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Abstract

For an abelian surface A over a number field k, we study the limiting distribution of
the normalized Euler factors of the L-function of A. This distribution is expected to
correspond to taking characteristic polynomials of a uniform random matrix in some
closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action
on any Tate module of A. We show that the Sato–Tate group is limited to a particular
list of 55 groups up to conjugacy. We then classify A according to the Galois module
structure on the R-algebra generated by endomorphisms of AQ (the Galois type), and
establish a matching with the classification of Sato–Tate groups; this shows that there
are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A
and k, of which 34 can occur for k = Q. Finally, we present examples of Jacobians of
hyperelliptic curves exhibiting each Galois type (over Q whenever possible), and observe
numerical agreement with the expected Sato–Tate distribution by comparing moment
statistics.

1. Introduction

The celebrated Sato–Tate conjecture concerns the distribution of Euler factors of an elliptic curve
over a number field. It specifically predicts that this distribution always takes one of three forms,
one occurring whenever the elliptic curve fails to have complex multiplication (the generic case),
and two exceptional cases arising for CM curves (only one of which occurs over Q). Substantial
progress has been made on this conjecture only very recently (see § 1.7).

The purpose of this paper is to formulate a precise analogue of the Sato–Tate conjecture for
abelian surfaces. We present strong theoretical and experimental evidence that the distribution
of Euler factors can take as many as 52 forms, 35 of which occur if we limit to fields with a real
place and 34 of which occur if we limit to Q.

In the rest of the introduction, we introduce the Sato–Tate problem for a general abelian
variety, describe a conjectural description of the distribution of Euler factors in terms of a certain
compact Lie group (the Sato–Tate group), and then discuss our analysis of this conjecture from
three points of view:

(a) a classification of compact Lie groups that are compatible with restrictions on the Sato–Tate
group imposed by existing conjectures;
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Sato–Tate distributions and Galois endomorphism modules in genus 2

(b) a classification of Galois module structures on the R-algebra generated by endomorphisms
(which we call the Galois type);

(c) numerical computations testing the relationship between these classifications and observed
distributions of Euler factors.

We conclude with some speculation about how much of the Sato–Tate conjecture for abelian
surfaces may be tractable in the near future.

Throughout the introduction, let k denote a number field, let Gk be an absolute Galois group
of k, let p be a prime ideal of k, and let q := ‖p‖ denote the absolute norm of p. When we make
statements about averages over prime ideals, we always sort in increasing order by norm; it will
not matter how ties are broken. For A an abelian variety over k and k′ a field containing k, write
Ak′ for the base extension of A from k to k′.

1.1 The Sato–Tate conjecture and random matrices
Let E be an elliptic curve over k. If E has good reduction at p (which excludes only finitely
many primes), then Hasse’s theorem implies that the integer ap = q + 1−#E(Fq) has absolute
value at most 2

√
q. One observes in examples1 that the quantities

θp := arccos
ap

2
√
q

appear to be equidistributed with respect to a certain measure on [0, π].

– If E has complex multiplication defined over k, one takes the uniform measure. Note that
this case cannot occur if k = Q, or even if k has a real place.

– If E has complex multiplication not defined over k, one takes half of the uniform measure
plus a discrete measure of mass 1/2 concentrated at π/2. The discrete measure occurs
because ap = 0 whenever p fails to split in the quadratic extension of k over which the
complex multiplication is defined.

– If E fails to have complex multiplication, one takes the measure (2/π) sin2 θ dθ.

In the first two cases, it is easy to prove equidistribution using the explicit description of ap in
terms of Grössencharacters. The third case is subtler: it is the Sato–Tate conjecture, which has
recently been established when k is totally real (see § 1.7).

The measures described above admit the following interpretation. If one chooses a matrix
uniformly at random from SU(2) (with respect to the Haar measure), its eigenvalues have the
form eiθ, e−iθ for θ distributed according to the measure (2/π) sin2 θ dθ on [0, π]. If one replaces
SU(2) by U(1)' SO(2), one obtains the uniform measure; if one instead takes the normalizer of
U(1) in SU(2), one gets half of the uniform measure (from the identity connected component)
plus a discrete measure of mass 1/2 concentrated at π/2 (from the other connected component).

1.2 The Sato–Tate group
The interpretation in terms of random matrices suggests a good formulation of the Sato–Tate
problem2 for an abelian variety A of arbitrary dimension g > 1. If A has good reduction at p,
then there exists a polynomial Lp(A, T ) =

∏2g
i=1(1− Tαi) over Z such that for each positive

1 To observe for yourself, see the animations at http://math.mit.edu/∼drew.
2 In the language of [Ser12, § 8], we only consider the weight 1 case of the Sato–Tate problem. Some examples of
the weight 2 case are discussed in [Ser12, § 8.5.6]. See also Remark 3.3.
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integer n,

#A(Fqn) =
2g∏
i=1

(1− αni ).

For example, if g = 1, then Lp(A, T ) = 1− apT + qT 2. One can reinterpret Lp(A, T ) as follows.
For any prime `, let V`(A) = Q⊗ T`(A) denote the (rational) `-adic Tate module of A. If Frobp

is an arithmetic Frobenius element of Gk for the prime p, then

Lp(A, T ) = det(1− TFrobp, V`(A)).

This implies that Lp(A, q−s) is the Euler factor at p in the L-function of A evaluated at s.
Define the normalized L-polynomial Lp(A, T ) := Lp(A, q−1/2T ); by a theorem of Weil, the roots
of Lp(A, T ) in C have norm 1 and are stable (as a multiset) under complex conjugation. The
polynomial Lp(A, T ) thus corresponds to a unique element of the set Conj(USp(2g)) of conjugacy
classes in the unitary symplectic group USp(2g).

For generic A, Katz and Sarnak [KS99] predict that the polynomials Lp(A, T ) are
equidistributed3 with respect to the image on Conj(USp(2g)) of the normalized Haar measure on
USp(2g). It is tempting to guess that in general, the Lp(A, T ) are equidistributed with respect
to the image on Conj(USp(2g)) of the normalized Haar measure on a suitable closed subgroup G
of USp(2g) (depending on A); however, to formulate a precise4 conjecture, one needs an explicit
definition of the group G.

We will give in § 2 a definition of the Sato–Tate group STA, using a construction in terms
of `-adic monodromy groups described by Serre in [Ser12, § 8.3]. This construction relates
strongly to an earlier description given by Serre in terms of motivic Galois groups [Ser94],
as well as to the definition of the Mumford–Tate group of A; see § 2.2 for more on the
relationship between the Mumford–Tate and Sato–Tate groups. From the construction of STA,
the map p 7→ Lp(A, T ) ∈ Conj(USp(2g)) will factor through an assignment p 7→ s(p) ∈ Conj(STA),
enabling us to make the following conjecture.

Conjecture 1.1 (Refined Sato–Tate). For STA the subgroup of USp(2g) defined in
Definition 2.6 and µSTA the image on Conj(STA) of the normalized Haar measure on STA,
the classes s(p) ∈ Conj(STA) are µSTA-equidistributed.

This is somewhat stronger than asserting equidistribution of the Lp(A, T ) for the image
measure on Conj(USp(2g)), but it is only this last conclusion that we test numerically.

1.3 A group-theoretic classification
For the remainder of this introduction, we assume5 g = 2. We can further clarify the Sato–Tate
conjecture in this case by classifying groups which can occur as STA in Conjecture 1.1.

Theorem 1.2. Let A be an abelian surface over k. Then STA is conjugate to one of 55 particular
groups (see Theorem 3.4 for the list).

3 Note the analogy with the Chebotarev density theorem: in a finite Galois extension of number fields, the
distribution of Frobenius conjugacy classes over the Galois group is also governed by the image of the Haar
measure.
4 It is unclear whether G is even determined up to conjugacy, even though the conjugacy class of an individual
element of USp(2g) is determined by its characteristic polynomial.
5 It should be possible to make a similar analysis for larger values of g, but even for g = 3 we have no idea how
many groups to expect!
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The proof of Theorem 1.2 is an exercise with Lie groups, given the limitations placed on
STA by properties of its construction. Most of the cases arise when the connected part of STA

is isomorphic to U(1); these cases are related to the finite subgroups of SO(3).
The alert reader will notice that Theorem 1.2 mentions a list of 55 groups, whereas we claimed

initially that only 52 groups are possible. That is because three cases survive the group-theoretic
analysis but are ruled out by the comparison to Galois types (Theorem 1.4).

1.4 Galois types
Our next step towards controlling the Sato–Tate group of an abelian surface is to study the
Galois module structure on the endomorphism algebra of A. This data is in general insufficient
to control the Sato–Tate group (this is related to Mumford’s exotic examples of Hodge groups for
abelian fourfolds [Mum69]); however, in dimension 2 such pathologies do not arise, and indeed
we gain a complete understanding of the Sato–Tate group this way.

Let End(A) denote the (not necessarily commutative) ring of endomorphisms of A. Note that
these are assumed to be defined over k; if we mean to take endomorphisms of A defined over a
larger field k′, we will write End(Ak′) instead. In fact, we will often write End(Ak) instead of
End(A) to emphasize rationality over k. For any field L, write End(A)L for End(A)⊗Z L.

Let K/k denote the minimal extension over which all endomorphisms of AQ are defined; it
is a finite Galois extension of k (see Proposition 4.1).

Definition 1.3. Consider pairs [G, E] in which G is a finite group and E is a finite-dimensional
R-algebra equipped with an action of G by R-algebra automorphisms. An isomorphism between
two such pairs [G, E] and [G′, E′] consists of an isomorphism G'G′ of groups and an equivariant
isomorphism E ' E′ of R-algebras. The Galois type associated to A is the isomorphism class of
the pair [Gal(K/k), End(AK)R]. Note that abelian surfaces defined over different number fields
may have the same Galois type.

Theorem 1.4. Let A be an abelian surface over k. Then the conjugacy class of the Sato–Tate
group of A is uniquely determined by the Galois type and vice versa.

In Theorem 1.4, the passage from the Sato–Tate group to the Galois type is fairly explicit; see
Proposition 2.19. The reverse implication can be seen by computing the Galois types associated
to the 55 groups named in Theorem 1.2 and seeing that they are pairwise nonisomorphic. This
requires significantly less data than the full Galois type; for instance, it is sufficient to keep track
of the isomorphism class (as an R-algebra) of the R-subalgebra of E fixed by one subgroup of
Gal(K/k) in each conjugacy class.

We also make a more detailed analysis of the Galois type and its relationship to more apparent
arithmetic of the abelian surface of A, such as the shape of the simple factors of A. This leads
to the following result; for a more precise statement, see Theorem 4.3.

Theorem 1.5. There exist exactly 52 Galois types of abelian surfaces over number fields. Of
these, exactly 35 can be realized in such a way that k has a real place, and exactly 34 can be
realized in such a way that k = Q.

