-fold pole. Hence f is a polynomial of degree (n+ r) which
vanishes, by (58), at the zeros of R, and thus

p̃n(x) := Ωn(u) + Ωn(−u)

is a polynomial of degree n exactly. Now the proof proceeds in the same way as in
[38, Theorem 2]. The assertion is proved.

From Theorem 3 we now obtain an explicit description of the polynomials which

deviate least from zero on E with respect to the max-norm and a weight function of
the form 1/

√
ρ, where ρ is a polynomial with ρ > 0 on E, and which have a maximal

number of extremal points on E.

Corollary 2 Let ρν ∈ P with ρν(x) > 0 for x ∈ E and let n ∈ N be such that 2n > ν.

Then there exists a polynomial pn(x) = xn + · · · such that

(59) max
x∈E

∣

∣

∣

∣

pn(x)√
ρν(x)

∣

∣

∣

∣

= min
ci∈R

max
x∈E

∣

∣

∣

∣

xn + c1xn−1 + · · · + cn√
ρν(x)

∣

∣

∣

∣

and all boundary points of E are extremal points with

(60)
pn√
ρ

(a2 j) =
pn√
ρ

(a2 j+1), for j = 1, . . . , l − 1, 1

if and only if there exist m1, . . . ,ml−1 ∈ Z such that

(61) <Φp(ξ) =

( 1

2

l−1
∑

j=1

m ja j p −
ν∗
∑

j=1

ν j<Φp(v j)
)/

(2n − ν),

p = 1, . . . , l − 1. If the Φp(ξ)’s are of the form (61) then the minimal polynomial pn in

(59) is given by formula (30), with Ωn given by (28) with ∂g(n) = r = 0 and ε j = 1 for

j = 1, . . . , ν∗. In this case the minimum deviation is given by

max
x∈E

∣

∣

∣

∣

pn(x)√
ρν(x)

∣

∣

∣

∣

= 2τ (2n−ν)/2
ν∗
∏

j=1

(

Ω(ξ, v j)

Ω(ξ,−v j)

) ν j/2

exp
(

−
l−1
∑

j=1

m j

2
Φ j(ξ)

)

.

Proof This follows from Corollary 2.9 in [34] and Theorem 3.

Remark 1 Analogous representations of the extremal polynomials with respect to
the max-norm may be written not only for the case R ≡ 1, but also for other possible

R.

1We take the opportunity to indicate that condition (60) was omitted in Corollary 1 from [38].
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Remark 2 For ρν ≡ 1 the extremal polynomials will deviate least from zero on
E with respect to the max-norm and without weight. Hence the corollary gives in

a certain sense the answer for the question from [16, p. 442]. Moreover, one can
find the general case (without condition (60)) for the extremal polynomials in [31,
Theorem 1] and [40, Theorem 2.3].

Let us mention that pn(x)/
√
ρν(x) was represented in another way in [30,

Lemma 3], where conditions (61) were given in an essentially more complicated
form.

3 Applications

Let us study once more the zeros of the polynomials orthogonal with respect to the
weight function R/hρν , R/hρν > 0 on int (E). It is known (see, e.g. [34]) that the

orthogonal polynomial pn has at most l − 1 zeros in R \ E. But almost nothing
is known about the appearance of such zeros. Recently Suetin [49] has shown that
there exists a subsequence (nk) such that all zeros of (pnk

) accumulate on E. Here we
show that for arbitrary given m ∈ {0, . . . , l− 1} there exists a subsequence (n j) such

that pn j
, j = 1, 2, . . . has m zeros in C \ E which do not accumulate to E if R ≡ 1.

Lemma 2 (Kronecker) Suppose that ω1(∞), . . . , ωl−1(∞), 1 are linearly indepen-

dent over the rationals. Then for every x1, . . . , xl−1 ∈ R and for every sequence (εk),

εk ↓ 0, there exist a strictly monotonic subsequence (qk) of natural numbers and l − 1
sequences of integers (m̃k, j ), j = 1, . . . , l − 1, such that

(62) |2qkω j(∞) − m̃k, j − x j | < εk, j = 1, . . . , l − 1, k = 1, 2, . . . .

