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Abstract. All the known non-self-referential paradoxes share a reference pattern
of Yablo’s paradox in that they all necessarily contain infinitely many sentences,
each of which refers to infinitely many sentences. This raises a question: Does
the reference pattern of Yablo’s paradox underlie all non-self-referential paradoxes,
just as the reference pattern of the liar paradox underlies all finite paradoxes?
In this regard, Rabern et al. [J Philos Logic 42(5): 727–765, 2013] prove that
every dangerous acyclic digraph contains infinitely many points with an infinite
out-degree. Building upon their work, this paper extends Rabern et al.’s result
to the first-order arithmetic language with a primitive truth predicate, proving
that all reference digraphs for non-self-referential paradoxes contain infinitely many
sentences of infinite out-degree (called “social sentences”). We then strengthen this
result in two respects. First, among these social sentences, infinitely many appear
in one ray. Second, among these social sentences, infinitely many have infinitely
many out-neighbors, none of which will eventually get to a sink. These observations
provide helpful information towards the following conjecture proposed by Beringer
and Schindler [Bull. of Symb. Logic 23(4): 442–492, 2017]: every dangerous acyclic
digraph contains the Yablo digraph as a finitary minor.

§1. Introduction
It has long been realized that there is a close relationship between the truth-

theoretic paradoxes and reference patterns of sentences. Through a series of graph-
theoretic analyses of paradoxes, people recently have gained a fairly clear under-
standing of the above relationship. First, it has been proved that if a finite set of
sentences is paradoxical, there must be a circular reference pattern between these
sentences. In terms of (di)graph theory, a finite reference digraph (for a set of
sentences) is dangerous (in the sense that these sentences lead to a paradox) iff it
contains a directed cycle. From this, we can prove that a finite reference digraph is
dangerous iff it contains a subdivision of the liar digraph as a sub-digraph.1 Thus,
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1This result is first proved by Rabern et al. (2013, p. 751) in a specific infinitary propositional

language. Rabern et al.’s discovery is extended to a first-order language by Beringer & Schindler
(2017, p. 474).
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the characterization problem of reference patterns has been completely solved for
finite paradoxes.

As for the infinite paradoxes, the characterization problem is far more chal-
lenging. What complicates the matter is that for some infinite sets of paradoxical
sentences, there may not be any cyclic pattern between these sentences at all. That
is, there are (infinite) paradoxes that are non-self-referential or non-circular. The
first and also the best-known example is Yablo’s paradox.2 After the invention
of Yablo’s paradox, more and more non-self-referential paradoxes have been con-
structed.3 Moreover, people have been able to prove formally that Yablo’s paradox
and other related ones are indeed non-self-referential by the aforementioned graph-
theoretic methods.4

With the advancement of research, many people have noticed that all the known
non-self-referential paradoxes share a reference pattern of Yablo’s paradox in that
they all necessarily contain infinitely many sentences, each of which refers to in-
finitely many sentences. So, people (Beringer & Schindler, 2017, p. 474) ask: is this
just an accidental phenomenon, or does the reference pattern of Yablo’s paradox
underlie all non-self-referential paradoxes, just as the reference pattern of the liar
paradox underlies all finite paradoxes?

Concerning the above question, we must mention a theorem proved by Rabern
et al. (2013, pp. 756-757): every dangerous acyclic digraph contains infinitely many
points with an infinite out-degree. As far as the author knows, this is the first sig-
nificant result related to the above question. However, Rabern et al.’s result, as
Beringer & Schindler (2017, p. 445) point out, is formulated in an infinitary propo-
sitional language so that the definition of the so-called reference graphs, an highly
crucial part of Rabern et al. (2013)’s framework, “no longer yields satisfactory
results when we move to first-order languages.” (ibid., p. 445).

This paper extends Rabern et al.’s result to the standard language of studying
truth and paradoxes, namely, the first-order arithmetic language with a primitive
truth predicate. Within this language, we employ the notion of dependency relation
introduced by Leitgeb (2005) to define reference digraphs for paradoxes. Based on
this framework, we prove that every non-self-referential paradox contains infinitely
many sentences (called “social sentences”), each of which depends on infinitely
many sentences. This result is an equivalent formulation of Rabern et al.’s result
in the first-order language. We then strengthen this result by proving that there
are infinitely many of these social sentences in a ray. Furthermore, as we will see,

2On the one hand, the non-self-referentiality of Yablo’s paradox is considered so self-evident
by many (including Yablo himself) that it requires no more explanation. For instance, in Yablo
(1985) and Yablo (1993), although Yablo takes what he constructs as a “paradox without self-
reference”, he never explains a single word about its non-self-referentiality. On the other hand,
Priest (1997), among others, disagrees that Yablo’s paradox is non-self-referential. Priest’s point
of view is irrelevant to our current study. The circularity of Yablo’s paradox he discusses is not
associated with the referential structure of sentences on which the present article focuses. We
refer the reader to Leitgeb (2002) for more information.

3Among all the known constructions, we highlight Cook (2004, p. 770)’s unwinding, a method
that can systematically generate paradoxes similar to Yablo’s paradox. A specific unwinding
variant, now known as the ∃∀-unwinding variant, is given by (Yablo, 2006, p. 144). This method
has been further developed by Cook (2014) himself, Schlenker (2007), and Hsiung (2021) in various
directions. Additionally, it is worth noting that Butler (2018) provides a procedure to construct
continuum-many variants of Yablo’s paradox.

4See, for instance, (Cook, 2004, p. 770), (Leitgeb, 2005, p. 170), and (Hsiung, 2020, pp.
902-903).
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the social sentences appearing in a ray can meet an even stronger condition: each
of them depends on infinitely many sentences, none of which eventually gets to a
sink.

Our study yields some insights into the reference patterns of non-self-referential
paradoxes, revealing a structural similarity shared by all such paradoxes with
Yablo’s paradox. Our observation prompts a conjecture proposed by Beringer &
Schindler: “A reference [di]graph is dangerous iff it contains a subdivision of the
liar-graph as a subgraph or the Yablo-graph as a final minor.” The non-trivial
aspect of this conjecture lies in the claim that all dangerous acyclic digraphs con-
tain the Yablo digraph as a finitary minor. While this paper has not yet proven
this conjecture, our research endeavors to contribute helpful information that may
ultimately lead to its confirmation.

As mentioned above, we carry out our research in the first-order language of
Peano arithmetic with a primitive truth predicate. In this language, we define
the notion of reference digraphs by employing the notion of semantic dependence
relation proposed by Leitgeb (2005) (Section 2). We establish a version of Rabern
et al.’s theorem in the first-order arithmetic language and give a strengthening
involved in rays in Section 3. Then, in Section 4, we prove that those infinitely many
social sentences can meet the stronger condition mentioned above. Based on the
above results, we give a series of characterizations about the dangerous digraphs in
Section 5. Finally, in the concluding section, we briefly discuss a potential approach
to Beringer & Schindler’s conjecture based on the existing findings.
Graph-theoretic Preliminaries. Let G be a digraph (without parallel edges),
that is, a pair ⟨D,≺⟩, where is D is a non-empty set and ≺ is a binary relation on
D. For two points u and v of D, u≺v is read as “u ‘see’ v”. Let u0 u1 . . . ul be a
finite sequence of points of G. If for all 0 ≤ i < l, at least one of ui and ui+1 can
see the other, then we call this sequence a walk in G. u0 and ul are also called the
two endpoints of this walk. l is called its length. This walk is directed, if ui sees
ui+1 for all 0 ≤ i < l. In that case, ul is reachable from u0. A walk is a path, if
no point of it is repeated except possibly its two endpoints. Note that a (directed)
walk always contains a (directed) path connecting two endpoints of this walk.