It is worth pointing out that the definition of the Galois type had to be chosen rather carefully
in order to make Theorem 1.4 valid. For example, in [KS09] one finds examples of abelian surfaces
A= Jac(C)/Q and A′ = Jac(C ′)/Q with the same Sato–Tate group such that A is absolutely
simple and A′ is isogenous to the product of two elliptic curves. This is because End(AK)Q is a
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division quaternion algebra while End(A′K)Q 'M2(Q); this shows that in the definition of the
Galois type, considering the Q-algebra End(AK)Q yields a classification which is too fine. On
the other hand, the C-algebra End(AK)C gives a classification which is too coarse: there are
examples of abelian surfaces A= Jac(C)/Q and A′ = Jac(C ′)/Q with different Sato–Tate groups
such that End(AQ)R ' R× R and End(A′Q)R ' C, and thus End(AQ)C ' End(A′Q)C ' C× C.

1.5 Numerical computations
Our final step is to test Conjecture 1.4 numerically for Jacobians of curves of genus 2. For a given
curve C, it is a finite problem to identify the Galois type of its Jacobian. This determines the
Sato–Tate group STJac(C), yielding a predicted distribution of normalized L-polynomials. To test
convergence to the predicted distribution, we follow the methodology introduced in [KS09], and
consider moment statistics of the linear and quadratic coefficients a1 and a2 of the normalized
L-polynomial. We first compute the corresponding moments for all of the Sato–Tate groups that
can arise in genus 2; see § 5.1. For any given curve C, we may then use the methods of [KS08] to
compute a large quantity of L-polynomial data for C, from which we derive moment statistics
for a1 and a2 that may be compared to the corresponding moments for the Sato–Tate group. We
may also compare histograms of the normalized L-polynomial coefficients with the corresponding
density functions for the Sato–Tate group; see § 5.2. Although here we present computational
results only after giving the theoretical description of Sato–Tate groups and Galois types, the
order of discovery was the reverse: it would have been quite impossible to establish the theoretical
results without numerical evidence to lead the way.

It is worth mentioning that one can run the methodology in two different directions. Given
an abelian surface in explicit form, one can in principle compute the Galois type and then obtain
a prediction for the Sato–Tate distribution. On the other hand, in practice, it is often easier to
compute the Sato–Tate distribution numerically and then use this to guess the Galois type! This
state of affairs may persist for larger g; for instance, it may be possible to identify examples of
Mumford’s exotic fourfolds most easily from their Sato–Tate distributions.

1.6 Sato–Tate for abelian surfaces
Combining all of our ingredients, we now have a precise Sato–Tate conjecture for abelian surfaces,
including the following features.

(a) The Lp(A, T ) in Conj(USp(2g)) are conjectured to be equidistributed according to the
image of the Haar measure for a specific group STA (Definition 2.6).

(b) The statement in (a) can be refined to an equidistribution conjecture on Conj(STA) itself
(Conjecture 1.1).

(c) It is known exactly which groups STA can occur in general (there are 52 of them), which
can occur for k = Q (there are 34 of them), and how STA is related to the endomorphism ring
of A (by Theorems 1.4 and 1.5).

By contrast, an analysis of Sato–Tate groups in dimension 2 over Q had previously been
attempted by the second and fourth authors in [KS09] based on results of an exhaustive search,
but produced fewer groups than we identify here. One reason is that in [KS09], curves were
classified only using the moments of the first coefficient of the L-polynomial, which turns
out to be insufficient: over Q, the 34 observed Sato–Tate groups only give rise to 26 distinct
trace distributions. Another reason is that in [KS09], the Sato–Tate groups were constructed
in a haphazard fashion, without the benefit either of a group-theoretic classification or an
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interpretation in terms of Galois types. It was the combination of these additional ingredients
that made it possible to identify some exceptional cases missed in [KS09]; with the benefit of this
hindsight, we then made a larger exhaustive search to identify examples with small coefficients
(see § 5.3).

1.7 Tractable cases
Having asserted a precise form of the Sato–Tate conjecture for abelian surfaces, we conclude this
introduction by discussing to what extent it may be possible to prove cases of this conjecture in
the near future (though not in this paper).

We first recall the paradigm for proving equidistribution described by Serre [Ser68, § I.A.2].
Conjecture 1.1 asserts that for any continuous function f : Conj(STA)→ C,

µSTA(f) = lim
n→∞

∑
‖p‖6n f(s(p))

#{p : ‖p‖6 n}
. (1.1)

By the Peter–Weyl theorem, the space of characters of STA is dense for the supremum norm on
the space of continuous functions on Conj(STA), so we need only check (1.1) when f = χ is an
irreducible character; we may omit the trivial character since (1.1) is obvious in that case. By
emulating the proofs of the prime number theorem by Hadamard and de la Vallée Poussin, one
then obtains the following result.

Theorem 1.6 (Serre). Suppose that for each nontrivial irreducible linear representation6 ρ of
STA, the Dirichlet series

L(A, ρ, s) =
∏

p

det(1− ρ(s(p))‖p‖−s)−1

(which converges absolutely for Re(s)> 1) extends to a holomorphic function on Re(s) > 1 which
does not vanish anywhere on the line Re(s) = 1. Then Conjecture 1.1 holds for A.

For the most part, the only known method for establishing meromorphic continuation of
L(A, ρ, s) is to show that it arises from an automorphic form. This has been achieved recently
in many cases where A corresponds to an automorphic form of GL2-type, thanks to the work
of Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, and Taylor. For example,
Conjecture 1.1 is known (with STA = SU(2)) whenever A is an elliptic curve over a totally real
field without complex multiplication. (See [BGG11] for an even stronger result covering Hilbert
modular forms.)

For g = 2, it is unclear at present how to approach the Sato–Tate problem in even a single
case with STA = USp(4); however, one can hope to treat all cases with STA 6= USp(4) using
existing technology. For instance, it should be straightforward to verify Conjecture 1.1 when A
is isogenous to the product of two elliptic curves with complex multiplication. For k totally real,
it should also be possible to use the result of [BGG11] to handle cases where A is isogenous to
the product of two elliptic curves, one of which has complex multiplication. The case where A
is isogenous to the product of two nonisogenous non-CM elliptic curves is harder, but has been
treated by Harris [Har09] conditionally on some results on the stable trace formula which have
subsequently been verified; see [BGHT11] for the appropriate references. (Thanks to Toby Gee
and Michael Harris for this explanation.)

6 It is enough to consider the restrictions of representations of USp(2g), but then one finds a pole at s= 1 of order
equal to the multiplicity of the trivial representation in ρ|STA .
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2. Construction of the Sato–Tate group

Let A be an abelian variety over a number field k of dimension g > 1. In this section, we give an
explicit definition of the Sato–Tate group STA that appears in our refined form of the Sato–Tate
conjecture (Conjecture 1.1). This loosely follows the presentation given by Serre in [Ser12, § 8.3].
We then relate this group to the Mumford–Tate group; for abelian varieties of dimension at
most 3, this gives a precise description of the Sato–Tate group in terms of the endomorphisms
of A and the Galois action on them. This depends crucially on work of the second author with
Grzegorz Banaszak [BK11].

2.1 `-adic monodromy and the Sato–Tate group
Choose a polarization on A and embeddings k ↪→Q ↪→ C. Choose a symplectic basis for the
singular homology group H1(Atop

C ,Q) and use it to equip this space with an action of GSp2g(Q),
where GSp2g/Q denotes the reductive algebraic group over Q such that for any field F ,

GSp2g(F ) =
{
γ ∈GL2g(F ) : γt

(
0 −Id
Id 0

)
γ = λγ ·

(
0 −Id
Id 0

)
, λγ ∈ F×

}
.

Now fix a prime `, let V`(A) denote the rational `-adic Tate module of A, and make the
identifications

V`(A)'H1,et(AQ,Q`)'H1,et(AC,Q`)'H1(Atop
C ,Q`)'H1(Atop

C ,Q)⊗Q Q`.

Under these identifications, the Weil pairing on the Tate module is identified with the cup product
pairings in étale and singular homology, so our chosen symplectic basis for H1(Atop

C ,Q) maps to
a symplectic basis of V`(A). The action of Gk on V`(A) thus defines a continuous homomorphism

%A,` :Gk −→GSp2g(Q`). (2.1)

Write G` =G`(A) for the image of Gk under %A,`.

Definition 2.1. Let GZar
` =GZar

` (A) denote the Zariski closure of G` inside GSp2g(Q`); this is
sometimes called the `-adic monodromy group of A.

A result of Bogomolov [Bog80] (plus a bit of p-adic Hodge theory; see [Ser12, § 8.3.2] for
references) ensures that G` is open in GZar

` , and this construction behaves reasonably under
enlargement of the field k. See [BK11, § 3] for similar arguments.

Remark 2.2. Let k′ be a finite extension of k. Since G`(Ak′) is an open subgroup of the compact
group G` by Bogomolov’s theorem, GZar

` (Ak′) is a subgroup of GZar
` of finite index; in particular,

the two groups have the same connected part. On the other hand, by making k′ large enough, we
can force G`(Ak′) to lie within a neighborhood of the identity in GSp2g(Q`) that is small enough
to miss all of the nonidentity connected components of GZar

` . Consequently, for any sufficiently
large k′, GZar

` (Ak′) equals the connected part of GZar
` . This means that, on the one hand, the

connected part of GZar
` is an invariant of AQ; on the other hand, the component group π0(GZar

` )
receives a surjective continuous homomorphism from Gk, and so may be identified with Gal(K/k)
for some7 finite extension K of k.

Remark 2.3. By a celebrated theorem of Faltings [Fal83], one has

End(A)Q` = End(V`(A))G` . (2.2)

7 It is not clear from this construction that K is independent of `, but this has been shown by Serre [Se81].
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By (2.2), the `-adic monodromy groups of Ak′ for all finite extensions k′ of k determine
the Gk-module End(AQ)Q` . The converse is not true in general: there are examples due
to Mumford [Mum69] of simple abelian fourfolds A/k such that End(AQ) = Z while GZar

` (
GSp2g(Q`). Fortunately, since we only consider the g = 2 case in this paper, we will avoid such
pathologies; see Theorem 2.16.

To get the Sato–Tate group, we must modify the above construction slightly.

Definition 2.4. Let G1
k denote the kernel of the cyclotomic character χ` :Gk→Q×` , and let

G1,Zar
` =G1,Zar

` (A) be the Zariski closure of %A,`(G1
k) in GSp2g/Q`. By Bogomolov’s theorem,

the natural inclusion of G1,Zar
` into the kernel of the composition GZar

` →GSp2g→Gm is an
isomorphism.

Remark 2.5. We have an analogue of Remark 2.2: for k′ a finite extension of k, G1,Zar
` (Ak′) is a

subgroup of G1,Zar
` (A) with the same connected part, and is itself connected when k′ is sufficiently

large.

Definition 2.6. Choose an embedding ι : Q` ↪→ C and use it to view %A,` as having target
GSp2g(C). Put G1 :=G1,Zar

` ⊗ι C. The Sato–Tate group STA of A (for the prime ` and the
embedding ι) is a maximal compact Lie subgroup of G1 contained in USp(2g) (which exists
because the latter is a maximal subgroup of Sp2g(C)).