Proof From the Kronecker approximation theorem (see, for example, [22, p. 23]) it

follows that for any real numbers y1, . . . , yl−1 and for arbitrary ε > 0 and C > 0 it
is possible to find an integer q and integers m̃1, . . . , m̃l−1 such that

|2qω j(∞) − m̃ j − y j | < ε, j = 1, . . . , l − 1,

where |q| > C and the sign of q can be chosen arbitrarily. Now let’s take a sequence

εk ↓ 0. Then it follows by the Kronecker approximation theorem that for any real
numbers x1, . . . , xl−1 there exist a strictly monotonic sequence of integers (qk) and
(l − 1) sequences of integers (m̃k,p), p = 1, . . . , l − 1, such that for k ∈ N (62) holds.

Theorem 4 Assume that the numbers ω1(∞), . . . , ωl(∞) are linearly independent

over the rationals. Suppose also that R/hρ > 0 on int (E), ε = (1, 1, . . . , 1) and

r j < 2, j = 0, . . . , l − 1. Then for any m ∈ Z, 0 ≤ m ≤ l − 1, there exists a

subsequence (pnk
) of polynomials orthogonal with respect to the weight R/hρ such that

Z(pnk
, [a1, a2l] \ E) = m, k ∈ N. In particular, for R ≡ 1 the m zeros outside of E do

not accumulate to E.
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Proof We claim firstly that for any point β = (β1, . . . , βl−1), β j ∈ δ j(o j−1 + iR j−1,
o j − iR j), j = 2, . . . , l−1, β1 ∈ δ1(0, o1 − iR1), δ j ∈ {−1,+1}, j = 1, . . . , l−1, and

for any neighbourhood of β it is possible to find a point β (0) in the neighbourhood
of β and a sequence of integers (nk) such that the polynomials g(nk) which are by

Theorem 2 associated to the polynomials pnk
have zeros at the points φ(β(k)

j ), j =

1, . . . , l−1, limk→∞ β(k)
j = β(0)

j , j = 1, . . . , l−1, and relation (48) holds for in = nk.
Indeed, let us put

zp = −2(r − ν − l + 1)<Φp(ξ) + 2

l−1
∑

j=1

<Φp(β j)(63)

− 2

ν∗
∑

j=1

ν j<Φp(v j), p = 1, . . . , l − 1.

The Jacobian of (63) considered as a system of equations with respect to β has the

form

(64)

∣

∣

∣

∣

∣

∣

∣

θ(β1, c1) · · · θ(βl−1, c1)
...

...
θ(β1, cl−1) · · · θ(βl−1, cl−1)

∣

∣

∣

∣

∣

∣

∣

.

Since the functions θ(z, cp) are analytic and linearly independent [13, p. 62–63], the
Jacobian (64) may have only a finite number of zeros as function of β1 with fixed
β2, . . . , βl−1. Hence for any neighbourhood of β it is possible to find a point β (0) in

that neighbourhood such that for the system of equations

z(0)
p = − 2(r − ν − l + 1)<Φp(ξ) + 2

l−1
∑

j=1

<Φp(β(0)
j )(65)

− 2

ν∗
∑

j=1

ν j<Φp(v j), p = 1, . . . , l − 1,

all conditions of the Implicit Function Theorem are satisfied at the point β (0). Now

let Φ(ξ), ω denote the vectors

(

<Φp(ξ)
) l−1

p=1
,
(

ω j(∞)
) l−1

j=1

and A = (apq/2). Since A differs from the period matrix of the corresponding hyper-
elliptic Riemann surface (see [13, p. 66] by the sign only, A is real and nonsingular
(see, for instance, [52, Theorem X.35]) and thus we get by (56)

A−1
Φ(ξ) = ω.