A walk is closed if its endpoints are the same point. A directed cycle is a closed
directed path. A loop is a directed cycle of length 1. A digraph is acyclic, if it
contains no directed cycles (equivalently, no closed directed walks). An acyclic
digraph, that is, a directed acyclic graph, is also called a DAG. A digraph is loop-
free, if it contains no loops.

Whenever u sees v, we also say v is an out-neighbor of u (and u is an in-
neighbor of v). The out-degree of a point is the size (cardinality) of the set of its
out-neighbors. A point of out-degree zero is called a sink. A digraph is locally
finite, if each of its points has a finite out-degree.

A digraph G = ⟨D,≺⟩ is conversely well-founded, if every non-empty subset S
of D has a ≺-maximal element, that is, an element of S having no out-neighbor in
S. A digraph is conversely ill-founded, if it is not conversely well-founded. A ray
G is an infinite ≺-increasing sequence of points in G, u0≺u1≺ . . .. Note that under
the axiom of choice, a digraph G is conversely ill-founded, iff there is a ray in G.

The relation ≺∗ is the transitive closure of ≺, if it meets the requirements:
u≺∗v, iff v is reachable from u by a directed path. For any u, we use ≺∗(u) for the
set {v | u≺∗v}. Also, we use ≼ for the reflexive closure of ≺. That is, u≼v, iff u≺v
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or u = v. Thus, ≼∗ is the transitive closure of ≼. It can be seen as the reflexive
and transitive closure of ≺.

Note that whenever D′ is a subset of D, the sub-digraph ⟨D′,≺ ↾D′⟩ is usually
denoted by ⟨D′,≺⟩ for brevity’s sake.

§2. Paradoxes and Their Reference Digraphs
Let LT be the first-order language of Peano arithmetic (PA) with a unary

predicate symbol T . It is well known that we can formulate the paradoxical and
other pathological sentences in LT by a routine diagonal method.5 For instance,
we can construct a sentence L such that L ↔ ¬T ⌜L⌝ is provable in PA. L is the
very liar sentence. T ⌜L⌝ is a shorthand for T (⌜L⌝), in which ⌜L⌝ is the numeral
corresponding to the Gödel number of L. If no confusion arises, we also use it
to denote the Gödel number of L itself. Another important example is the set of
sentences Y0, Y1, . . . satisfying that for all number n, Yn ↔ ∀x (x > n̄ → ¬T ⌜Yẋ⌝)
is provable in PA.6 Y0, Y1, . . . are Yablo’s sentences.

In this article, we always fix the standard structure N of natural numbers as
the ground model for LT . So, by a structure for LT , we mean a pair ⟨N, X⟩,
where X ⊆ N is an interpretation for T . We denote the valuation of a sentence
A by VX(A), which is a shorthand for V⟨N,X⟩. When VX(A) = 1/0, we say A is
true/false under the interpretation X. Sometimes, we identify a sentence with its
Gödel number. For instance, for any set Σ of sentences, the “Σ” in the notation
VΣ is not Σ itself but the set of the Gödel numbers of sentences in Σ.

By Tarski’s undefinability theorem of truth, it is impossible to find an interpre-
tation X ⊆ N of T such that all instances of Tarski’s T-schema T ⌜A⌝ ↔ A are
true under X. The reason is that the liar sentence L or any other paradox Σ would
lead to a contradiction provided that the instances of the T-schema T ⌜A⌝ ↔ A ob-
tained from L or the sentences in Σ were true. So, the following is a folk definition
of paradoxicality.7

Definition 2.1. X ⊆ N is a truth predicate for a set Σ of sentences, if VX (T ⌜A⌝)
= VX (A) holds for any A ∈ Σ. Σ is paradoxical, if no X ⊆ N is a truth predicate
for Σ.

By definition, we can see that the liar sentence L (i.e., the singleton {L}) is
paradoxical, so is the set of Yablo’s sentences Yn’s. We leave the details to the
reader.

Next, we introduce Leitgeb (2005)’s semantic dependence relation, which is a
fundamental concept of studying the (self-)reference relation between sentences in
this article. From now on, we use Σ(A) instead of VΣ(A) to make the notation
more compact.

Definition 2.2 (Leitgeb (2005)). A sentence A depends on a set Σ of sentences,
if for any sets Γ1, Γ2 of sentences, whenever Σ ∩ Γ1 = Σ ∩ Γ2, VΓ1

(A) = VΓ2
(A).

5See, for instance, (Boolos, 1993, pp. 53-54) for more information about this method.
6n is the numeral denoting the the number n. ẋ is Feferman (1960)’s dot notation, by which we

allow the scope of the quantifier ∀x covers the formula Yx, even though Yx hides behind a closed
term.

7See also (Hsiung, 2020, p. 893).
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Intuitively, A depends on Σ, iff the truth value of A is only relevant to “the
presence or absence of the sentences that are contained in Φ [here, Σ] in/from the
extension of the truth predicate.” (Leitgeb, 2005, p. 160) The following are three
primary properties about the dependence relation (ibid., p. 161).

Lemma 2.3. The dependence relation has the following properties:
(1) Any sentence depends on LT , i.e., the set of all the sentences.
(2) If A depends on Σ and Σ ⊆ Σ′, then A depends on Σ′.
(3) If A depends on both Σ and Σ′, then A depends on Σ ∩ Σ′.

For example, we can verify that the liar sentence depends on {L}, which is the
smallest one among all the sets on which L depends. In this sense, L is essentially
depends on {L} (ibid., p. 162). Also, for any number n, Yn essentially depends on
the set {Yk | k > n}.

Definition 2.4 (Beringer & Schindler (2016)). f is a dependence function on
LT , if it is a function which assigns to any sentence a set of sentences, such that
A depends on f(A) for any A. ≺f , a binary relation on LT , is defined by: A≺fB,
iff B ∈ f(A). The digraph ⟨LT ,≺f ⟩ is called the reference digraph (of LT ) induced
from f . 8

Let Σ be a set of sentences. The digraph ⟨Σ,≺f ⟩, or more precisely, ⟨Σ,≺f ↾Σ⟩,
is called a reference digraph of Σ (induced from f). What is more, ≺f is called a ref-
erence relation on Σ. The following theorem establishes a fundamental connection
between a paradox and its reference digraphs.9

Theorem 2.5. If a set of sentences is paradoxical, then any of its reference
digraphs is conversely ill-founded.

Proof. Let Σ be a set of sentences. Suppose that there is a dependence function f
such that ⟨Σ,≺f ⟩ is conversely well-founded. We prove that Σ is not paradoxical.
Note that since the relation ≺f is conversely well-founded on Σ, we have a rank
function on Σ, say ρ, along its converse.

For any ordinal α, define inductively Σα as follows.10 First, let Σ0 be Σ. Second,
let Σα+1 be the set of sentences A in Σ such that Σα(A) = 1. Finally, for a limit
α, let Σα be the limit inferior of the sequences ⟨Σβ | β < α⟩, that is,

Σα = {A | ∃β < α∀γ(β ≤ γ < α → A ∈ Σγ)} .