Remark 2.7. For example, if A is an elliptic curve, then by Serre’s open image theorem [Ser72],
STA = SU(2) if and only if A has no complex multiplication.

Lemma 2.8. The groups of connected components of the groups

GZar
` , G1,Zar

` , G1, STA

are all canonically isomorphic.

As a corollary, it follows that for k′ a finite extension of k, GZar
` (Ak′) is connected if and only

if G1,Zar
` (Ak′) is connected.

Proof. (This is from [BK11, Theorem 3.4].) Apply Remark 2.2 and its analogue (Remark 2.5) to
produce a finite extension k′ of k for which G1,Zar

` (Ak′) and GZar
` (Ak′) are both connected. Then

the diagram

1

��

1

��

1

��
1 // G1,Zar

` (Ak′) //

��

GZar
` (Ak′) //

��

Gm
//

��

1

1 // G1,Zar
` (Ak) //

��

GZar
` (Ak) //

��

Gm
//

��

1

π0(G1,Zar
` ) //

��

π0(GZar
` )

��

1

1 1
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has exact rows and columns, and a diagram chase (as in the proof of the snake lemma) shows
that π0(G1,Zar

` )→ π0(GZar
` ) is an isomorphism. On the other hand, we have π0(G1,Zar

` ) = π0(G1),
because the Q`-rational points of G1,Zar

` are Zariski dense, and π0(G1) = π0(STA), because any
maximal compact subgroup of a connected complex Lie group is a connected real Lie group. 2

We now have the group STA appearing in the refined Sato–Tate conjecture (Conjecture 1.1),
but we still need conjugacy classes corresponding to prime ideals. This construction will imply
that Lp(A, T ) belongs to the image of Conj(STA)→ Conj(USp(2g)). See [Ser12, § 8.3.3] for
further discussion.

Definition 2.9. For G=GZar
` ⊗ι C, we may identify G/G1 with C× compatibly with the

cyclotomic character. The image of gp := %A,`(Frobp) ∈G in C× is q, so g′p := q−1/2gp belongs
to G1. The semisimple component of g′p for the Jordan decomposition is an element of G1 with
eigenvalues of norm 1, and therefore belongs to a conjugate of STA. We thus associate to p a
class s(p) ∈ Conj(STA).

Remark 2.10. It is generally expected that gp is already semisimple, in which case s(p) would be
the class of g′p itself.

2.2 Mumford–Tate groups and Sato–Tate groups
From the above definition of the Sato–Tate group, it is difficult to recover much information
relating the Sato–Tate group to the arithmetic of A. To go further, we must control the Sato–
Tate group in terms of the endomorphisms of A. This is impossible in general, as shown for
instance by Mumford’s examples in dimension 4 [Mum69]; however, no such pathologies occur
for g 6 3.

Definition 2.11. Fix an embedding k ↪→ C.

(i) The Mumford–Tate group MTA of A is the smallest algebraic subgroup G of
GL(H1(Atop

C ,Q)) over Q such that G(R) contains h(C×), where

h : C−→ EndR(H1(Atop
C , R))

is the complex structure on the 2g-dimensional real vector space H1(Atop
C , R) obtained by

identifying it with the tangent space of A at the identity.
(ii) The Hodge group of A is HgA := (MTA ∩ SL2g)0.

These can be viewed as Archimedean analogues of the groups GZar
` and G1,Zar

` . By a theorem
of Deligne [Del82, Proposition 6.2], for GZar,0

` the connected component of the identity of GZar
` ,

we have GZar,0
` ⊆MTA ⊗Q Q`.

Conjecture 2.12 (Mumford–Tate). The inclusion GZar,0
` ⊆MTA ⊗Q Q` is always an equality.

Equivalently, the induced inclusion G1,Zar,0
` ⊆HgA ⊗Q Q` is also an equality.

One cannot hope to describe GZar
` or the algebraic Sato–Tate group any more closely than

this using the Mumford–Tate group, because only the connected parts of these groups are
determined by AC. This suggests the following refinement of the Mumford–Tate conjecture
[BK11, Conjecture 2.3].

Conjecture 2.13. There exists an algebraic subgroup ASTA of GSp2g/Q, called the algebraic
Sato–Tate group of A, such that for each prime `, G1,Zar

` = ASTA ⊗Q Q`.
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When Conjecture 2.13 holds, we may interpret STA as a maximal compact subgroup of
ASTA ⊗Q C. In many cases, including all cases with g 6 3, one can resolve Conjecture 2.13 by
giving a full description of both the Mumford–Tate group and the algebraic Sato–Tate group in
terms of the complex structure on H1(Atop

C , R). This has been carried out by the second author
and Grzegorz Banaszak in [BK11], building on much existing literature on Mumford–Tate groups;
we summarize the relevant results here.

Definition 2.14. The Lefschetz group LA is defined as

LA := {γ ∈ Sp2g : γ−1αγ = α for all α ∈ End(AQ)Q}0.

Here we view α as an endomorphism of H1(Atop
C ,Q); consequently, LA is an algebraic subgroup

of GSp2g/Q. There is an obvious inclusion HgA ⊆ LA.

Definition 2.15. For each τ ∈Gk, define

LA(τ) := {γ ∈ Sp2g : γ−1αγ = τ(α) for all α ∈ End(AQ)Q}.

The twisted Lefschetz group TLA is defined as

TLA :=
⋃
τ∈Gk

LA(τ).

It is an algebraic group over Q with connected part LA.

Theorem 2.16. (a) Suppose that HgA = LA and that Conjecture 2.12 holds for A. Then
Conjecture 2.13 holds with ASTA = TLA. Consequently, ASTA is reductive and STA is a maximal
compact subgroup of TLA ⊗Q C.

(b) The hypotheses of (a) hold when g 6 3.

Proof. See [BK11, Theorems 6.1 and 6.10]. 2

2.3 Extracting data from the Sato–Tate group

Using Theorem 2.16, we can recover from STA much data about the endomorphisms of A,
starting with the minimal field of definition of endomorphisms.

Proposition 2.17. For g 6 3, the component groups of GZar
` , G1,Zar

` , and STA may be identified
with Gal(K/k) for K/k the minimal extension over which all endomorphisms of AQ are defined.
Moreover, for k′ a finite extension of k, STAk′ is the inverse image of Gal(Kk′/k′) under the map
STA→Gal(K/k).

Proof. This is immediate from Theorem 2.16 and Lemma 2.8. 2

To extract more information, we use the following construction.

Definition 2.18. Recall that we have fixed a polarization on A, which defines an isogeny φ
from A to its dual variety Â. The Rosati involution takes ψ ∈ End(AC)Q to ψ′ = φ−1 ◦ ψ̂ ◦ φ. It
has the following positivity property: the function

ψ 7→ Trace(ψ ◦ ψ′, H1(Atop
C ,Q))

is a positive definite quadratic form on End(AC) (see [Mum69, § 21, Theorem 1]). We will call
this form the Rosati form.
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Proposition 2.19. For g 6 3, the subgroup STA of USp(2g) uniquely determines the R-algebra
End(AK)R and its action by Gal(K/k).

Proof. Note that

End(AK)Q = End(AC)Q = End(H1(Atop
C ,Q))HgA = End(H1(Atop

C ,Q))MTA

(see [Mum69]). By Theorem 2.16, for g 6 3 we can recover from STA the action of Gal(K/k) on
End(AK)C by taking the action of TLA / LA on

(End(H1(Atop
C ,Q))⊗Q C)LA .

We can then identify End(AK)R as the unique R-subspace of End(AK)C of half the dimension
which is positive definite for the real part of the Rosati form. 2

It will be important later to have an explicit description of the effect of twists on the Sato–
Tate group.

Definition 2.20. Let f : Gal(L/k)→Aut(AK) be a continuous 1-cocycle, i.e., a function
satisfying

f(τ1τ2) = f(τ1)τ1(f(τ2)) for τ1, τ2 ∈Gk
and factoring through Gal(L/k) for some finite Galois extension L of k containing K. Then there
exists an abelian variety Af over k equipped with an isomorphism AfL 'AL such that the action
of τ ∈Gk on Af (Q)'AfL(Q) corresponds to the action of f(τ)τ on A(Q)'AL(Q). We call Af

the twist of A by f . In the case where A is the Jacobian of a genus 2 curve C over k and f factors
through a 1-cocycle fC : Gal(L/k)→Aut(CK), we can identify Af with the Jacobian of a twist
Cf of C.

The isomorphism AfL 'AL induces an isomorphism End(AfL)' End(AL) in which
corresponding α ∈ End(AfL) and β ∈ End(AL) satisfy the relation τ(α) = f(τ)τ(β)f(τ)−1. As
a consequence, for τ ∈Gk we have

LAf (τ) = {γ ∈ Sp2g : γ−1βγ = f(τ)τ(β)f(τ)−1 for all β ∈ End(AL)Q}
= {γ ∈ Sp2g : (γf(τ))−1βγf(τ) = τ(β) for all β ∈ End(AL)Q}
= LA(τ)f(τ)−1.

3. A group-theoretic classification

In this section, we record some necessary properties of the Sato–Tate group STA of an abelian
surface A over a number field k, and then classify all closed subgroups of USp(4) exhibiting these
properties; there are 55 such groups up to conjugacy. We give explicit representations for each
of these groups that will be used to match the groups with Galois types (§ 4) and to compute
invariants that characterize the distribution of characteristic polynomials (§ 5.1). Note that the
classification includes three spurious groups; these will be ruled out in § 4.4.

3.1 Axioms for Sato–Tate groups
We first record some necessary conditions for a closed subgroup of USp(2g) to occur as a
Sato–Tate group. Although we are only interested in the weight 1 case, for future reference
we formulate these conditions in a manner suitable for considering self-dual motives of arbitrary
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positive weight. (One can get slightly stronger conditions by accounting for the base field k; see
Remark 3.5.)

Definition 3.1. Fix a positive integer w and some nonnegative integers hp,q for all p, q > 0 with
p+ q = w, and put d=

∑
p,q h

p,q. If w is odd, assume also that hp,q = hq,p for all p, q. For a group
G with identity connected component G0, the Sato–Tate axioms are as follows.

(ST1) The group G is a closed subgroup of USp(d) (if w is odd) or of O(d) (if w is even).

(ST2) (Hodge condition) There exists a homomorphism θ : U(1)→G0 such that θ(u) has
eigenvalues up−q with multiplicity hp,q. The image of θ is called a Hodge circle.

(ST3) (Rationality condition) For each component H of G and each irreducible character χ
of GLd(C), the expected value (under the Haar measure) of χ(γ) over γ ∈H is an integer. In
particular, for any positive integers m and n, the quantity E[Trace(γ, ∧mCd)n : γ ∈H] lies in Z.

The numbers hp,q are meant to be the Hodge numbers of the motive for which one is
investigating the Sato–Tate conjecture. In the case of an abelian variety of dimension g, we
should thus take w = 1 and h0,1 = h1,0 = g.