Then it follows by Kronecker’s Lemma that for any real numbers y1, . . . , yl−1 and
for every sequence (εk), εk ↓ 0, there exist a strictly monotonic subsequence (qk) of
natural numbers and l − 1 sequences of integers (m̃k, j ), j = 1, . . . , l − 1, such that

(66) |2qkω j(∞) − m̃k, j − y j | < εk, j = 1, . . . , l − 1, k = 1, 2, . . . .
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Multiplying (66) by A, one obtains that there exist a strictly monotonic sequence of
integers (qk) and (l − 1) sequences of integers (m̃k,p), p = 1, . . . , l − 1, such that for

k ∈ N the relations

(67) 4nk<Φp(ξ) =

l−1
∑

j=1

m(k)
j a j p + z(0)

p + εk,p, p = 1, . . . , l − 1,

with |εk,p| < εk, p = 1, . . . , l − 1, hold.
By applying the Implicit Function Theorem to the system (65) we can find for

εk-neighbourhood of z(0)
p a point β(k) in a neighbourhood of the point β(0) such that

2(r − ν − l + 1)<Φp(ξ) − 2

l−1
∑

j=1

<Φp(β(k)
j )(68)

+ 2

ν∗
∑

j=1

ν j<Φp(v j) + z(0)
p + εk,p = 0, p = 1, . . . , l − 1, k ≥ k0.

Hence (67) becomes

2(2nk + r − ν − l + 1)<Φp(ξ) − 2

l−1
∑

j=1

<Φp(β(k)
j )(69)

+ 2

ν∗
∑

j=1

ν j<Φp(v j) −
l−1
∑

j=1

m(k)
j a j p = 0, p = 1, . . . , l − 1, k ≥ k0,

and thus by Theorem 2 the first claim is proved.
Now let’s put δ j = −1, j = 1, . . . , λ and δ j = 1, j = λ + 1, . . . , l − 1. Then by

Theorem 2

Z(pnk
, E) =

l−1
∑

j=0

k(nk)
j =

1

2

l−1
∑

j=0

m(nk)
j − r

2
= nk − λ.

Concerning the last statement one obtains putting R ≡ 1 in (42) that

p2
n − Hq2

m = ρνg(n).

Dividing the equation by Gn we obtain

(70) |pn|2/Gn = |ρν ĝ(n)| at the boundary points of E,

where ĝ(n) is monic. By the claim proved at the beginning the zeros of ĝ(n) have no
accumulation points in E. Hence the right hand side of (70) is bounded from below
by a constant for all k ∈ N, which gives the last statement.

Corollary 3 Let the functional ΨR,ρν be positive definite, and let ω1(∞), . . . , ωl(∞)
be linearly independent over the rationals. Then for any m, 0 ≤ m ≤ l − 1, it is
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possible to find a union of at least m gaps Km =
⋃m

j=1[a2i j
, a2i j +1] such that there exists

a subsequence of the sequence of the diagonal Padè approximants to the function

(71) f (z) =

(

R(z)√
H(z)

− Y (z)

)

/ρν(z)

which does not converge uniformly inside any domain Ω ⊂ C \ E with Ω ⊃ int (Km)

and converges to f uniformly on compact subsets of C \ (E ∪ Km).

Proof From Theorem 4 it follows that for any m, 0 ≤ m ≤ l − 1, it is possible to
find a subsequence {nk} such that all polynomials pnk

, orthogonal with respect to

ΨR,ρν , have exactly m zeros in
⋃l−1

i=1(a2i , a2i+1). Moreover, since pnk
has at most one

zero in each gap (a2i , a2i+1), i = 1, . . . , l − 1, it is possible to find at least m intervals
(a2i j

, a2i j +1), j = 1, . . . ,m and a subsequence Λ of {nk} such that pn, n ∈ Λ, has

exactly one zero in each gap (a2i j
, a2i j +1), j = 1, . . . ,m and no other zeros in C \ E.

Now by [34, (4.9)] for any n ≥ n0 the rational function
p[1]

n (z)

pn(z)
is just the [n/n]

diagonal Padé approximant of f . The function f is, by definition of Y , holomorphic
and single-valued in C̄ \ E, and all assumptions of [48, Theorem 1.7] are satisfied,

hence the sequence { p[1]
n (z)

pn(z)
} converges in capacity to f in C̄ \ E. Since for n ∈ Λ all

functions
p[1]

n (z)

pn(z)
are holomorphic in C̄\ (E∪Km), meromorphic in C̄ and have exactly

one pole in (a2i j
, a2i j +1), j = 1, . . . ,m (recall that p[1]

n and pn have no common
zeros), the assertion follows from Gonchar’s lemma [20, Lemma 1].