Claim. For any A ∈ Σ, whenever α > ρ(A), A ∈ Σα, iff A ∈ Σρ(A)+1.
If this claim is proved, then let θ be the least upper bound of the ordinals

ρ(A) for all A ∈ Σ. Then, for all A ∈ Σ, A ∈ Σθ+1, iff A ∈ Σθ+2. Hence,
Σθ+1(T ⌜A⌝) = Σθ+1(A) holds for all A ∈ Σ. Consequently, Σ is not paradoxical.

8The notion of reference digraph is initially introduced by Rabern et al. (2013, p. 737) in
the context of an infinite propositional language. Our definition is a slightly modified version of
Beringer & Schindler (2016)’s. See also (Beringer & Schindler, 2017, p. 453).

9An equivalent result with a different form has been found by Rabern et al. (2013, pp. 749-750)
in a setting of infinitary propositional language. Note that their proof is non-constructive due to
Zorn’s lemma.

10This definition applies a revision rule proposed independently by Gupta (1982, p. 10) and
Herzberger (1982, p. 68).
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Proof of Claim. The proof is a transfinite induction on the rank of A.
First, when ρ(A) = 0, we can see f(A) ∩ Σ = ∅. Also, for any α ≥ 0, Σα is a

subset of Σ, and so, f(A) ∩ Σα = ∅. By the definition of dependence relation, we
have Σα(A) = Σ(A). Hence, for all α ≥ 1, A ∈ Σα, iff A ∈ Σ1.

Next, fix a sentence A in Σ, and suppose that the claim is true for all B ∈ Σ
with ρ(B) < ρ(A). We prove the claim for A. We consider two cases. If α = γ +1,
it suffices to prove that for any γ ≥ ρ(A), Σγ(A) = Σρ(A)(A). For this, we only
need to prove that f(A) ∩ Σγ = f(A) ∩ Σρ(A). Fix B ∈ f(A) arbitrarily. Since
A≺fB, ρ(B) < ρ(A). Also, we know γ ≥ ρ(A), and so γ > ρ(B). Now, by the
induction hypothesis, B ∈ Σγ , iff B ∈ Σρ(B)+1. By the induction hypothesis again,
the latter is equivalent to B ∈ Σρ(A). We thus obtain B ∈ Σγ , iff B ∈ Σρ(A). The
desired equation follows.

If α is a limit greater than ρ(A), then by definition of Σα, it suffices to find an
ordinal β < α such that for all γ with β ≤ γ < α, A ∈ Σγ holds, iff A ∈ Σρ(A)+1.
Let β be the supremum of all the ordinal ρ(B) + 1 for B ∈ f(A), that is, β =∪

B∈f(A)(ρ(B) + 1). Note that A≺fB, and so ρ(B) < ρ(A), and ρ(B) + 1 ≤ ρ(A).
It follows β ≤ ρ(A) < α. Now, if β ≤ γ < α, then for all B ∈ f(A), γ > ρ(B).
By the inductive hypothesis, B ∈ Σγ , iff B ∈ Σρ(B)+1. On the other hand, we also
have B ∈ Σρ(A), iff B ∈ Σρ(B)+1 because ρ(A) > ρ(B). To sum up, we find an
ordinal β < α, such that for any B ∈ f(A) and any γ with β ≤ γ < α, B ∈ Σγ ,
iff B ∈ Σρ(A). Thus, Σγ ∩ f(A) = Σρ(A) ∩ f(A), which implies Σγ(A) = Σρ(A)(A).
Consequently, β satisfies that for all γ with β ≤ γ < α, A ∈ Σγ , iff A ∈ Σρ(A)+1. □

We now relate the reference digraph to the notion of self-reference. The following
definition of self-reference, given by Hsiung (2020, p. 895), is a generalization of
Leitgeb (2005, p.168)’s notion of (direct) self-reference.

Definition 2.6. A set Σ of sentences is self-referential, if each reference digraph
of Σ contains at least a closed directed walk. That is, for any dependence function
f , there are sentences A1, …An in Σ, such that A1≺fA2≺f . . .≺fAn and A1 = An.

It can be proved that Σ is self-referential, iff each of its reference digraphs
contains at least a closed directed path (a directed cycle), that is, a closed directed
walk in which none of the points is repeated except the two endpoints (A1 = An).
See (Hsiung, 2020, pp. 895-896) for the proof.

Suppose ≺ be a conversely ill-founded relation on a set Σ, then by the axiom of
choice, it is not hard to find an infinite increasing sequence of elements of Σ, say,
A0≺A1≺A2≺ . . .. If Σ is finite, this sequence must contain a directed cycle. A ray
is an infinite increasing sequence in which no points are repeated. The following
corollary is straightforward by Theorem 2.5.

Corollary 2.7.
(1) If a paradoxical set of sentences is finite, it is self-referential.
(2) If a paradoxical set of sentences is non-self-referential, each of its refer-
ence digraphs contains a ray.

In the proof of Theorem 2.5, Σθ+1, the set witnessing the non-paradoxicality of
Σ, is a subset of Σ. So, as to Corollary 2.7 (1), if a finite set Σ is non-self-referential,
we can find a subset of Σ such that it is a truth predicate for Σ. This result has
been proved in (Hsiung, 2020, Theorem 1, pp. 896-897). Theorem 2.5 is indeed a

6

https://doi.org/10.1017/S1755020324000200 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000200


generalization of the latter. We will further strengthen Corollary 2.7 (2) by showing
that for a non-self-referential paradox, each of its referential digraphs contains a
ray in which there are infinitely many “social” sentences (to be made clear later).

We close this section with three examples. First, the liar sentence is evi-
dently self-referential. Second, the set of Yablo’s sentences Yn (n ≥ 0) is non-
self-referential. For this, only note that for any numbers n,m and any dependence
function f , Yn≺fYm, iff n < m. Thus, it is impossible to find a finite sequence
Yn1≺fYn2≺f . . .≺fYnk

with Yn1 = Ynk
. At last, we consider sentences Mn (n ≥ 0)

such that M0 ↔ ∃x¬T ⌜Mẋ⌝ and Mn+1 ↔ T ⌜Mn⌝ (n ≥ 0) are provable in PA.
Let us call these sentences “McGee’s sentences” for the construction of them is due
to McGee (1985, p. 400). M0 essentially depends on {Mn | n ≥ 0}, and so the set
of McGee’s sentences is self-referential. Also, it is paradoxical. We leave the details
to the reader.

§3. Social Sentences
The three examples given at the end of the previous section represent three cat-

egories of paradoxes. The liar sentence is a typical finite paradox (i.e., a paradoxical
set containing only finitely many sentences). By the first result of Corollary 2.7, all
finite paradoxes are self-referential. Both Yablo’s paradox and McGee’s paradox are
infinite paradoxes. Also, we notice a difference between them: the former contains
infinitely many sentences which only depend on infinite sets, while there is only such
sentence, namely M0, in the latter. All known non-self-referential paradoxes, such
as various variants of Yablo’s paradox, satisfy the property we just point out about
Yablo’s paradox. So, a natural question is whether there is any infinite paradox in
which only finitely many sentences depend on infinite sets.