Proposition 3.2. Let A be an abelian variety over k of dimension g satisfying the Mumford–
Tate conjecture (Conjecture 2.12) and the algebraic Sato–Tate conjecture (Conjecture 2.13).
Then G= STA satisfies the Sato–Tate axioms for w = 1 and h0,1 = h1,0 = g.

Proof. Condition ST1 is clear from the construction. Condition ST2 follows from the definition
of the Mumford–Tate group; it can also be derived using p-adic Hodge theory [Ser12, §§ 8.2.3.6
and 8.3.4].

To check ST3, let ρ : GL2g(C)→ VC be the representation corresponding to χ. Since
the algebraic Sato–Tate conjecture has been assumed, we may write VC = V ⊗Q C for V a
representation of GL2g/Q. Since AST0

A is reductive, we may split V = V1 ⊕ V2 so that ASTA

acts on V1 and V2, AST0
A acts trivially on V1, and V2 has no nonzero subquotient on which

AST0
A acts trivially. Let HQ be the component of ASTA for which H ⊆HQ(C).

Put t= E[Trace(γ, VC) : γ ∈H]. Since G0 is a maximal compact subgroup of AST0
A, V2,C also

has no G0-trivial subrepresentations; hence, for v2 ∈ V2,C, the G0-invariant element E[ρ(γ)(v2) :
γ ∈H] must be zero. It follows that E[Trace(γ, V2,C) : γ ∈H] = 0. On the other hand, since V1 is
a trivial AST0

A-representation, the function γ 7→ Trace(γ, V1,C) is constant on HQ(C). We deduce
that t= Trace(γ0, V1,C) for any single γ0 ∈HQ(C). Since G/G0 is finite, t is a sum of roots of
unity and therefore an algebraic integer.

Let ` be an arbitrary prime and choose an algebraic isomorphism Q` ' C. By our hypotheses,
G1,Zar
` is a compact open subgroup of ASTA ⊗QQ`; let H` be the coset of G1,Zar,0

` contained
in HQ(Q`). Put t` = E[Trace(γ, VQ`) : γ ∈H`]. Again, E[Trace(γ, V2,Q`) : γ ∈H`] = 0, so t` =
Trace(γ0, V1,C) for any single γ0 ∈HQ(C). In other words, t` = t.

However, by taking γ0 ∈G1,Zar
` , we find that t` ∈Q`. Since ` and the isomorphism Q` ' C

were arbitrary and t is an algebraic integer, t must belong to an everywhere unramified number
field. By Minkowski’s theorem, we have t ∈ Z. 2

Remark 3.3. For any fixed Hodge numbers, the Sato–Tate axioms limit the group G to one of
finitely many subgroups of the ambient group H = USp(d) (if w is odd) or H = O(d) (if w is
even) up to conjugacy, as follows.
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Table 1. Groups satisfying the Sato–Tate axioms with w = 1, h0,1 = h1,0 = 2.

G0 G

U(1)


C1, C2, C3, C4, C6, D2, D3, D4, D6, T, O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T ), J(O),
C2,1, C4,1, C6,1, D2,1, D3,2, D4,1, D4,2, D6,1, D6,2, O1

SU(2) E1, E2, E3, E4, E6, J(E1), J(E2), J(E3), J(E4), J(E6)

U(1)×U(1) F, Fa, Fc, Fa,b, Fab, Fac, Fab,c, Fa,b,c

U(1)× SU(2) U(1)× SU(2), N(U(1)× SU(2))

SU(2)× SU(2) SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) USp(4)

Conditions ST1 and ST2 already suffice to limit the connected part G0 of G to one of finitely
many subgroups of H up to conjugacy, as in the proof of Lemma 3.7; we may thus fix a choice
of G0 hereafter. Let N denote the normalizer of G0 in H; note that N contains G.

Using Tannaka–Krein duality, we may find a representation ρ : GLd(C)→ VC whose
restriction to N contains a factor on which G0 is trivial and N/G0 acts faithfully. Condition ST3
then implies that the exponent of G/G0 may be bounded independently of G. By this fact plus
Jordan’s theorem on finite linear groups, we may also bound the order of G/G0 independently
of G.

To finish the argument, it is enough to verify that any compact Lie group K only contains
finitely many conjugacy classes of subgroups of any given finite order (and then apply this to
K =N/G0). This is a result of Weil [Wei64]; see also [Ser92, p. 120, Exercise 1(b)].

3.2 Classification in dimension 2: overview

Our next goal is to establish the following theorem, which will imply Theorem 1.2 thanks to
Proposition 3.2 and Theorem 2.16.

Theorem 3.4. Let G be a group which satisfies the Sato–Tate axioms with w = 1 and h0,1 =
h1,0 = 2. Let G0 be the connected part of G. Then G is conjugate to one of the groups listed in
Table 1. (The notation in this table is defined within the proof.)

During the course of the classification, we will obtain explicit presentations8 for each group;
these will be used later to compute Galois types (see § 4) and moments (see § 5.1). These
computations will imply that no two of the groups listed in Theorem 3.4 are conjugate to each
other.

Remark 3.5. If the number field k has a real place, one can strengthen the Hodge condition
(see [Ser12, § 8.3.4]): there must exist γ ∈G such that γ2 =−1, Trace(γ) is equal9 to 0,

8 The need for these presentations is the main reason we do not make more use of the exceptional isomorphism
USp(4)/{±1} ' SO(5) in our classification; it leads quickly to the list of groups but not to these particular
presentations.
9 This must be modified if one considers weights greater than 1. See [Ser12, § 8.2.3.4].
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and γθ(u)γ−1 = θ(u−1) for all u ∈U(1). This extra condition implies that the groups

C1, C2, C3, C4, C6, D2, D3, D4, D6, T, O, F, Fa, Fc,U(1)× SU(2)

cannot occur when k has a real place. We will recover and refine this statement in § 4.7.

Remark 3.6. For the purposes of this computation, we will assume that the symplectic form
preserved by USp(2g) is defined by the block matrix

S :=
(

0 Id2

−Id2 0

)
unless otherwise specified (as is the case in § 3.6).

3.3 The identity connected component

The remainder of this section will be taken up with the proof of Theorem 3.4; we thus assume
until the end of § 3 that w = 1 and g = h1,0 = h0,1 = 2. We begin by enumerating the options
for the identity component G0; this classification is well-known in the context of Mumford–Tate
groups.

Lemma 3.7. If G satisfies the Sato–Tate axioms for w = 1 and g = h1,0 = h0,1 = 2, then G0 is
conjugate to one of

U(1), SU(2), U(1)×U(1), U(1)× SU(2), SU(2)× SU(2), USp(4).

Proof. We may exploit the exceptional isomorphism USp(4)/{±1} ' SO(5).10 Let G0 be a closed
connected subgroup of SO(5). Let T be a maximal torus of G0; it is contained in a maximal
torus of SO(5), which is 2-dimensional. Let h denote the Lie algebra of G0. By the classification
of Dynkin diagrams, the complexification hC of h must be isomorphic to one of

t1, sl2 = so3 (dim(T ) = 1),
t2, t1 × sl2, sl2 × sl2 = so4, sl3, so5, g2 (dim(T ) = 2).

The standard representation of G gives rise to 5-dimensional self-dual orthogonal representations
of h and hC. This immediately rules out g2, because the smallest dimension of a nontrivial
representation of g2 is 7> 5. It also rules out sl3, because its only nontrivial representation of
dimension at most 5 is the standard 3-dimensional representation, which is not self-dual. 2

3.4 The case of G0 = U(1)

We now treat the case where G0 = U(1) = {u ∈ C× : |u|= 1}. In this case, G0 must be equal to
a Hodge circle, which we may take to be the image of U(1) under the homomorphism given in
block form by

u 7→
(

diag(u) 0
0 diag(u−1)

)
.

Note that the centralizer of G0 within GL(4, C) consists of block diagonal matrices
(
A 0
0 D

)
. For

such a matrix to be unitary, we must have A, D ∈U(2). For such a matrix to also be symplectic,
we must have D =A (where the bar denotes complex conjugation). We thus conclude that the

10 Serre kindly pointed out to us that given an element of USp(4) with characteristic polynomial T 4 + a1T
3 +

a2T
2 + a1T + 1, if u and v are the angles defining the corresponding element of SO(5), then a2

1 = 4(1 + cos u)(1 +
cos v) and a2 = 2(1 + cos u+ cos v).
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centralizer Z of G0 in USp(4) is isomorphic to U(2) via the map

A 7→
(
A 0
0 A

)
. (3.1)

The normalizer N of G0 in USp(4) has the form

N = Z ∪ JZ, J :=
(

0 J2

−J2 0

)
, J2 :=

(
0 1
−1 0

)
.

Note that J centralizes the copy of SU(2) inside our embedded U(2): for any A=
(
a b
c d

)
∈ SU(2)

we have

A= (AT )−1 = (A−1)T =
(
d −b
−c a

)T
=
(
d −c
−b a

)
and therefore

J

(
A 0
0 A

)
J−1 =

(
J2AJ2 0

0 J2AJ2

)
=
(
A 0
0 A

)
.

Consequently, we have

N/G0 ' SU(2)/(±1)× Z/2Z ' SO(3)× Z/2Z. (3.2)

We first enumerate the options for G assuming that G⊆ Z; given (3.2), this constitutes
an enumeration over the familiar list of finite subgroups of SO(3) up to conjugacy. It will be
convenient to identify SU(2) with the group of unit quaternions via the isomorphism

a+ bi + cj + dk 7→
(
a+ bi c+ di
−c+ di a− bi

)
,

and to then use (3.1) to view the unit quaternions as a subgroup of USp(4).

Cyclic groups. A cyclic group of order n within SO(3) lifts to a cyclic group of order 2n in
SU(2), which can be represented as 〈ζ2n〉 where ζ2n = cos(π/n) + sin(π/n)i. By the rationality
condition, the average over r ∈ [0, 1] of the square of the trace of the matrix

B =
(
A 0
0 A

)
, A= e2πirζ2n =

(
e2πir+πi/n 0

0 e2πir−πi/n

)
is an integer. However, this average equals |Trace(A)|2 = (2 cos(π/n))2, so we must have
2 cos(π/n) ∈ {0,±1,±

√
2,±
√

3,±2}, or n ∈ {1, 2, 3, 4, 6}. For these values of n, let Cn denote
the resulting subgroup of Z.

Dihedral groups. A dihedral group of order 2n within SO(3) lifts to the group 〈ζ2n, j〉 in SU(2).
For n= 2, 3, 4, 6, let Dn denote the resulting subgroup of Z. We omit D1 since it is conjugate
to C2.

Tetrahedral group. In this case, G/G0 is the tetrahedral group. Lifting to SU(2) yields the binary
tetrahedral group, which has the standard presentation

{±1,±i,±j,±k, 1
2(±1± i± j± k)}.

