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Graphene possesses excellent physical and chemical properties and has potential applications in 

nanobiological devices and nanoelectromechanical systems such as actuators [1], optoelectronics [2], and 

biosensors [3]. In addition, the vibrational properties play an important role in structural stability of 

nanoelectromechanical systems used in dynamic environments. In the recent years, several researchers 

investigated the vibration behavior of graphene sheets using continuum models [4-5]. In order to avoid 

overestimating vibrational responses, it is necessary to consider the small scale effect in the analysis of 

nanostructures [6]. In this article, free transverse vibration of a circular double-layer graphene is studied based on 

nonlocal elasticity theory. 

The circular double-layer graphene sheets with the radius R is depicted in Fig. 1. The vibration equation for 

the nonlocal constitutive relations of the graphene is given by 

 
where w1 and w2 are the displacement along the thickness h of the graphene; p is the mass density; D is its flexural 
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 is the Laplacian operator in polar coordinates. e0a is the nonlocal parameter revealing the nanoscale size 

effect; k is a linear spring constant which is used to simulate the van der Waals force (i.e., confined force) 

between the upper and lower layers.  

The corresponding clamped boundary conditions are 

 
In order to solve Eqs. (1) and (2), we define f 1 = w1+w2 and f2 = w1-w2 which are the in-phase and antiphase 

solutions, respectively. 

The in-phase and anti-phase solutions can be expressed as follows: 

 
where   is the angular frequency of vibration and n  is the number of nodal diameters. Substituting Eq. (4) into 

Eqs. (1) and (2) and using the boundary conditions (3), we can obtained the in-phase and anti- phase frequency 

characteristic equation F(m,n,mn) = 0, in which m is the mode number. 

The following material properties and geometrical parameters of graphene are used [7]: E= 1 TPa; µ= 0.3; h = 

0.34 nm; ρ =  2300 kg/m
3
 ; k = -108 GPa/nm. Fig. 2 shows the in-phase and anti-phase frequency of the graphene 

sheets with n = 0 for different mode numbers. The van der Waals force between two layers is significant for 

vibration behaviors of the graphene sheets. It makes a stiffer structure and results in a higher vibration frequency. 

This indicates that the effect of the van der Waals force on the anti-phase frequency is apparently higher than that 

on the in-phase frequency. In addition, the stiffness of the graphene sheets decreases when the nonlocal parameter 

is considered. Therefore, the in-phase and anti-phase frequencies in this study are more than those obtained by 

Natuski et al. [7]. It can be seen that the nonlocal effect on the frequency of the graphene sheets is more 

significant for the higher modes. 
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                 Fig. 1. Geometry of a clamped double-layer graphene sheets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

Fig. 2. The in-phase and anti-phase frequencies of the graphene sheets with n = 0 for different mode numbers 
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