Definition 3.1. Let G = ⟨D,≺⟩ be a digraph. A point u ∈ D is social in G,
if u is a point of infinite out-degree in G. That is to say, u has infinitely many
out-neighbors in D. G is locally finite, if no point of D is social in G.

The following theorem gives a negative answer to the above question.

Theorem 3.2. If a paradoxical set is non-self-referential, any of its reference
digraphs contains infinitely many social sentences.

Let us say that a set of sentences is locally finite, if it has a locally finite reference
digraph. One specific case of Theorem 3.2 is as follows. Our proof of Theorem 3.2
depends on the proof of this specific case.

Theorem 3.3 (Hsiung (2020)). If a paradoxical set of sentences is locally finite,
it is self-referential.

Note that Theorem 3.2 is a strengthening of Theorem 3.3, as the latter is equiv-
alently to say that for any non-self-referential paradoxical set of sentences, its ref-
erence digraphs always contain at least one social sentence. Later, we will further
strengthen Theorem 3.2 to assert that for any non-self-referential paradoxical set
of sentences, its reference digraphs always contain infinitely many social sentences,
each of which can “see” infinitely many ungrounded points (see Theorem 4.3).

The proof of Theorem 3.3 is based on the first result of Corollary 2.7. We refer
the reader to (Hsiung, 2020, pp. 897-898) for details.
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Before proving Theorem 3.2, we still need to utilize two lemmata.

Lemma 3.4. Suppose ⟨Σ,≺⟩ is a reference digraph of Σ and ∆ is a ≺-closed
subset of Σ. If ∆ has a truth predicate, then it has one which is a subset of ∆.

Proof. Let X be a truth predicate for ∆, we prove that X ∩ ∆ is also a truth
predicate for ∆. First note that when A ∈ ∆, A ∈ X ∩∆, iff A ∈ X. The latter
is equivalent to VX(A) = 1. Let ≺ = ≺f for some dependence function f . Then,
by ≺-closedness of ∆, f(A) is included in ∆. Thus, A depends on ∆. We get
VX(A) = 1, iff VX∩∆(A) = 1. Consequently, A ∈ X ∩∆, iff VX∩∆(A) = 1. □

The following lemma is a version of a result proved by Rabern et al. (2013,
p. 755) in a propositional logic setting. In our proof of the lemma, the idea of
applying Zorn’s lemma to closed sets is credited to Rabern et al., but in the setting
of first-order language, we need to rely on the properties of dependence relations
to find the required truth predicate.

Lemma 3.5. Suppose ⟨Σ,≺⟩ is a reference digraph of Σ. If Σ is paradoxical, then
there is a non-empty subset ∆ of Σ such that any non-empty ≺ ↾∆-closed subset of
∆ is also paradoxical.

Proof. Let ≺ = ≺f for some dependence function. Assume that for any non-
empty subset ∆ of Σ, there is a non-empty ≺ ↾∆-closed subset of ∆ such that it
is not paradoxical. We consider the collection of all pairs ⟨Θ, X⟩ such that Θ is a
≺ ↾∆-closed subset of ∆ for some ∆ ⊆ Σ and X is a truth predicate for Θ. By
Lemma 3.4, we can suppose X ⊆ Θ. We denote this collection by S. Define a
binary relation ≤ on S as follows: ⟨Θ, X⟩ ≤ ⟨Θ′, X ′⟩, iff Θ ⊆ Θ′ and X = X ′ ∩Θ.
We can easily prove that ≤ is a partial order on S. We leave the details to the
reader.

To apply Zorn’s lemma to ⟨S,≤⟩, we first note that S is non-empty since the pair
⟨∅, ∅⟩ is apparently a member of it. Now, suppose ⟨Θ0, X0⟩ ≤ . . . ≤ ⟨Θα, Xα⟩ ≤ . . .
is a chain in ⟨S,≤⟩, where α belongs to an index set I. For each α ∈ I, we have
that Θα is ≺ ↾∆α

-closed, with ∆α being a subset of Σ. We define ΘI as the union
of all Θα with α ∈ I, and ∆I as the union of all ∆α with α ∈ I. Moreover, we
define a subset XI of ΘI as follows: for any A ∈ ΘI , let α be the smallest ordinal
with A ∈ Θα, then include A in XI if and only if A ∈ Xα.

Now, we claim that ⟨ΘI , XI⟩ is an upper bound for the given chain.
It is clear that ΘI is ≺ ↾∆I

-closed. ⟨ΘI , XI⟩ is an upper bound of all ⟨Θα, Xα⟩
for α ∈ I. For this, note that by our definition of XI , for any A ∈ Θα, A ∈ XI , iff
A ∈ Xα. That is, XI ∩Θα = Xα.

We will next verify that XI is a truth predicate for ΘI . Let’s fix A ∈ ΘI . As
mentioned earlier, let α be the least ordinal with A ∈ Θα. Due to the closedness of
≺ ↾∆α , we know that f(A) is a subset of Θα, and so A depends on Θα. Therefore,
we have the following chain of equivalences:

A ∈ XI , iff A ∈ Xα, (by definition of α)
iff VXα(A) = 1, (Xα is a truth predicate for Θα)
iff VXI∩Θα(A) = 1, (Xα = XI ∩Θα)
iff VXI

(A) = 1. (A depends on Θα)
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As a result, every chain in ⟨S,≤⟩ has an upper bound. Zorn’s lemma gives us a
maximal element in ⟨S,≤⟩, denoted as ⟨Θ, X⟩. We claim that Θ = Σ. If this claim
is true, our proof is complete.

Let’s assume the contrary, i.e., Θ ̸= Σ. In that case, the set Σ \Θ is non-empty.
Consequently, we can find a non-empty subset Θ′ of Σ \ Θ such that Θ′ is closed
under ≺ ↾Σ\Θ and is not paradoxical. Let X ′ ⊆ Θ′ be a truth predicate for Θ′.

We prove that ⟨Θ∪Θ′, X ∪X ′⟩ is a member of S. First, it is clear that Θ∪Θ′ is
clearly ≺ ↾∆-closed. To see that X ∪X ′ is a truth predicate for Θ∪Θ′, we observe
that if A ∈ Θ, then A depends on Θ. Thus, since (X ∪ X ′) ∩ Θ = X, we have
VX∪X′(A) = VX(A). Similarly, if A ∈ Θ′, we can get VX∪X′(A) = VX′(A). From
this, it follows that for all A ∈ Θ ∪ Θ′, we have A ∈ X ∪ X ′, iff VX∪X′(A) = 1.
Consequencely, we can conclude that X ∪X ′ is a truth predicate for Θ ∪Θ′.

Since X ′ ∩Θ = ∅, we can immediately see that ⟨Θ, X⟩ ≤ ⟨Θ ∪Θ′, X ∪X ′⟩ and
they are not equal. ⟨Θ, X⟩ is not maximal, a contradiction. □
Proof of Theorem 3.2. Suppose ⟨Σ,≺⟩ is a reference digraph of Σ and it is a
DAG. It suffices to prove that for any natural number n, if there are at most n social
points in ⟨Σ,≺⟩, then Σ is not paradoxical. We prove this result by induction. The
case for n = 0 is Theorem 3.3.