Let T denote the resulting subgroup of Z.
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Octahedral group. In this case, G/G0 is the octahedral group. Lifting to SU(2) yields the binary
octahedral group, a standard presentation of which consists of the given presentation of the
binary tetrahedral group together with

√
2

2
(±1± i),

√
2

2
(±1± j),

√
2

2
(±1± k),

√
2

2
(±i± j),

√
2

2
(±i± k),

√
2

2
(±j± k).

Let O denote the resulting subgroup of Z.

Icosahedral group. This group cannot occur because it contains a cyclic group of order 5, but C5

does not satisfy the rationality condition.

We thus obtain the following groups with G0 = U(1) and G⊆ Z:

C1, C2, C3, C4, C6, D2, D3, D4, D6, T, O. (3.3)

We now determine the options for G 6⊆ Z. Since N/G0 ' SO(3)× Z/2Z, the projection of a
subgroup of N/G0 to SO(3) is either two-to-one or one-to-one onto its image H. In the former
case, we get a subgroup of the form H × Z/2Z, corresponding to one of the groups

J(C1), J(C2), J(C3), J(C4), J(C6), J(D2), J(D3), J(D4), J(D6), J(T ), J(O)

obtained by adjoining J to each group in (3.3). In the latter case, the subgroup forms the graph of
a homomorphism H → Z/2Z, which must be nontrivial because G 6⊆ Z. We need only consider
these homomorphisms up to conjugation within SO(3); this gives some additional groups as
follows.

Cyclic groups. For n= 2, 4, 6, the nontrivial homomorphism H → Z/2Z gives

Cn,1 := 〈U(1), J(cos(π/n) + sin(π/n)i)〉.

Beware: C6,1 contains C2,1 but C4,1 does not (its subgroup of order 2 is C2).

Dihedral groups. For n= 2, 4, 6, there are two nontrivial homomorphisms H → Z/2Z not killing
the cyclic subgroup, which are interchanged by an outer automorphism of H. These give rise to
the group

Dn,1 := 〈U(1), J(cos(π/n) + sin(π/n)i), j〉
containing Cn,1 with index 2. For n= 3, 4, 6, we may also use the nontrivial homomorphism
killing the cyclic subgroup to obtain

Dn,2 := 〈U(1), cos(π/n) + sin(π/n)i, Jj〉;

this is redundant for n= 2 because all three of the nontrivial homomorphisms H → Z/2Z are
conjugated transitively by SO(3).

Tetrahedral group. In this case, we have H 'A4, which has no nontrivial homomorphisms to
Z/2Z.

Octahedral group. In this case, we have H ' S4, so there is one nontrivial homomorphism to
Z/2Z with the tetrahedral group in its kernel. We obtain a new group O1 by multiplying each
of the elements of O\T by J .

This analysis thus adds the additional groups

C2,1, C4,1, C6,1, D2,1, D3,2, D4,1, D4,2, D6,1, D6,2, O1.
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F. Fité et al.

3.5 The case of G0 = SU(2)
After the G0 = U(1) case, the next most complicated case is that of G0 = SU(2). Fortunately, we
can reuse some of the analysis from § 3.4 as follows.

Embed G0 into USp(4) as in (3.1). Since SU(2) is centralized by U(1), the normalizer is again
N = Z ∪ JZ. This time, we see that Z/G0 'U(2)/SU(2)'U(1)/(±1), and that conjugation by
J acts on Z/G0 by inversion. We thus need only list the finite subgroups of O(2), which is
straightforward: for each positive integer n, the cyclic subgroup of U(1) of order 2n gives rise to
the groups

En := 〈SU(2), eπi/n〉,
J(En) := 〈SU(2), eπi/n, J〉.

It is easy to check that these groups satisfy the rationality condition if and only if n= 1, 2, 3, 4, 6.
We thus have the groups

E1, E2, E3, E4, E6, J(E1), J(E2), J(E3), J(E4), J(E6).

3.6 The remaining cases for G0

In order to complete the proof of Theorem 3.4, by Lemma 3.7 it remains to consider the cases
where G0 = U(1)×U(1), U(1)× SU(2), SU(2)× SU(2), or USp(4). The case of G0 = USp(4) is
trivial because we must have G=G0, so we focus on the other three cases. For these cases, it
is convenient to change basis to account for the product structure of G0, by interchanging the
second and third rows and columns; we are thus working with the new symplectic form

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

.
In these coordinates, we may take G0 to be embedded into USp(4) in block form. We take U(1)
to be embedded into SU(2) via the map

u 7→
(
u 0
0 u

)
.

For G0 = U(1)×U(1), the normalizer in USp(4) contains U(1)×U(1) with index 8, with the
quotient (isomorphic to a dihedral group) generated by matrices

a :=
(
J2 0
0 Id2

)
, b :=

(
Id2 0
0 J2

)
, c :=

(
0 Id2

−Id2 0

)
,

each of which defines an involution on the component group. We write F∗ for the group generated
by G0 and a list ∗ of matrices generated by a, b, c. In this notation, up to conjugacy, we have
the groups

F, Fa, Fc, Fa,b, Fab, Fac, Fab,c, Fa,b,c.

For G0 = U(1)× SU(2), the normalizer in USp(4) equals N(U(1))× SU(2). Thus G0 and its
normalizer are the only possible groups.

For G0 = SU(2)× SU(2), the normalizer in USp(4) consists of SU(2)× SU(2) plus the coset
generated by J . In this case, G0 and its normalizer are the only possible groups. This completes
the proof of Theorem 3.4.
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4. Galois structures of abelian surfaces

In this section, we give the classification of Galois types of abelian surfaces (as introduced in
Definition 1.3) and the relation of these to Sato–Tate groups. Our main result is Theorem 4.3,
which implies both Theorem 1.4 and Theorem 1.5. It gives an alternate description of the Galois
type in terms of arithmetic properties of the abelian surface. Strictly speaking, only a small part
of this description is needed in order to obtain Theorems 1.4 and 1.5 (namely the analysis of
cases corresponding to Sato–Tate groups with connected part U(1)×U(1)). However, we have
chosen to provide the complete analysis in order to make it easier to recognize Galois types and
Sato–Tate groups of abelian surfaces occurring in nature.

Before stating Theorem 4.3, we recall the definition of the Galois type and set some associated
notation. For the moment, we take A to be any abelian variety over a number field k.

Proposition 4.1 [Sil92]. There is a unique minimal extension K/k over which all
endomorphisms of AQ are defined. The extension K/k is normal and unramified at the prime
ideals of k at which A has good or semistable reduction.

Taking K as in Proposition 4.1, End(AK)Q is a semisimple algebra of finite rank over Q
and thus decomposes as a product End(AK)Q =

∏
i Mni(Di) of matrix algebras over division

algebras, parallel to the decomposition of A as a product A∼
∏
i A

ni
i of simple varieties over K.

Note that the Galois group Gal(K/k) acts in a natural way on the Q-algebra End(AK)Q of
endomorphisms of A and induces a Galois representation

ρA : Gal(K/k) ↪→AutR-alg(End(AK)R),

which is faithful precisely because K/k is the minimal extension over which the endomorphisms
of AQ are defined.

Definition 4.2. The Galois type of A is the equivalence class of the representation ρA.

As noted in Definition 1.3, two abelian varieties A/k and A′/k′ defined over different number
fields may have the same Galois type; the equivalence relation on representations is meant to see
Gal(K/k) only as an abstract group, not as a quotient of Gk.

4.1 Classification of Galois types: overview

We now restrict to the case where A is an abelian surface over k, and formulate the classification
theorem for Galois types. In the process, we introduce alternate names for the Galois types
corresponding more closely to their arithmetic.

To begin with, recall that Albert’s classification of division algebras with involution
(see [Mum70]), together with the work of Shimura [Shi63], shows that the R-algebra End(AK)R
is isomorphic to one of the following:

(A) R, which is the generic case;

(B) R× R, which occurs when either:

– AK is isogenous to a product of nonisogenous elliptic curves without CM; or
– AK is simple and End(AK) is an order in a real quadratic field;

(C) C× R, which occurs when AK is isogenous to a product of (necessarily nonisogenous) elliptic
curves, one with CM and the other without CM;
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(D) C× C, which occurs when either:

– AK is isogenous to a product of nonisogenous elliptic curves with CM; or
– AK is simple and End(AK) is an order in a quartic CM-field;

(E) M2(R), which occurs when either:

– AK is isogenous to the square of an elliptic curve without CM; or
– AK is simple and End(AK) is an order in a division quaternion algebra over Q;

(F) M2(C), which occurs when AK is isogenous to the square of an elliptic curve with CM.

In case D, when End(AK) is an order in a quartic CM-field M , we shall assume that a choice
of an isomorphism ι :M ∼−−→ End(AK)Q has been made; this singles out a (primitive) CM-type
Φ on A, to which we can associate the reflex field of the pair (A, Φ), which we denote as usual
by M∗. Different choices of Φ give rise to conjugate reflex fields in the Galois closure of M , and
our results depend only on the conjugacy class of M∗.

We shall refer to A, B, C, D, E, or F as the absolute type, or simply the type, of A. Note
that the Galois type of A is a much finer invariant.

The six absolute types are in one-to-one correspondence with the six connected Lie subgroups
of USp(4) appearing in Lemma 3.7, as indicated below.

A: USp(4) B: SU(2)× SU(2) C: U(1)× SU(2)
D: U(1)×U(1) E: SU(2) F: U(1)

There at least two ways of proving this. One method, which we do not make explicit here but
surely follows from existing results in the literature, uses Definition 2.6 to compute ST0

A = STAK

for any abelian surface A of given absolute type. Alternatively, we may work in the reverse
direction: for each of the six possible connected Sato–Tate groups, use Proposition 2.19 to
determine the corresponding Galois type. These computations are made explicit in §§ 4.2–4.5.

Theorem 4.3. There are exactly 52 different Galois types of abelian surfaces, and these
correspond to 52 of the 55 Sato–Tate groups listed in Theorem 3.4, as indicated below (using
notation defined in the proof). Of the 52 Galois types, exactly 34 can (and do) arise from abelian
surfaces defined over Q; these are decorated with the symbol ?.

– A[C1]?, matching USp(4).

– B[C1]? and B[C2]?, matching SU(2)× SU(2) and N(SU(2)× SU(2)).

– C[C1] and C[C2]?, matching U(1)× SU(2) and N(U(1)× SU(2)).

– D[C1], D[C2, R× C], D[C2, R× R], D[C4]?, and D[D2]?, matching F, Fa, Fab, Fac, and
Fa,b.

– E[C1]?, E[C2, C]?, E[C3]?, E[C4]?, and E[C6]?, matching E1, E2, E3, E4, and E6.

– E[C2, R× R]?, E[D2]?, E[D3]?, E[D4]?, and E[D6]?, matching J(E1), J(E2), J(E3), J(E4),
and J(E6).

– F[C1], F[C2], F[C3], F[C4], F[C6], F[D2], F[D3], F[D4], F[D6], F[A4], and F[S4], matching
C1, C2, C3, C4, C6, D2, D3, D4, D6, T , and O.