Remark 3 For the case m = 0 the corollary was proved by different method in [49];
in fact it means that the Baker-Gammel-Wills conjecture holds for functions of the

kind (71). But let us point out that it was very recently announced by D. S. Lubinsky
in a talk at the conference “Computational methods and function theory 2001”, Uni-
versity of Aveiro, Portugal, June 25–29, 2001, that the conjecture fails for a Rogers-
Ramanujan continued fraction (compare also [28]).

Next we give explicit representations for the recurrence coefficients of polynomials
orthogonal with respect to the functional ΨR,ρ,ε.

Combining Theorem 1 and results of the second author [34] we get the following
theorem.

Theorem 5 Let R, ρν , ε j ∈ {−1,+1}, j = 1, . . . , ν∗ be given, let (in) be the sequence

of basic integers with respect to ΨR,ρν ,ε, and suppose that in+1 + in + r ≥ ν + l + 1. Then

the following propositions hold.

(a) We have ΨR,ρν ,ε(xin+1−1 pin
) =

1
2
Gin

, where Gin
is given by (33).

(b) The recurrence coefficients of the pin
’s are given explicitly by

(72) αin+1
=

1

2
(a1 + · · · + a2l) −

l−1
∑

k=1

φ(b(in)
k ) if in+1 = in + 1,
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and

(73) λin+2
= τ 2

∂g(in)
∏

j=1

Ω(ξ, b(in)
j )

Ω(ξ,−b(in)
j )

∂g(in+1)
∏

j=1

Ω(ξ;−b(in+1)
j )

Ω(ξ, b(in+1)
j )

exp

l−1
∑

j=1

(m(in)
j − m(in+1)

j )Φ j(ξ),

where the b(in)
j ’s and m(in)

j ’s are given by (29).

(c) For in+1 ≥ ν + 1 the polynomials qim
, with im = in + r − l, given by (31) are

orthogonal with respect to ΨS,ρν ,ε and the recurrence coefficients of qim
denoted by

α̃im
for im = im−1 + 1 and λ̃im

are given by

(74) α̃im
= αin

and λ̃im
= λin

.

Proof In view of Theorem 3 in [34] it follows that there is a polynomial qim
such that

(75) Rp2
in
− Sq2

im
= ρνg(in)

where g(in) ∈ Pin+l−in+1
has leading coefficient 2ΨR,ρν ,ε(xin+1−1 pin

) and (
√

Rpin
)(w j) =

ε j(
√

Sqim
)(w j) at the zeros w j of ρν , which, by Theorem 1, gives the statements (a)

and (c).
Applying the functional ΨR,ρν ,ε to both sides of (75) we get in conjunction with

(1), (2) and [34, Lemma 1(c)]

∫

E

p2
in

R

ρνh
dx = −

∫

E

q2
im

S

ρνh
dx.

Thus in view of αin+1
= ΨR,ρν ,ε(xp2

in
)/ΨR,ρν ,ε(p2

in
) and from part (c)

(76)

∫

E

x
p2

in
R

ρνh
dx = −

∫

E

x
q2

im
S

ρνh
dx.

Multiplying relation (75) by x and then applying the functional ΨR,ρν ,ε equation (72)
follows with the help of (76) and [34, Lemma 1(a)]. Indeed we just demonstrated

that

(77) g(in)(x) = Gin

(

xl−1 +
(

αin+1
− 1

2
(a1 + a2 + · · · + a2l)

)

xl−2 + · · ·
)

if g(in) ∈ Pl−1 \ Pl−2. From the fact (see (37)) that ±b(in)
j , j = 1, . . . , ∂g(in) are the

zeros of g(in)

(

φ(u)
)

it follows that

−αin+1
+

1

2
(a1 + a2 + · · · + a2l) =

∂g(in)
∑

j=1

φ(b(in)
j ),

which is assertion (72). Concerning λin+2
it is enough to note that by (5)

(78) λin+2
=

ΨR,ρν ,ε(xin+2−1 p2
in+1

)

ΨR,ρν ,ε(xin+1−1 p2
in

)
=

Gin+1

Gin

.
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Now formula (73) follows immediately from (78) and (33).