Consider the case when there are at most n+1 social points in ⟨Σ,≺⟩. We will
apply Lemma 3.5 to the proof. For this, for any non-empty subset ∆ of Σ, fix a
point in ∆, namely A. Consider the set ≺∗(A). If it contains no social points, then
by Theorem 3.3, this set is not paradoxical. Thus, ≺∗(A) ∩∆ is a non-paradoxical
and ≺∆-closed subset of ∆. If it contains at least a social point, fix one of these
social points and let it be B. Now the set ≺∗(B) contain at most n social point since
B is out of this set. By the inductive hypothesis, ≺∗(B) is not paradoxical. Again,
we obtain a ≺∆-closed subset of ∆, namely, ≺∗(B) ∩∆, which is non-paradoxical.
To sum up, for any non-empty subset ∆ of Σ, we can find a non-empty ≺ ↾∆-closed
subset of ∆ such that it is not paradoxical. By Lemma 3.5, Σ is not paradoxical.
□

From Theorem 3.2, together with Lemma 3.5, we can deduce the following
important consequence.

Theorem 3.6. Suppose ⟨Σ,≺⟩ is a reference digraph of Σ. If Σ is a non-self-
referential and paradoxical set, then there is a ray A0≺∗A1≺∗A2≺∗ . . . in some
sub-digraph ⟨∆,≺⟩ of ⟨Σ,≺⟩ such that for all natural number n, An is social in
⟨∆,≺⟩.
Proof. Recall that by ⟨∆,≺⟩, we mean ⟨∆,≺ ↾∆⟩. By Lemma 3.5, we can fix a
sub-digraph ⟨∆0,≺⟩ of ⟨Σ,≺⟩ such that any non-empty ≺ ↾∆0

-closed subset of ∆0

is also paradoxical. Since ⟨∆0,≺⟩ is a DAG, by Theorem 3.2, we can find a social
point in ⟨∆0,≺⟩. Let it be A0 and Let Θ0 denote ≼∗(A0) ∩ ∆0. Note that since
A0 is social in ⟨∆0,≺⟩, A0 is also social in ⟨Θ0,≺⟩. Since Θ0 is a ≺ ↾∆0

-closed set
in ⟨∆0,≺⟩, it must be paradoxical by our choice of the digraph ⟨∆0,≺⟩. Hence,
by Lemma 3.5 again, we can fix a sub-digraph ⟨∆1,≺⟩ of ⟨∆0,≺⟩ such that any
non-empty ≺ ↾∆1

-closed subset of ∆1 is also paradoxical. By Theorem 3.2 again,
we can fix a social point in ⟨∆1,≺⟩, namely A1. Let Θ1 denote ≼∗(A1)∩∆1. Note
that A1 is social in ⟨Θ1,≺⟩. Besides, since Θ1 ⊆ Θ0, A1 is also social in ⟨Θ0,≺⟩.

Repeating the above process, we can obtain a ray A0≺∗A1≺∗A2≺∗ . . ., and a
sequence ∆0 ⊋ ∆1 ⊋ ∆2 ⊋ . . . such that for all n ≥ 0, Θn = ≼∗(An) ∩ ∆n is
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≺ ↾∆n -closed in ∆n, and An is social in ⟨Θn,≺⟩. It is clear that every An is social
in ⟨Θ0,≺⟩ since Θ0 ⊇ Θn. □

Theorem 3.2 tells us that there are infinitely many social sentences in any refer-
ence digraph for this paradox. Now by Theorem 3.6, we know, among the infinitely
many social sentences we find in any reference digraph for this paradox, there are
infinitely many appearing in a ray. So, Theorem 3.6 provides us with more in-
formation than Theorem 3.2. By the way, Theorem 3.6 is also a strengthening of
Corollary 2.7 (2).

We conclude this section with a generalization of Theorem 2.5.

Definition 3.7. Let G = ⟨D,≺⟩ be a digraph. The social part of G is the set of
all points u ∈ D with u≼∗v for some social point v in D.

Theorem 3.8. If a paradoxical set is non-self-referential, then for any reference
digraph, its social part is conversely ill-founded.

Proof. Let Σ be a non-self-referential set of sentences. Then there exists a
dependence function f such that the corresponding reference digraph ⟨Σ,≺f ⟩ is
acyclic. Suppose there is a reference digraph ⟨Σ,≺f ′⟩ whose social part is conversely
well-founded. Let f ′′ be a function on LT defined by f ′′(A) = f(A)∩ f ′(A). Then
f ′′ is a dependence function on LT . By replacing f with f ′′, we can suppose f
meets the conditions (i) ⟨Σ,≺f ⟩ is a DAG, and (ii) the social part of ⟨Σ,≺f ⟩ are
conversely well-founded.

We need to prove that Σ is not paradoxical. To this end, we must find a set,
say Γθ, such that Γθ(T ⌜A⌝) = Γθ(A) holds for all sentence A in Σ.

We now divide Σ into two parts. Let Σs be (the domain of) the social part of
the digraph digraph ⟨Σ,≺f ⟩. Let Σc be Σ \Σs, i.e., the complement of Σs relative
to Σ. Note that Σc is closed to ≺f . That is, if A ∈ Σc and A≺fB, then B ∈ Σc.

By our supposition (ii), the restriction of ⟨Σ,≺f ⟩ to Σs, i.e., ⟨Σs,≺f ↾Σs⟩, is
conversely well-founded. Hence, there is a rank function ρ over the set Σs for (the
converse) of ≺f .

Since every sentence in Σc is locally finite and non-self-referential, by Theorem
3.3, there exists Γ such that for all A ∈ Σc, Γ(T ⌜A⌝) = Γ(A). For each ordinal α,
we inductively define a set Γα as follows: Γ0 = Γ, Γα+1 = {A ∈ Σ | Γα(A) = 1},
and for a limit α, Γα is the limit inferior of the sequences ⟨Γβ | β < α⟩.
Claim 1. For any A ∈ Σc and any ordinal α, A ∈ Γα, iff A ∈ Γ.
Proof of Claim 1. Fix A ∈ Σc, we prove by transfinite induction on α. The base
case α = 0 is evident. For the case α = γ+1, it is sufficient to show Γγ(A) = Γ(A).
For this, we only need to prove Γγ ∩ f(A) = Γ ∩ f(A). Whenever B ∈ f(A), we
have A≺fB. Since Σc is closed to ≺f , A ∈ Σc implies B ∈ Σc. By the induction
hypothesis, B ∈ Γγ , iff B ∈ Γ. The desired result follows immediately.

If α is a limit, let β =
∪

B∈f(A)(ρ(B)+1). Then, for any B ∈ f(A), if β ≤ γ < α,
then ρ(B) < γ < α, and by the induction hypothesis, B ∈ Γγ , iff B ∈ Γ. Therefore,
Γγ ∩ f(A) = Γ ∩ f(A). For any γ with β ≤ γ < α, we obtain A ∈ Γγ+1, iff A ∈ Γ.
We can conclude that A ∈ Γα, iff A ∈ Γ.
Claim 2. For any A ∈ Σs and any α > ρ(A), A ∈ Γα, iff A ∈ Γρ(A)+1.
Proof of Claim 2. Again, the proof is a transfinite induction on the rank of A ∈ Σs.
First, when ρ(A) = 0, we need to prove for any α > 0, A ∈ Γα, iff A ∈ Γ1. In
this case, A must be a social sentence, and f(A) ⊆ Σc. If α = γ + 1, then for any

10

https://doi.org/10.1017/S1755020324000200 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000200


B ∈ f(A), by Claim 1, B ∈ Γγ , iff B ∈ Γ. It follows Γγ ∩ f(A) = Γ ∩ f(A). Thus,
Γγ(A) = Γ(A), and so A ∈ Γα, iff A ∈ Γ1. If α is a limit, let β =

∪
B∈f(A)(ρ(B)+1).