– F[C2, C1,H], F[D2, C2,H]?, F[C6, C3,H], F[C4 × C2, C4]?, F[C6 × C2, C6]?, F[D2 ×
C2,D2]?, F[D6,D3,H]?, F[D4 × C2,D4]?, F[D6 × C2,D6]?, F[A4 × C2,A4]?, and F[S4 ×
C2, S4]?, matching J(C1), J(C2), J(C3), J(C4), J(C6), J(D2), J(D3), J(D4), J(D6), J(T ),
and J(O).
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– F[C2, C1,M2(R)]?, F[C4, C2], F[C6, C3,M2(R)]?, F[D2, C2,M2(R)]?, F[D4,D2]?, F[D6,D3,
M2(R)]?, F[D3, C3]?, F[D4, C4]?, F[D6, C6]?, and F[S4,A4]?, matching C2,1, C4,1, C6,1, D2,1,
D4,1, D6,1, D3,2, D4,2, D6,2, and O1.

Moreover, for any abelian surface A defined over a number field k, each of the following three
invariants uniquely determines the other two:

(a) the conjugacy class of STA within USp(4);

(b) the Galois type of A;

(c) the isomorphism class of Gal(K/k) plus the function on the subgroup lattice of Gal(K/k)
taking the subgroup H to the isomorphism class of the R-algebra End(AK)HR fixed by H.

We devote the remainder of this section to proving Theorem 4.3. In §§ 4.2–4.5, we prove that
there exist at most 52 different Galois types over number fields. Along the way, we describe the
passage from (a) to (b) in Theorem 4.3; this amounts to making the proof of Proposition 2.19
explicit for each of the 55 groups named in Theorem 3.4. From this computation, we see that the
Galois types correspond to 52 of the 55 Lie groups listed in Theorem 3.4. Since the Lie groups
Fc, Fab,c, and Fa,b,c remain unmatched, they cannot occur as the Sato–Tate group of any abelian
surface.

As a byproduct of this computation, we explicitly describe the passage from (a) to (c) in
Theorem 4.3. To do this, it suffices to compute End(AK)Gal(K/k)

R = End(Ak)R for each Sato–
Tate group; this data appears in Table 8. With this data, it is also easy to go from (c) back to
(a); see § 4.6.

In § 4.7, we verify that the 18 Galois types that are not decorated with a ? in Theorem 4.3
cannot arise from an abelian surface defined over Q. Among these 18 Galois types, 14 correspond
to Sato–Tate groups that were already ruled out over a field with a real place in Remark 3.5.
Additional arguments are provided to show that the three Galois types F[C2, C1,H], F[C4, C2],
and F[C6, C3,H] cannot occur over a field with a real place (Proposition 4.11). Finally, we show
that the Galois type D[C2, R× R], admissible over a field admitting a real place, cannot arise
from an abelian surface defined over Q, as a result of the discussion in § 4.4.

In § 4.8, we exhibit one proven example of an abelian surface for each of the 52 Galois types.
These examples arise as Jacobians of curves of genus 2 over number fields; for those 34 Galois
types decorated with a ?, the curve that we exhibit is defined over Q. For the Galois type
D[C2, R× R], the curve we present is defined over a totally real field.

We now proceed with the proof of Theorem 4.3 in §§ 4.2–4.6.

4.2 Cases A and B

In case A, the group AutQ(End(AK)Q) is trivial and End(AK)R = R. Therefore Gal(K/k) =
C1 and ρA = χ1 is the trivial representation. In case B, we have AutQ(End(AK)R)' C2,
End(AK)R ' R× R, and End(AK)C2

R ' R. This yields three distinct Galois types: A[C1], B[C1],
and B[C2].

From the Lie group side, it is clear that if STA = USp(4), then End(AK)R is R. If ST0
A =

SU(2)× SU(2), then End(AK)R ' R× R and the normalizer of SU(2)× SU(2) interchanges the
two factors, fixing R.

Thus the Galois types of abelian surfaces with Sato–Tate groups USp(4), SU(2)× SU(2), and
N(SU(2)× SU(2)) are A[C1], B[C1], and B[C2], respectively.
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4.3 Complex multiplication by a quartic CM-field
Let M be a quartic CM-field, that is, a totally imaginary quadratic extension of a real quadratic
field. Assume A has complex multiplication by M and fix an isomorphism ι :M −→ End(AK)Q,
which in turn induces an isomorphism

M ⊗Q R' C× C' End(AK)R.

Let Φ = {φ, φ′} denote the CM-type of the pair (A, ι), which is necessarily primitive as
otherwise ι would only be a (nonsurjective) monomorphism. Let M∗ be the reflex field of (M, Φ).
The extension M/Q is either:

(C4) normal, with Gal(M/Q)' C4 and M∗ =M ; or
(D4) not normal, with the Galois group of the normal closure M̃ isomorphic to D4 and M∗ a

subfield of M̃ of degree 4 over Q, different from M and not normal over Q; see [Shi98, p. 64]
or [Str10, ch. I, § 7], for example.

Proposition 4.4. The field K is the compositum of k and M∗.

Proof. This is [Shi71, p. 515, Proposition 3]. 2

In case (D4) we must have |Gal(K/k)|6 2, because otherwise AutQ(M)⊇Gal(K/k) would
have order at least 4, implying that M/Q is Galois. Note that the condition [kM∗ : k] 6 2
implies that this case cannot occur for k = Q. In case (C4), we have Gal(K/k) = Gal(kM∗/k)⊆
Gal(M∗/Q)' C4. In any case, Gal(K/k)' Cn for n= 1, 2, or 4, which gives rise to the following
alternatives.

– Gal(K/k) = C1 and ρA is the trivial representation; this yields Galois type D[C1].
– Gal(K/k) = C2 and (End(AK)R)C2 ' R× R, as (End(AK)R)C2 'MC2 ⊗Q R is by Artin’s

lemma an R-vector space of dimension 2 and M contains a single quadratic subfield, which
is real; this is Galois type D[C2, R× R].

– Gal(K/k) = C4, (End(AK)R)C2 ' R× R, and (End(AK)R)C4 ' R; this is Galois type D[C4],
which is the only case that can occur when k = Q.

Thus for case D we have found three of the five Galois types listed in Theorem 4.3; we shall
find the remaining two in the next section, arising from abelian surfaces that are isogenous to
the product of two elliptic curves with CM by distinct imaginary quadratic fields.

Let us now analyze which Galois types correspond to an abelian surface A such that
ST0

A = U(1)×U(1). Recall that in this case, we take the symplectic form to be in split form
rather than block form. With this in mind, the matrices in M4(C) commuting with U(1)×U(1)
are 


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 : a, b, c, d ∈ C

 ,

and the Rosati form is a scalar multiple of 2ab+ 2cd= ((a+ b)2 − (a− b)2 + (c+ d)2 −
(c− d)2)/2. Consequently,

End(AK)R =



a+ bi 0 0 0

0 a− bi 0 0
0 0 c+ di 0
0 0 0 c− di

 : a, b, c, d ∈ R

' C× C.
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The action of a generator of the component group of Fa is
a+ bi 0 0 0

0 a− bi 0 0
0 0 c+ di 0
0 0 0 c− di

 7→

a− bi 0 0 0

0 a+ bi 0 0
0 0 c+ di 0
0 0 0 c− di

,
so the fixed ring has b= 0 and thus is R× C. For Fc, we get

a+ bi 0 0 0
0 a− bi 0 0
0 0 c+ di 0
0 0 0 c− di

 7→

c+ di 0 0 0

0 c− di 0 0
0 0 a+ bi 0
0 0 0 a− bi

,
so the fixed ring has a= c and b= d and thus is C. For both Fab and Fa,b, the fixed ring has
b= d= 0 and thus is R× R. For Fac, the fixed ring has a= c and b= d= 0 and thus is R, and
similarly for the larger group Fa,b,c. For Fab,c, the fixed ring is contained in both R× R (the fixed
ring of Fab) and C (the fixed ring of Fc) and thus is R.

Comparing this analysis with the Galois structure of the above three Galois types, we
conclude that if the Sato–Tate group of A is F, Fab, or Fac, then the Galois type of A is D[C1],
D[C2, R× R], or D[C4], respectively.

4.4 Products of nonisogenous elliptic curves

Proposition 4.5. For i= 1, 2, let Mi be either Q or an imaginary quadratic field. Assume that
at least one Mi is quadratic and that if both M1 and M2 are quadratic, then M1 6'M2. Let A/k
be an abelian surface such that End(AQ)Q 'M1 ×M2. The following hold:

(i) the minimal extension of k over which the endomorphisms of AQ are defined is K = kM1M2;

(ii) there exist elliptic curves Ẽ1 and Ẽ2 over k for which A∼k Ẽ1 × Ẽ2.

Proof. (i) Let us prove the statement under the assumption that both M1 and M2 are quadratic;
when M1 is quadratic and M2 = Q, the proof is simpler and we leave the details to the reader.

Let K ⊂Q denote the minimal extension of k over which all endomorphisms of AQ are defined,
and let Ω/k denote a minimal subextension of K/k over which there exists an isogeny

ψ :A ∼−−→ E1 × E2,

defined over Ω onto a product of two elliptic curves E1/Ω and E2/Ω. Note that Ω might be
properly contained in K, as we do not require that End(Ei,Ω)Q 'Mi.

For i= 1, 2, we claim that there exists an elliptic curve E′i over k such that Ei and E′i are
isogenous over Ω. Indeed, let k ⊆ ki ⊆ Ω be a minimal subextension of Ω/k over which such
an E′i exists. The abelian surface A′ := E′1 × E′2 is thus defined over k1k2. As an application
of [Rib04, Theorem 8.2], it follows from the minimality of ki that k1k2 is also a minimal
subextension of Ω/k over which A′ admits a model up to isogenies over Ω. Indeed, if there were
a proper subextension k0 ( k1k2 over which A′ admits a model, there would exist a collection of
isogenies {ϕσ : (A′)σ −→A′}σ∈Gal(k1k2/k0) defined over Ω such that ϕσσϕτ = ϕστ . Since there are
no isogenies between E1 and any of the Galois conjugates of E2, we would have ϕσ = (ϕ1

σ, ϕ
2
σ)

where ϕiσ : Eσi −→ Ei are isogenies such that ϕiσ
σϕiτ = ϕiστ . Ribet’s theorem would then imply

that both E1 and E2 admit a model over k0, contradicting the minimality of k1 and k2.
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Since A is one such model, we deduce that k = k1k2 and thus k = k1 = k2. Hence A and A′

are abelian surfaces over k that are isogenous over Ω.
By the theory of complex multiplication on elliptic curves (see, for example, [Sil94,

Theorem 2.2]), the minimal extension of k over which all endomorphisms of A′Q are defined
is kM1M2. Since End(A′Q)Q =M1 ×M2 is commutative and A is a twist of A′ in the category
of abelian varieties up to isogenies, the isogeny class of A over k corresponds to a cocycle
cA ∈H1(Gal(Q/k), End(A′Q)×Q) =H1(Gal(Q/k), M×1 ×M

×
2 ); it follows that for any number field

k ⊆ F ⊆Q,

End(AF )Q = {α ∈ End(A′Q)Q : ασcA(σ) = cA(σ)α ∀σ ∈GF }

= End(A′F )Q (because M1 ×M2 is commutative).