For l = 2 the analogue of Theorem 5 is given in [38, Theorem 3].
Concerning the sequence of basic integers we have the following corollary.

Corollary 4 Let n0 be such that in+1 + in + r ≥ ν + l + 1 for n ≥ n0. Then we have,

for n ≥ n0,

(a) ΨR,ρν ,ε(xl−2 p2
in

) = 0, that is, in+1 = in + l, if and only if there exist m(n)
j ∈ Z,

j = 1, . . . , l − 1, such that

−
ν∗
∑

j=1

ε jν j<Φp(v j) +
1

2

l−1
∑

j=1

m(n)
j a j p = (2in − ν + r)<Φp(ξ),

p = 1, . . . , l − 1.

(b) If at least one from the quantities ω j(∞) is irrational then there exists at most one

basic integer in∗+1, with n∗ ≥ n0, such that in∗+1 = in∗ + l.

Proof (a) In view of Theorem 3(a) in [34], ΨR,ρν ,ε(xl−2 p2
in

) = 0 is equivalent to
g(in)(x) being constant, which, by Theorem 3, establishes part (a).

(b) Suppose that there is another basic integer in∗∗ such that in∗∗+1 = in∗∗ + l.
Then it follows from (a) that

2(in∗∗ − in∗)Φp(ξ) =

l−1
∑

j=1

(m
(in∗∗ )
j − m

(in∗ )
j )a j p, p = 1, . . . , l − 1,

or in vector form

(79) (in∗∗ − in∗)Φ(ξ) = −(m̄(in∗∗ ) − m̄(in∗ ))A.

Hence by multiplying (79) by A−1 and with the help of Corollary 1 we obtain a con-
tradiction.

As another consequence of Theorem 5 we obtain a result on the periodicity of the

recurrence coefficients given in [35] in a different form.

Corollary 5 Let n0 be defined as in Corollary 4. Suppose that the ω j(∞)’s are of the

form

ω j(∞) =
m j

N
, m j ,N ∈ N.

Then the recurrence coefficients of the polynomials orthogonal with respect to ΨR,ρν ,ε

have period N for n ≥ n0, that is

λin+1
= λ jN+in+1

and

αin
= α jN+in

if in+1 = in + 1.
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Proof First of all it follows from the condition of the corollary and from Corollary 1
that the relations

(80) 2N<Φp(ξ) =

l−1
∑

j=1

m ja j p, p = 1, . . . , l − 1,

hold.

Now straightforward calculations using (29) show that b(k)
p , p = 1, . . . , l−1 satisfy

(29) for k = in + jN , j ∈ N with m(k)
q = m(in)

q + jmq, q = 1, . . . , l − 1. Hence by (72)
and (73) we get the assertion.

Naturally the question arises what can we say about the behaviour of the recur-
rence coefficients when the harmonic measures are not rational. We consider the
case R/hρν > 0 on inte(E) and ε = (1, 1, . . . , 1) only. Then we have for n ∈ N that

in = n and by (26) that g(in) has exactly one zero in each [a2i , a2i+1], i = 1, . . . , l − 1,

which implies that the b(in)
j ’s are on the imaginary axis.

Theorem 6 Let (pn) be orthogonal on E with respect to a weight function of the form

wR/h which is positive on inte(E) and such that w ∈ C(E) has no zeros on E. Fur-

thermore let (αn), (λn) be the recurrence coefficients of (pn). If ω1(∞), . . . , ωl(∞) are

linearly independent over the rationals, then the sequences (λn), (αn) have nondegener-

ate intervals as the sets of limit points.

Proof Let us consider firstly the case w = 1/ρν , where ρν is a polynomial as before.