Then, by Claim 1 again, we can prove for any γ with β ≤ γ < α, Γγ ∩ f(A) =
Γ ∩ f(A), and thus, Γγ(A) = Γ(A). We can obtain that A ∈ Γα, iff A ∈ Γ1.

Next, suppose the claim is true for any B ∈ Σs with ρ(B) < ρ(A). We must
prove it is true for A ∈ Σs. The proof is still a transfinite induction on α, which
is the same as the basis case ρ(A) = 0, except that we appeal to the inductive
hypothesis instead of Claim 1. We omit the details.

Let θ be the least upper bound of the ordinals ρ(A) + 1 for all A ∈ Σs. By the
above two claims, we can conclude that for any sentence A of Σ, if α ≥ θ, then A ∈
Γα, iff A ∈ Γθ. In particular, A ∈ Γθ+1, iff A ∈ Γθ. That is, Γθ(T ⌜A⌝) = Γθ(A). □

§4. Strongly Social Sentences
In this section, we continue to strengthen the theorems we have obtained in the

previous section.
We first introduce the notion of grounded points.

Definition 4.1. Let G = ⟨D,≺⟩ be a digraph. A point u of D is called a grounded
point in G, if ≼∗(u) is conversely well-founded; otherwise, it is ungrounded. The
grounded part of G is the set of all grounded point in G.

Note that a sink is a point of out-degree zero. Thus, a sentence is grounded in a
reference digraph, iff any of the walks starting from it eventually reaches a sink.11

Recall that in a digraph G = ⟨D,≺⟩, a point u ∈ D is a social point, if u can see
infinitely many points.

Definition 4.2. Let G = ⟨D,≺⟩ be a digraph. u ∈ D is a strongly social point
in G, if u can see infinite many ungrounded points in G. A weakly social point (in
G) is a social point whose sociality (in G) is not strong.

We must emphasize that the notion of sociality given by Definition 4.2 is relative
to a specific digraph. In particular, the distinction between strong social points
and weakly social ones makes sense only if we have specified to which digraph these
points belong. For some sentences, when we say that they are strongly (or weakly)
social, we mean that they are so in some reference digraph fixed in the context.

The following is a strengthening of Theorem 3.2.

Theorem 4.3. If a paradoxical set is non-self-referential, any of its reference
digraphs contains infinitely many strongly social sentences.

The following theorem is a specific case of Theorem 4.3. We first prove it by
König infinity lemma before proving Theorem 4.3. The proof is a generalization of
the proof given by Hsiung (2020, pp. 897-898).

11The notion of groundedness originates from Herzberger (1970, p. 148). The present one is the
same as the one given by Halbach et al. (2003, p. 193), who use the term “converse wellfounded”
instead. See also (Kripke, 1975, p. 694), (Yablo, 1982, p. 122), (Leitgeb, 2005, p. 168), (Rabern
et al., 2013, p. 748), and (Beringer & Schindler, 2017, p. 452) for other related but different
notions of groundedness.
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Theorem 4.4. If a paradoxical set is non-self-referential, the social sentences in
any of its reference digraphs cannot be all weak.

Proof. Let Σ be a non-self-referential set of sentences. Suppose it has a reference
digraph in which all social sentences are weak. So, we can find a dependence
function f such that ⟨Σ,≺f ⟩ whose social points are all weak. Since Σ is non-self-
referential, we can, as we do in Theorem 3.2, further suppose ⟨Σ,≺f ⟩ is a DAG.
We will construct a truth predicate for Σ.

Let Σg be the set of all grounded points in ⟨Σ,≺f ⟩. Note that Σg is conversely
well-founded. Moreover, it is closed to ≺f . So, by Theorem 2.5 and Lemma 3.4,
there exists a subset Γg of Σg such that Γg is a truth predicate for Σg.

Let Σ∗ be Σ \ Σg, i.e., the complement of Σg to Σ. We apply König’s infinity
lemma to find a truth predicate for Σ. Let Σ∗ = {Ak | k ∈ N}, and for any k ∈ N,
let Σ∗

k = {Ai | i < k}. For any k ∈ N, we say a mapping s from {i ∈ N | i < k}
to {0, 1} is a k-sequence, if there is a set Γk such that (i) for any A ∈ Σ∗

k ∪ Σg,
Γk (T ⌜A⌝) = Γk(A), (ii) s(i) = Γk(Ai), and (iii) if A ∈ Σg, then Γk(A) = Γg(A). k
is the length of s. Note that Γk is a truth predicate for Σ∗

k ∪ Σg. For convenience,
it is called a “truth witness” to the k-sequence s. Let T be the set of k-sequences
for all k ∈ N, and let < be a binary relation on T given by: s < s′, iff the length
of s is less than that of s′, and for all i less than the length of s, s(i) = s′(i). See
Figure 1 for an illustration of the idea.

A0 A1

…
A2 A3 A4

Σ∗

…Σg

Figure 1: In this reference digraph, A1 and A3 are two weakly social sentences.
By the shaded area, we indicate which sentences need to be considered in order to
obtain a truth witness for a 2-sequence.

It can be easily verified that ⟨T , <⟩ is a binary tree whose root is the empty
sequence. For any k ∈ N, since there are only finitely many social sentences in the
set Σ∗

k ∪ Σg, by Theorem 3.2, there is a truth predicate for it, which is a truth
witness to some k-sequence. From this point, we can easily see that ⟨T , <⟩ is an
infinite tree. By König’s infinity lemma, ⟨T , <⟩ has a branch, namely τ . τ is a
mapping from N to {0, 1}. Let Γ be the union of Γg and {Ak ∈ Σ∗ | τ(k) = 1}.

We prove that for any A ∈ Σ, A ∈ Γ, iff Γ(A) = 1. For convenience, for any
k ∈ N, we use τk for the restriction of τ to the set {i ∈ N | i < k}. Fix A ∈ Σ, we
consider the following four cases.

Case 1: A ∈ Γg. We want Γ(A) = 1. First, note that Γg ⊆ Σg is a truth
predicate for Σg, and so Γg(A) = 1. Besides, Σg is closed to ≺f . Note Σg and Σ∗

are disjoint. So, Γ ∩ f(A) equals Γg ∩ f(A). We get Γ(A) = Γg(A) = 1.
Case 2: A = Ak ∈ Σ∗ and τ(k) = 1. Note that all social sentences of Σ are

weak in the reference digraph ⟨Σ,≺f ⟩, and Σ∗ includes all ungrounded points in
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this digraph. We can find a number nk > k such that f(Ak) ∩ Σ∗ ⊆ Σnk
. By

τ(k) = 1, we know τnk
(k) = 1. Since τnk

is an element of T with length nk, we
can find a corresponding truth witness Γnk

to τnk
. By τnk

(k) = 1, it immediately
follows Γnk

(Ak) = 1.
Our target is to prove Γ(Ak) = Γnk

(Ak) = 1. For this, it suffices to show
Γnk

∩f(Ak) = Γ∩f(Ak). Suppose A ∈ Γnk
∩f(Ak), then Γnk

(A) = 1. We consider
two sub-cases. First, in case A ∈ Σg, then Γg(A) = Γnk

(A) = 1. But Γg is a truth
predicate for Σg, so A ∈ Γg. Hence, A ∈ Γ. Second, in case A ∈ Σ∗, then by choice
of nk, we have known f(Ak) ∩ Σ∗ ⊆ Σnk

, and hence A ∈ Σnk
. That is, A = Ai for

some i < nk. Then, from Ai ∈ Γnk
, it follows τnk

(Ai) = Γnk
(Ai) = 1. Again, we

get A = Ai ∈ Γ. To summarize, we obtain Γnk
∩ f(Ak) ⊆ Γ ∩ f(Ak).