Hence the minimal extension of k over which all endomorphisms of AQ are defined is also
K = kM1M2.

(ii) In the proof of (i), we have seen that A∼K E′1 × E′2 for elliptic curves E′1 and E′2
over k. Since Gal(K/k) = C1, C2,D2, the representation Hom(AK , E′1,K)Q decomposes as a
sum of characters of order at most 2. Let χ denote any of these characters. Then Hom(AK ,
(E′1 ⊗ χ)K)Q contains the trivial representation and thus E′1 ⊗ χ is a k-factor of A. This
induces a decomposition A∼k (E′1 ⊗ χ)× Ẽ2, for some elliptic curve Ẽ2/k. We may then take
Ẽ1 = E′1 ⊗ χ. 2

In case C, let A∼K E1 × E2, where E1 and E2 are elliptic curves defined over k with CM by
M and without CM, respectively. The following two cases arise.

(i) M ⊆ k. Then Gal(K/k) = C1 and ρA is the trivial representation. This is Galois type
C[C1], and it cannot occur when k = Q.

(ii) M is not contained in k. Then Gal(K/k) = C2 and Trace ρA = 2χ1 + χ2. This is Galois
type C[C2], which can occur when k = Q.

From the Lie group side, it is easy to check that if ST0
A = U(1)× SU(2), then End(AK)R =

R× C and the normalizer acts nontrivially on C, fixing R× R. This shows that the Galois types
corresponding to the Lie groups U(1)× SU(2) and N(U(1)× SU(2)) are, respectively, C[C1] and
C[C2].

In case D, let A∼K E1 × E2, where E1 and E2 are nonisogenous elliptic curves defined over k
with CM by two different imaginary quadratic fields M1 and M2, respectively. Then four cases
arise.

(i) M1, M2 ⊆ k. Then Gal(K/k) = C1 and ρA is the trivial representation; this is Galois type
D[C1], which we already encountered in § 4.3.

(ii) M1 ⊆ k and M2 is not contained in k. Then Gal(K/k) = C2 and (End(AK)Q)C2 =
M1 ×Q, and thus (End(AK)R)C2 ' R× C. This is Galois type D[C2, R× C].

(iii) M1 and M2 are not contained in k and kM1 = kM2. Then Gal(K/k) = C2 and
(End(AK)Q)C2 = Q×Q; we thus have (End(AK)R)C2 ' R× R, yielding the Galois type
D[C2, R× R] that we already met in § 4.3.

(iv) M1 and M2 are not contained in k and kM1 6= kM2. Then Gal(K/k)'D2 and the three
subalgebras of End(AK)Q fixed by each of the subgroups of order 2 are M1 ×Q, M2 ×Q, and
Q×Q. This is Galois type D[D2].
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Among the four Galois types listed above, only the last can occur when k = Q. The analysis in
§ 4.3 implies that the Galois types corresponding to the Lie groups Fa and Fa,b are, respectively,
D[C2, R× C] and D[D2].

As a byproduct, since we have now classified all the possible Galois types of an abelian surface
A for which ST0

A = U(1)×U(1), we deduce that the Lie groups Fc, Fab,c, and Fa,b,c cannot occur
as the Sato–Tate group of an abelian surface.

4.5 Products of isogenous elliptic curves

In case E or F, the endomorphism ring End(AK)Q is a quaternion algebra B over C = Q or M ,
respectively. Write B→B, α 7→ α′ for the canonical anti-involution on B, and n(α) = αα′ ∈ C.

Proposition 4.6. Assume that A/k is of type F. Then K contains M and Gal(K/kM) acts
trivially on the center of End(AK)Q 'M2(M).

Proof. Let E/K be an elliptic curve such that End(EK)Q 'M and A∼K E2. Since any field
of definition of the endomorphisms of E contains M (see, e.g., [Sil94, ch. II, Theorem 2.2]), we
have M ⊆K. Fix embeddings ι :M ⊆K ⊂ C.

As shown in [Sil94, ch. II, Proposition 1.1], there exists a unique isomorphism [ ]E :
M −→ End(EK)Q such that for any invariant differential ω ∈ Ω1

E , we have [α]∗E(ω) = αω for all
α ∈M ⊂ C. There is therefore an unique isomorphism [ ]E2 : M2(M)−→ End(E2

K)Q such that for
any invariant differential ω = (ω1, ω2) ∈ Ω1

E2 , we have [α]∗E2(ω) = αω for all α ∈M2(M)⊂M2(C).
It follows as in the proof of [Sil94, ch. II, Theorem 2.2] that σ[α]E2 = [σα](σE)2 , hence

σ[α]E2 = [α](σE)2 for σ ∈Gal(K/kM). (4.1)

Endomorphisms of E2 induce K-linear endomorphisms of the space of regular differentials
Ω1
E2 ; any choice of a K-basis of Ω1

E2 gives rise to a monomorphism t : M2(M)' End(E2
K)Q ↪→

M2(K) ↪→M2(C), α 7→ [α]∗E2 whose restriction to the centers is ι.
That E2 admits the model A over k up to isogenies over K implies, thanks again to

Ribet’s theorem [Rib04, Theorem 8.2], that there exists a collection of isogenies {Φσ : (σE)2 −→
E2}σ∈Gal(K/k) such that φσσφτ = φστ . The Gal(K/k)-module End(AK)Q is then isomorphic to
the module End(E2

K)Q equipped with the following action of the group Gal(K/k): an element
σ ∈Gal(K/k) acts on an endomorphism [α] ∈ End(E2

K)Q by the rule σ · [α] = φσ[σα]φ−1
σ .

Similarly, isogenies φσ induce K-linear isomorphisms π∗σ : Ω1
(σE)2 ' Ω1

E2 . If [α] lies in the
center of End(E2

K)Q, then σ · [α]∗ = [σα]∗; if in addition σ ∈Gal(K/kM), it follows from (4.1)
that σ · [α]∗ = [α]∗. Since t is a monomorphism, we deduce that σ · [α] = [α]; thus Gal(K/kM)
acts trivially on the center of End(AK)Q 'M2(M), as claimed. 2

By the Skolem–Noether theorem, all automorphisms of End(AK)Q that are the identity on C
are inner. Set P(End(AK)×Q) = End(AK)×Q/C

×. A homothety class [α] ∈ P(End(AK)×Q) induces
the automorphism cα of End(AK)Q given by the rule γ 7→ αγα−1, which is the identity on C.
This induces an isomorphism AutC(End(AK)Q)' P(End(AK)×Q).

By the previous proposition, Gal(K/kC) is isomorphic to a subgroup of AutC(End(AK)Q).
The list of finite subgroups of P(End(AK)×Q) is well-known (see [Bea10, CF00], for example),
and this allows us to conclude that Gal(K/kC) is isomorphic to one of Cn, Dn, A4, or S4, where
n ∈ {1, 2, 3, 4, 6}. The groups A4 or S4 arise only when −1 can be written as a sum of two squares
in C, and thus only occur in case F.
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We now make a first analysis of the action of Gal(K/kC) on End(AK)Q, and therefore also on
End(AK)R. This will address all the Galois types in case E and is a first step towards classifying
the Galois types in case F, which we will conclude in § 4.5.2.

Proposition 4.7. Let A/k be an abelian surface that is isogenous over K to the square of an
elliptic curve.

(i) Assume Gal(K/kC)' Cn for n= 1, 2, 3, 4, or 6. If n= 1, then Gal(K/kC) acts
trivially on End(AK)Q; if C = Q, we denote the resulting Galois type by E[C1]. If n= 2,

then End(AK)Gal(K/kC)
Q is a quadratic extension of C. If C = Q, this gives rise to two Galois

types, according to whether the extension is real or imaginary; we label them E[C2, R× R] and

E[C2, C], respectively. If n > 2, then End(AK)Gal(K/kC)
Q = C and for any nontrivial subgroup

H ⊆Gal(K/kC) we have

End(AK)HQ = C + C · (1 + ζn), ζnn = 1, ζn0
n 6= 1 for n0 < n.

If C = Q, for any k ⊆ k′ (K we have End(Ak′)Q = Q(ζn), which is an imaginary quadratic
extension of Q. This gives rise to a single Galois type, which we denote by E[Cn].

(ii) Assume that Gal(K/kC)'D2 = C2 × C2 and End(AK)Gal(K/kC)
Q = C, and that the three

algebras fixed by each of the subgroups of Gal(K/kC) of order 2 are quadratic extensions of C.
If C = Q, then two of these quadratic extensions are real and one is imaginary; hence a single
Galois type arises, which we denote by E[D2].

(iii) Assume that Gal(K/kC)'Dn for n= 3, 4, or 6. Write Gal(K/kC) = 〈r, s〉 with rn = 1,

s2 = 1, and srs= r−1. Then End(AK)〈s〉Q = C + C ·
√
m for some m ∈ C, and for any nontrivial

subgroup H ⊆ 〈r〉 ⊂Gal(K/kC) we have End(AK)HQ = C + C · (1 + ζn). The algebra fixed by
any other nontrivial subgroup of Gal(K/kC) is C. If C = Q, then Q(

√
m) is real quadratic and

Q(ζn) is imaginary quadratic; we thus obtain the single Galois type E[Dn].

We have relegated the study of the case where C =M and Gal(K/kM)'A4 or S4 to § 4.5.2:
see Proposition 4.9 and the discussion following it.

Proof. Write G= Gal(K/kC). Let us first consider case (i), in which ρA induces an isomorphism
between G and a cyclic subgroup of B×/C× of order n. More precisely, G= 〈cα〉 for some
α ∈B×\C× such that α2 = d ∈ C× if n= 2 or α= 1 + ζn if n > 2, where ζn is an element in
B×\C× of order n. One checks that αn0 6∈ C for n0 < n; thus the subalgebra of B fixed by any
of the nontrivial subgroups of G is precisely C(α), which is quadratic over C.

For (ii), we now assume that G'D2. By [CF00, Lemma 2.3], any subgroup of B×/C×

isomorphic to D2 is of the form 〈[α], [β]〉 ⊂B×/C× with α, β ∈B×\C× satisfying α2 = d,
β2 =m ∈ C×, and αβ =−βα. In particular, (αβ)2 =−dm. It follows that the subalgebra of
B fixed by G (respectively, by each of the three subgroups of G of order 2) is the center C
(respectively, the quadratic extension C(α), C(β), or C(αβ) of C). If C = Q, then we know that
B is indefinite, that is to say,

B ⊗Q R =
(
d, m

R

)
'M2(R),

which amounts to saying that at least one of d and m is positive. This implies that exactly two
of d, m, and −dm are positive and one is negative.