Since exp Φp(ξ), exp Φp(b(n)
j ) are real, and exp Φp(v j) are pairwise complex conjugate

we can rewrite the condition (29) taking into account that Φp are uniquely defined

only up to an additive constant of the type 2nπi, n ∈ Z, as follows:

(81) (2n− ν − l + r + 1)<Φp(ξ) +

ν∗
∑

j=1

ν j<Φp(v j) −
l−1
∑

j=1

m(n)
j

2
a j p =

l−1
∑

j=1

<Φp(b(n)
j ),

p = 1, . . . , l − 1.
Now let us study the behaviour of the b(n)

j ’s and the m(n)
j ’s if the first term at the

left hand side approaches given values xp ∈ R, p = 1, . . . , l − 1. More precisely, for
given x1, . . . , xl−1 ∈ R let (qk), (m̃k, j )k∈N, j = 1, . . . , l − 1 and εk,p , p = 1, . . . , l − 1,

be the values from Kronecker’s Lemma. We will show that

(82) b
(qk)
j → b0

j (x), b
(qk+1)
j → b1

j (x),m
(qk+1)
j −m

(qk)
j → m j(x), m̃k, j −m

(qk)
j → m̃ j(x)

as k → ∞. Indeed, putting n = qk and n = qk + 1 in (29) we find

exp
(

2(r − ν − l + 1)Φp(ξ) − 2

l−1
∑

j=1

Φp(b
(qk)
j ) + 2

ν∗
∑

j=1

ν jΦp(v j) + xp(83)

+

l−1
∑

j=1

(m̃k, j − m
(qk)
j )a j p + 2εk,p

)

= 1, p = 1, . . . , l − 1,
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and

exp
(

2(r − ν − l + 2)Φp(ξ) − 2

l−1
∑

j=1

Φp(b
(qk+1)
j ) + 2

ν∗
∑

j=1

ν jΦp(v j)(84)

+ xp +

l−1
∑

j=1

(m̃k, j − m
(qk+1)
j )a j p + 2εk,p

)

= 1, p = 1, . . . , l − 1,

From those equations it follows that

exp
(

2Φp(ξ) − 2

l−1
∑

j=1

(

Φp(b
(qk+1)
j ) − Φp(b

(qk)
j )
)

(85)

−
l−1
∑

j=1

(m
(qk+1)
j − m

(qk)
j )a j p

)

= 1, p = 1, . . . , l − 1.

Since b(n)
j ∈ ±[o j + iR j , o j+1 − iR j+1], j = 1, . . . , l − 2, b(n)

1 ∈ [−o1 + iR1, o1 − iR1],
we can find subsequences from (qk) (we keep the notation) such that (82) holds.

Next let us take the limits in (83) and (85) which gives

(86) exp
(

2(r − ν − l + 1)Φp(ξ) − 2

l−1
∑

j=1

Φp

(

b0
j (x)
)

+ 2

ν∗
∑

j=1

ν jΦp(v j) + xp

+

l−1
∑

j=1

m̃ j(x)a j p

)

= 1, p = 1, . . . , l − 1,

and

(87) exp

(

2Φp(ξ) − 2

l−1
∑

j=1

(

Φp

(

b1
j (x)
)

− Φp(b0
j (x))

)

−
l−1
∑

j=1

m j(x)a j p

)

= 1,

p = 1, . . . , l − 1. Moreover taking limits in (73) we find with help of (82)

(88) lim
k→∞

λqk+2 = τ 2
l−1
∏

j=1

Ω
(

ξ, b0
j (x)
)

Ω
(

ξ,−b1
j (x)
)

Ω
(

ξ,−b0
j (x)
)

Ω
(

ξ, b1
j (x)
) exp−

l−1
∑

j=1

m j(x)Φ j(ξ).

As it was mentioned above, system (86) is nothing else than the Jacobi inversion
problem with respect to φ

(

b0
j (x)
)

. Since φ
(

b0
j (x)
)

∈ [a2 j , a2 j+1], the relation

φ
(

b0
j (x)
)

6= φ
(

b0
k(x)

)

, j 6= k, x ∈ R,

holds. Hence by [33, Lemma], φ
(

b0
j (x)
)

are analytic functions, and the right-hand

side of (88) is a meromorphic function with respect to the variables x1, . . . , xl−1,
which is non-constant. Of contraries let it be constant. Consider the function

f (z, x) =
Ω

2(z, 0)

Ω2(z,−ξ)

l−1
∏

j=1

Ω
(

z, b0
j (x)
)

Ω
(

z,−b1
j (x)
)