It remains to prove Γ ∩ f(Ak) ⊆ Γnk
∩ f(Ak). Suppose A ∈ Γ ∩ f(Ak), then

either (i) A ∈ Γg or (ii) A = Ai and τ(Ai) = 1. In case (i), Γnk
(A) = Γg(A) =

Γg(T ⌜A⌝) = 1, and so, A ∈ Γnk
. In case (ii), we notice A = Ai ∈ f(Ak)∩Σ∗ ⊆ Σnk

.
Hence i < nk. By τ(Ai) = 1, we know Γnk

(Ai) = τnk
(Ai) = 1. Again, we deduce

Ai ∈ Γnk
. Consequently, we can conclude that Γ∩f(Ak) is a subset of Γnk

∩f(Ak).
Case 3: A ∈ Σg \ Γg. This is the dual of Case 1. We can show Γ(A) = 0. We

leave the details to the reader.
Case 4: A = Ak ∈ Σ∗ and τ(k) = 0. The proof is similar to the one in Case 2.
To sum up the above four cases, we can conclude that any sentence A belongs

to Γ, iff Γ(A) = 1. Thus, Γ is a truth predicate for Σ. □
Proof of Theorem 4.3. The proof is an almost verbatim version of the proof
for Theorem 3.2 except that to the basis step, we apply Theorem 4.4 rather than
Theorem 3.3. The details are omitted. □

The following corollary is a strengthening of Theorem 3.6. Their proofs are also
similar.

Theorem 4.5. Suppose ⟨Σ,≺⟩ is a reference digraph of Σ. If Σ is a non-self-
referential and paradoxical set, then there is a ray A0≺∗A1≺∗A2≺∗ . . . in some
sub-digraph ⟨∆,≺⟩ of ⟨Σ,≺⟩ such that for all natural number n, An is strongly
social in ⟨∆,≺⟩.

Among all social sentences, by Theorem 4.3, only those strongly social sentences
can determine the paradoxicality of a non-self-referential set of sentences. To take
an example, for any number n ≥ 0, let Yn be a sentence such that

Yn ↔ ¬T ⌜Yn+1⌝ ∧ ∀x ≥ n̄ T ⌜ẋ = ẋ⌝

is provable in PA. Let Σ be the set of sentences Yn plus n̄ = n̄ (n ≥ 0), ≺ be a
reference relation of LT . Then, every Yn is weakly social in the reference digraph
⟨Σ,≺⟩. Thus, Σ is not paradoxical even though it contains infinitely many social
sentences.

Finally, it is worth pointing out that we can define the strongly social part of
a digraph as we do in Definition 3.7. Then, we can prove that in any reference
digraph of a non-self-referential and paradoxical set, the strongly social part must
be conversely ill-founded. The proof is similar to that of Theorem 3.8, except that
we appeal to Theorem 4.4 rather than Theorem 3.3.
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§5. Dangerous Digraphs
In this section, we introduce the notion of the dangerous digraph and reca-

pitulate the features of reference digraphs for paradoxes in purely graph-theoretic
terms.

The notion of the dangerous digraph is originally given by Rabern et al. (2013,
p. 738) in a propositional language. It is extended into the first-order language of
arithmetic with the truth predicate symbol T by (Beringer & Schindler, 2017, p.
454).

Definition 5.1. A digraph is dangerous, if there is a paradoxical set of sentences
such that one of its reference digraphs is isomorphic to this digraph.

Note that if a set of sentences is locally finite, it must have a locally finite
reference digraph. The following result is immediate from Corollary 2.7(1) and
Theorem 3.3.

Theorem 5.2.
(1) Any finite and dangerous digraph contains at least a directed cycle.
(2) Any locally finite and dangerous digraph contains at least a directed cycle.

Theorem 5.2 has been proved by Rabern et al. (2013, pp. 751, 754). See
also (Beringer & Schindler, 2017, p. 474). It is well-known that for any n ≥ 0,
the set {Lk | 0 ≤ k ≤ n} with the provable equivalences L0 ↔ ¬T ⌜Ln⌝ and
Lk+1 ↔ T ⌜Lk⌝ (1 ≤ k < n) is paradoxical. From this observation, we can also
prove that any finite digraph containing a directed cycle must be dangerous. See
also (Rabern et al., 2013, pp. 750-751) for details.

Note that the reference digraph of the liar sentence is the minimal reflexive
digraph ⟨{0},=⟩. It is called the liar digraph by Rabern et al. (2013, p. 738). A
corollary of the above theorem is that a finite digraph is dangerous, iff it contains
a subdivision of the liar digraph as a sub-digraph (ibid., p. 751). The proof is
straightforward. The reader can refer (ibid., p. 742) to the definition of subdivision.

The first result of Theorem 5.2 is a particular case of the following. The latter
one, in turn, is a graph-theoretic version of Theorem 2.5. 12

Theorem 5.3. Every dangerous digraph is conversely ill-founded.

Next, we turn to the dangerous digraphs containing no cycle. The following
result is immediate from Corollary 2.7(2) and Theorem 3.2.

Theorem 5.4.
(1) Every dangerous DAG contains at least a ray.
(2) Every dangerous DAG contains infinitely many social points (i.e., points
of infinite out-degree).

To take an example, ⟨N, <⟩ is (isomorphic to) a reference digraph for Yablo’s
paradox. It is one of the simplest dangerous DAGs. This linear structure is called
the Yablo digraph by Rabern et al. (2013, p. 738).

12An equivalent proposition of some different form has been obtained by Rabern et al. (2013,
Lemma 9, p. 749). Rabern et al.’s version is proved in the setting of an infinitary propositional
language.
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Theorem 5.4, as mentioned before, is first proved by Rabern et al. (2013, pp.
750, 756) in an infinitary propositional language. The present version is proved
based on Corollary 2.7(2) and Theorem 3.2, in which paradoxes are formulated in
the first-order language of arithmetic with T . In this sense, our theorem can be
seen as an extension of Rabern et al. (2013, p. 756)’s corresponding result.

Theorem 3.6, as mentioned below its proof, is a strengthening of Corollary
2.7(2) and Theorem 3.2 in the sense that those infinitely many social sentences
may simultaneously occur in a ray. We now reformulate Theorem 3.6 and Theorem
4.5 in terms of dangerous digraphs.

Theorem 5.5. Every dangerous DAG contains a sub-digraph in which there are
infinitely many social points appearing in a ray. The same is true for strongly social
points.