Ω
(

z,−b0
j (x)
)

Ω
(

z, b1
j (x)
) exp−

l−1
∑

j=1

m j(x)Φ j (z).
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The function f is automorphic with respect to the group Γ as a function of z for any
x ∈ R

l−1. Indeed, the condition of automorphity for f is

exp

(

2Φp(−ξ) − 2Φp(0) + 2

l−1
∑

j=1

(

Φp

(

b1
j (x)
)

−Φp

(

b0
j (x)
)

)

+

l−1
∑

j=1

m j(x)a j p

)

= 1,

p = 1, . . . , l − 1, which is the same as (87). By assumption f (ξ, x) is a constant
function with respect to x. Hence

(89)
∂ f (z, x)

∂xk
= 0

for z = ξ, k = 1, . . . , l−1. All functions ∂ f (z,x)
∂xk

, k = 1, . . . , l−1 are still automorphic

with respect to the group Γ as functions of z. We can take a point x0 such that for a
neighbourhood U of x0 m j(x) would be constant for x ∈ U , j = 1, . . . , l − 1. Let us
observe also that for any x1, x2 ∈ U

f (z, x1)

f (z, x2)
=

l−1
∏

j=1

Ω
(

z, b0
j (x1)

)

Ω
(

z,−b1
j (x1)

)

Ω
(

z,−b0
j (x2)

)

Ω
(

z, b1
j (x2)

)

Ω
(

z,−b0
j (x1)

)

Ω
(

z, b1
j (x1)

)

Ω
(

z, b0
j (x2)

)

Ω
(

z,−b1
j (x2)

)

is automorphic with respect to Γ so

(90)
f (−z, x1)

f (−z, x2)
=

f (z, x2)

f (z, x1)

(since Ω(−z, y) = Ω(z,−y)). Hence

∂ f (−z, x)

∂xk

/

f (−z, x) = lim
∆xk→0

f (−z, x + ∆xk) − f (−z, x)

∆xk · f (−z, x)

=
f (z, x) − f (z, x + ∆xk)

∆xk · f (z, x + ∆xk)
= −∂ f (z, x)

∂xk

/

f (z, x).

Thus any linear combination

G(z, x) =

(

B1
∂ f (z, x)

∂x1
+ · · · + Bl−1

∂ f (z, x)

∂xl−1

)/

f (z, x)

is an odd automorphic function of z. Moreover, because of (90) and automorphity
of f (z, x2)/ f (z, x1) we have

f (Ap, x
2)

f (Ap, x1)
=

f (A ′
p, x

1)

f (A ′
p, x

2)
=

f (A ′
p, x

2)

f (A ′
p, x

1)

hence (neither Ap nor A ′
p are zeros or poles of f ) f (Ap, x

2) = ± f (Ap, x
1) and because

of the continuity, f (Ap, x
1) = f (Ap, x

2) = f (A ′
p, x

1) = f (A ′
p, x

2). By the same

reason f (∞, x1) = f (∞, x2).
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Thus G(z, x) is an automorphic function of z with zeros A1, . . . ,A2l−2, 0, ∞ (let us
recall the usual convention about zeros and poles on the boundary of the fundamen-

tal domain of a discontinuous group) and with poles±b0
j (x),±b1

j (x), j = 1, . . . , l−1.
Now let x be fixed. Taking any l − 2 points z1, . . . , zl−2 we can find constants

B1, . . . ,Bl−1,B
2
1 + · · · + B2

l−1 6= 0 such that G(z j , x) = 0, j = 1, . . . , l − 2, and
because of oddness G(−z j , x) = 0, j = 1, . . . , l−2. Moreover, by (89), G(±ξ, x) = 0.

Finally the automorphic function G(z, x) has at most 4(l−1) poles and at least 4l−2
zeros in the fundamental domain T, which is a contradiction. So the first part of the
statement (about the sequence (λn)) is proved.

By the same considerations as in the proof of Theorem 4 one can prove that for any

point β it is possible to find in any neighbourhood of β a point β y such that φ(β
y
j ),

j = 1, . . . , l − 1 are the zeros of a polynomial g(n) which is associated by Theorem 1
to the orthogonal polynomial pn. Hence by Theorem 5(b)

αn =
1

2
(a1 + · · · + a2l) −

l−1
∑

j=1

φ(β
y
j ).

Since the point β was arbitrary we proved that the possible values of αn have as a
limit set the interval

A =

{ 1

2
(a1 + · · · + a2l) −

l−1
∑

j=1

x j : xk ∈ [a2k, a2k+1], k = 1, . . . , l − 1
}

=

[

(a1 + a2l)/2 −
l−1
∑

j=1

(a2 j+1 − a2 j)/2, (a1 + a2l)/2 +

l−1
∑

j=1

(a2 j+1 − a2 j)/2
]

.

To prove the assertion for the case of general w one has to repeat the considerations
used in the proof of Theorem 4 from [38].

Remark 4 The quasiperiodicity of the sequences (αn), (λn) follows easily from [18,

Theorem 4.14], [34, Theorem 5(c)] and from the definition of the associated polyno-
mials of any order. Using this property it could be possible to prove Theorem 6 in a
shorter way. But let us point out that one needs to prove also that the “quasiperiods”

are the harmonic measures ω1(∞), . . . , ωl−1(∞) and in particular that the function
which corresponds in the theory of Riemann’s theta functions to the function f (z, x)
in the above proof is non-constant.

Let us note that the assumption of Theorem 6 is stronger than the condition of
Corollary 5(b). That situation differs from the case l = 2, when analogues of Theo-
rem 6 and Corollary 5(b) were established in [38].

Remark 5 Let us note that a preliminary announcement of the results of the paper

given in abstracts of the conference held in Kazan, September 1999, contains the
formulation of Theorem 6 with different (wrong) conditions on E and should be
changed according to this paper.
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Appendix

Proof of (20). From [45, Theorem I] it follows that for a positive definite functional
Ψρ,ν one has the equality

cap (E) = lim
n→∞

2n
√

Ψρ,ν(p2
n).

Hence by Theorem 5(a) and by (33),

cap (E) = lim
n→∞

τ · exp
(

−
l−1
∑

j=1

m(n)
j

2n
Φ j(ξ)

)

.

Now taking into account Theorem 2 and Corollary 1 the assertion is proved.

Proof of (21). Since by the definition of T j we have T j(u) = ū for u ∈ ∂K j ,
j = 1, . . . , l − 1, hence

(91)
Ω
(

T j(u),−ξ
)

Ω
(

T j(u), ξ
) exp

l−1
∑

k=1

ωk(∞)Φk

(

T j(u)
)

=
Ω(ū,−ξ)

Ω(ū, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j(ū).

Using the properties exp Φ j(−ū) = exp Φ j(u) and Ω(−ū, y) = −Ω(u,− ȳ), which
can be obtained in the same way as, for instance, (39), gives with the help of (41)

(92)
Ω(ū,−ξ)

Ω(ū, ξ)
exp

l−1
∑

k=1

ωk(∞)Φk(ū) =





Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j(u)





−1

.

On the other hand the left-hand side of (91) can be rewritten with the help of (13),
(12) and (19) as

Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j (u) · exp
(

2Φ j(ξ) −
l−1
∑

k=1

ωk(∞)ak j

)

(93)

=
Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j(u).

Combining (91)–(93) gives

(94)

∣

∣

∣

∣

Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j (u)

∣

∣

∣

∣

= 1, u ∈ ∂K j , j = 1, . . . , l − 1.

Analogously one can check (94) for u ∈ R. Note, that the function

Ω(u,−ξ)

Ω(u, ξ)
exp

l−1
∑

j=1

ω j(∞)Φ j(u)
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is not single-valued, but its modulus is single-valued, and it has in G(K1, . . . ,Kl−1)
the only simple pole at the point ξ, which corresponds to ∞. Hence (21) follows. Of

course, (20) can be deduced from (21), (19) and the well-known connection between
Green’s function and the logarithmic capacity.

Remark 6 During the preparation of the paper we have learned about the recent
work [16], where the capacity for three intervals is given in an absolutely different
form. We have learned also about the paper [44], where the Green function for the

complement of a union of disjoint closed intervals was studied with the help of the
Schwarz-Christoffel map.
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