We close this section with four variants of Yablo’s paradox. In the following
examples, the sentences are arranged in non-linear structures so that their reference
digraphs are more and more complex than the Yablo digraph.

Example 5.6 (Two-dimensional Yablo’s paradox). Define the set of sentences
Ym,n for all m,n ∈ N such that Ym,n is the sentence saying that Yi,j is untrue for
all i, j ∈ N with m < i or n < j.

Example 5.7 (Nested two-dimensional Yablo’s paradox). Define the set of sen-
tences Ym,n for all m,n ∈ N such that Ym,n is the sentence saying that Yi,j is untrue
for all but finitely many i, j ∈ N with m < i or n < j.13

Recall that the Cantor tree (the infinite full binary tree) is 2<ω, i.e., the set of
the finite sequences of 0’s and 1’s, ordered by the relation < such that a sequence is
“less than” another iff the latter is a proper extension of the former. More formally,
for any finite sequences s and t, s < t, iff s ⊊ t.14

Example 5.8 (Binary-tree Yablo’s paradox). Define the set of sentences Ys for
all s ∈ 2<ω such that Ys is the sentence saying that Yt is untrue for all t ∈ 2<ω

with s < t.

Example 5.9 (Nested binary-tree Yablo’s paradox). Define the set of sentences
Ys for all s ∈ 2<ω such that Ys is the sentence saying that Yt is untrue for infinitely
many t ∈ 2<ω with s < t, that is, for any u ∈ 2<ω with s < u, there exists at least
one t ∈ 2<ω such that u < t and Yt is untrue.

All of the above four examples are paradoxical. We verify the third one. Our
verification is informal, but it is easy to transform it into a formal proof required
by Definition 2.1. We denote the empty sequence by ⟨⟩. Assume Y⟨⟩ is true, then Ys

is false for all s ∈ 2<ω. In particular, Y⟨0⟩ is false. At the same time, we also know
Ys is false for all s with ⟨0⟩ < s. Thus, Y⟨0⟩ must be true, a contradiction. Hence,
the assumption implies a contradiction, so Y⟨⟩ must be false. In that case, for some
s ∈ 2<ω, Ys is true. Similarly, we can derive a contradiction from the truth of Ys.
As a result, the set {Ys | s ∈ 2<ω} is paradoxical.

13The corresponding one-dimensional one is initially given by Yablo (2006, p. 144). It is also
called the ∃∀-unwinding variant of Yablo’s paradox. See also footnote 3.

14See (Just & Weese, 1997, pp. 27ff) for more information about the tree.
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We can formulate the sentences in the above examples into the language LT .
Again, we do it for the third one. First, note that the relation < on 2<ω is a
representable relation. Besides, there is a computable function δ from N to 2<ω.
The inverse mapping δ−1 encodes the finite sequences in 2<ω. The number δ−1(s)
is the coding number of the sequence s.15 Next, define a binary relation � on N:
n � m, iff δ(n) < δ(m). � is a representable relation. Thus, by diagonalization, we
can construct a sequence of sentences Y ′

n such that Y ′
n ↔ ∀x (n � x → ¬T ⌜Y ′

ẋ⌝) is
provable. Finally, for any s ∈ 2<ω, let Ys = Y ′

δ−1(s). Then, the binary-tree Yablo’s
paradox is the set of sentences Ys (s ∈ 2<ω).

Note that the Yablo digraph occurs in all reference digraphs of the above four
examples as a finitary minor. Again, we only consider the set of sentences Ys for all
s ∈ 2<ω in Example 4. We denote it by Σ. Suppose f is a dependence function such
that ≺f is a reference relation on Σ, then f (Ys) is a co-finite subset of Σ. From
this, we can find infinitely many strongly social sentences in some branch. This
branch forms a sub-digraph of ⟨Σ,≺f ⟩, which is isomorphic to the Yablo graph.
We leave the details to the reader.

As mentioned above, a primary difference between the above four examples and
Yablo’s paradox is that their sentences are not arranged by a linear ordering. In
the last two examples, the sentences are even arranged in a tree. Even if we try to
spread sentences onto such a non-linear structure, so long as these sentences form
a paradox, we can still find a ray in which there are infinitely many strongly social
sentences.

§6. Concluding Remarks
This paper builds on the work by Rabern et al. (2013) to explore the reference

digraphs of the paradoxes. The starting point of our research is a result Rabern
et al. establish in a specific infinitary propositional language: all dangerous acyclic
digraphs contain infinitely many points with an infinite out-degree. We extend this
result in the first-order arithmetic language with a primitive truth predicate. The
version that we prove is that any reference digraph of a non-self-referential paradox
contains infinitely many social sentences.

We strengthen the above result in two respects. On the one hand, among these
social sentences, infinitely many appear in one ray. On the other hand, among these
social sentences, infinitely many have infinitely many out-neighbors, none of which
will eventually get to a sink.

Based on the above observations, we finally discuss Beringer & Schindler’s con-
jecture briefly. As mentioned in the introductory section, the non-trivial part of
their conjecture states that all dangerous acyclic digraphs contain the Yablo di-
graph as a finitary minor. For a formal definition of the notion of a finitary, we
refer the reader to Beringer & Schindler (2017, p. 490). For now, it is sufficient to
understand that the essence of this conjecture lies in that starting from any dan-
gerous acyclic digraph, we can obtain the Yablo digraph through a series of vertex
deletions, edge deletions, or edge contractions (in any order).

By Theorem 5.5, we have established that a dangerous DAG must contain two
of essential components of the Yablo graph: infinitely many strongly social points

15See, for instance, (Cutland, 1980, p. 42).
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and a ray passing through these points. However, Theorem 5.5 alone is insufficient
to address Beringer & Schindler’s conjecture, as a complete Yablo graph cannot
necessarily be constructed solely from these two components. To illustrate this,
consider the digraph whose domain is the union of natural numbers and rational
numbers of the form n + 1

2k
for all n ∈ N and k ≥ 1. The binary relation of

this digraph is the union of the successor relation on natural numbers and the
relation

{
⟨n, n+ 1

2k
⟩, ⟨n+ 1

2k
, n+ 1⟩ | n ∈ N, k ≥ 1

}
. In this digraph, the sequence

of natural numbers forms a ray, with each natural number being a strongly social
point. However, it is evident that the Yablo graph cannot be obtained from this
digraph through vertex deletions, edge deletions, or edge contractions. In fact, it
can be proved that such a digraph is not even dangerous.16

To prove Beringer & Schindler’s conjecture, we need to further strengthen Theo-
rem 5.5. For this, we introduce the notion of domination between a point and a ray.
We say a point dominates a ray if there are infinitely many paths starting from that
point and terminating at the ray, such that these paths are pairwise disjoint except
for the common starting point. Moreover, no point between the starting point and
the terminating point (exclusive) in each of these paths occurs in the ray. A suffi-
cient condition for Beringer & Schindler’s conjecture is that every dangerous DAG
contains a sub-digraph in which there are infinitely many (strongly) social points
dominating a ray.17 Seeing this point, we would like to say that the information we
extract from Theorem 3.2 and Lemma 3.5 is not sufficiently comprehensive, despite
the significant result of Theorem 3.6 obtained from these two statements. There
remains a gap between Theorem 3.6 and the aforementioned condition. Further
investigation is required to bridge this gap.
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