Similarly, in case (iii), by [CF00, Lemma 2.3] all subgroups of B×/C× isomorphic to Dn

are of the form 〈[α], [β]〉, where α= 1 + ζn and β ∈B×\C× satisfy β2 =m ∈ C× and ζnβ = βζn.
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The subalgebra of B fixed by any of the nontrivial subgroups of 〈[1 + ζn]〉 is C(ζn); the subalgebra
fixed by 〈[β]〉 is C(β). If C = Q, then Q(ζn) is either Q(

√
−1) or Q(

√
−3), which are both

imaginary, and we necessarily have m> 0 because B is indefinite. All the claims in (iii) follow. 2

Remark 4.8. From the proof above, one also deduces that in case E the Gal(K/k)-module
structure of End(AK)R is given by the rule

Trace ρA(σ) = 2 + ζr + ζr,

where r is the order of σ ∈Gal(K/k) and ζr denotes a primitive rth root of unity. Thus, in
case E, the Gal(K/k)-module structure of End(AK)R is completely determined by Gal(K/k)
(compare this result with Proposition 4.9).

4.5.1 Galois types and Sato–Tate groups in case E. For case E we have found a total of ten
Galois types: E[Cn] for n= 1, 3, 4, 6; E[C2, R× R] and E[C2, C]; and E[Dn] for n= 2, 3, 4, 6.

Let us recover this classification from the Lie group side, matching ten of the groups named
in Theorem 3.4 with these Galois types. Assume now that A/k is an abelian surface such that
ST0

A = SU(2). In this case, the matrices in M4(C) commuting with SU(2) are{(
aId2 bJ2

cJ2 dId2

)
: a, b, c, d ∈ C

}
.

The Rosati form is given up to a scalar multiple by

ψ 7→ Trace(ΨSTΨTS)

= Trace
((

aId2 bJ2

cJ2 dId2

) (
0 −Id2

Id2 0

) (
aId2 −cJ2

−bJ2 dId2

) (
0 Id2

−Id2 0

))
= Trace

((
bJ2 −aId2

dId2 −cJ2

) (
cJ2 aId2

−dId2 −bJ2

))
= 2(ad− bc) = 1

2((a+ d)2 − (a− d)2 − (b+ c)2 + (b− c)2).

The positive definite subspace is defined by the conditions a+ d, b− c ∈ R and a− d, b+ c ∈ iR,
and therefore

End(AK)R =
{(

(a+ bi)Id2 (c+ di)J2

(−c+ di)J2 (a− bi)Id2

)
: a, b, c, d ∈ R

}
'M2(R).

For n > 1, the action of a generator of the component group of En is(
(a+ bi)Id2 (c+ di)J2

(−c+ di)J2 (a− bi)Id2

)
7→
(

(a+ bi)Id2 e2πi/n(c+ di)J2

e−2πi/n(−c+ di)J2 (a− bi)Id2

)
,

so the fixed ring consists of matrices with c= d= 0 and is isomorphic to C. The action of J is(
(a+ bi)Id2 (c+ di)J2

(−c+ di)J2 (a− bi)Id2

)
7→
(

(a− bi)Id2 (c− di)J2

(−c− di)J2 (a+ bi)Id2

)
,

so the fixed ring of J(E1) consists of matrices with b= d= 0 and is isomorphic to R× R. For
n > 1, the fixed ring of J(En) is isomorphic to R because we must have both c= d= 0 and
b= d= 0.

It follows from the previous discussion that the correspondence between Galois types in case
E and Sato–Tate groups with connected component SU(2) is as indicated in the statement of
Theorem 4.3.
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4.5.2 Galois types in case F. In this section we assume that A/k is of type F, so that11

ST0
A 'U(1).

Proposition 4.9. The Gal(K/k)-module structure of End(AK)R is determined by the pair
(Gal(K/k),Gal(K/kM)). More precisely, it is given by the following rule: for σ ∈Gal(K/k),

Trace ρA(σ) =

{
2(2 + ζr + ζr) if σ ∈Gal(K/kM),
0 otherwise.

Here r is the order of σ and ζr stands for a primitive rth root of unity.

Proof. Suppose first that σ ∈Gal(K/kM). Recall that, except for a set of density zero, a prime p

of k is supersingular if and only if p is inert in kM . Let p be a split (i.e., not supersingular) prime
in kM of good reduction for A. Let P be a prime of kM over p. We first show that if FrobP lies
in the conjugacy class of σ in Gal(K/kM), then the roots of LP(AkM , T ) are α, α, ζrα, and ζrα,
for a certain α ∈ C. Indeed, let α be a root of LP(AkM , T ). Since P is not supersingular, α/α is
a root of unity. Observe that the eigenvalues of ρA(σ) are quotients of roots of LP(AkM , T ) (see,
for example, [Fit10]). Suppose that σ is not the trivial element (as otherwise the proposition is
trivially true). Then ρA(σ) has an eigenvalue ω 6= 1, and the roots of Lp(A/kM, T ) are α, α, ωα,
and ωα. It follows that the set of eigenvalues of ρA(σ) is {1, ω, ω}. Finally, one observes that ω
must be a primitive rth root of unity since the order of σ is r.

But again the eigenvalues of ρA(σ) are quotients of the roots α, α, ζrα, ζrα of LP(AkM , T )
and, since P is not supersingular, α/α is not a root of unity. Thus, among the 16 possible
quotients between the roots of LP(AkM , T ), only the following 8 are roots of unity: 1, 1, 1, 1, ζr,
ζr, ζr, ζr. Since ρA has dimension 8, we have Trace ρA(σ) = 2(2 + ζr + ζr).

Suppose now that k 6= kM and σ 6∈Gal(K/kM). Let χ denote the quadratic character of
Gal(K/k) associated to the extension kM/k. Let p be any prime of k which does not split
completely in kM . Since p is supersingular, we must have Trace V`(A)(Frobp) = 0. It follows that
V`(A)' V`(A)⊗ χ, that is, A∼k A⊗ χ. Therefore End(AK)R = End(AK)R ⊗ χ, which implies
the claim. 2

Remark 4.10. It is not true that the pair (Gal(K/k),Gal(K/kM)) determines the Galois type
of A: there exist examples of abelian surfaces A/k and A′/k′ for which there is an isomorphism
of abstract groups

(Gal(K/k),Gal(K/kM))
ϕ
' (Gal(K ′/k′),Gal(K ′/k′M ′))

but such that for a certain subgroup H ⊆Gal(K/k) of order 2, the rings End(AK)HR and
End(A′K)ϕ(H)

R are not isomorphic as R-algebras. The list of Galois types that are ambiguous
in this way can be found in Table 3.

The computations performed in § 3.4 allow us to determine the possible isomorphism classes
for the pair of groups (Gal(K/k),Gal(K/kM)). Indeed, observe that STA determines not only
Gal(K/k)' STA/ST0

A but also the subgroup Gal(K/kM): since a prime p of k is supersingular
if and only if it does not split completely in kM , the group Gal(K/kM) is isomorphic to
the component group of STns

A , where STns
A denotes the index 2 subgroup of STA obtained

11 This was indicated without proof in § 4.1, but it is now a formal consequence of the above: Theorem 2.16,
Proposition 3.2, and Lemma 3.7 imply that ST0

A is one of the six connected Lie groups listed in Lemma 3.7. If
ST0

A were not conjugate to U(1), the computations of §§ 4.2–4.5.1 would imply that the type of A is one of A, B,
C, D, or E, rather than F.
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Table 2. Pairs (Gal(K/k),Gal(K/kM)).

STA STA STA

C1 (C1, C1) J(C1) (C2, C1) C2,1 (C2, C1)
C2 (C2, C2) J(C2) (D2, C2) C4,1 (C4, C2)
C3 (C3, C3) J(C3) (C6, C3) C6,1 (C6, C3)
C4 (C4, C4) J(C4) (C4 × C2, C4) D2,1 (D2, C2)
C6 (C6, C6) J(C6) (C6 × C2, C6) D4,1 (D4,D2)
D2 (D2,D2) J(D2) (D2 × C2,D2) D6,1 (D6,D3)
D3 (D3,D3) J(D3) (D6,D3) D3,2 (D3, C3)
D4 (D4,D4) J(D4) (D4 × C2,D4) D4,2 (D4, C4)
D6 (D6,D6) J(D6) (D6 × C2,D6) D6,2 (D6, C6)
T (A4,A4) O1 (S4,A4) J(T ) (A4 × C2,A4)
O (S4, S4) J(O) (S4 × C2, S4)

by removing from STA those components for which all elements have the same characteristic
polynomial. For each Lie group G with G0 = U(1) appearing in the list of Theorem 3.4, the pair
(G/G0, Gns/Gns,0) is shown in Table 2.

By Propositions 4.6 and 4.9, there are eleven Galois types for the case F in which M ⊆ k,
and thus Gal(K/k) = Gal(K/kM). Indeed, note first that for any subgroup H ⊆Gal(K/kM), the
isomorphism class of the R-algebra End(AK)HR depends only on its dimension: by Proposition 4.6
we know that End(AK)HQ is either M , a quadratic extension of M , or M2(M), and so upon
tensoring with R becomes C, C× C, or M2(C), respectively. In addition, Proposition 4.9 shows
that the Gal(K/kM)-module structure of End(AK)Q is uniquely determined by the isomorphism
class of the group Gal(K/kM). This yields the Galois types F[Cn] for n= 1, 2, 3, 4, 6; F[Dn] for
n= 2, 3, 4, 6; F[A4]; and F[S4]. From Table 2, it follows that these correspond to the Sato–Tate
groups Cn, Dn, T , and O, respectively.

If M 6⊆ k, then, by Proposition 4.9, the pair (Gal(K/k),Gal(K/kM)) still determines the
Gal(K/k)-module structure of End(AK)R, but, as we warned in Remark 4.10, more data is
needed to determine the Galois type. We now describe these data. A glance at Table 2 shows
that each pair (Gal(K/k),Gal(K/kM)) gives rise to exactly one Galois type, which we denote
by F[Gal(K/k),Gal(K/kM)], except for the four pairs

(C2, C1), (D2, C2), (C6, C3), (D6,D3). (4.2)

In each of these cases we have Gal(K/k)'Gal(K/kM)× C2. Choose such an isomorphism
and write σ for the nontrivial involution of Gal(K/k) generating that cyclic subgroup of order 2.
By the Skolem–Noether theorem, σ acts on End(AK)R 'M2(C) by

x ∈M2(C) 7→ σ(x) = γxγ−1, (4.3)

for some γ ∈GL2(C) satisfying γγ ∈ C×Id. It is obvious from this description that End(AK)〈σ〉R ∩
C · Id = R · Id. A further inspection (by writing down the linear equation resulting from (4.3))
shows that End(AK)〈σ〉R is an R-algebra of rank 4. It cannot be commutative, because if it were,
it would be a maximal commutative subalgebra of M2(C) and should thus contain the center.
Hence End(AK)〈σ〉R is a quaternion algebra over R, which must be isomorphic to either M2(R) or
Hamilton’s division quaternion algebra H := (−1,−1

R ).
For each pair in (4.2), we label these two Galois types as

F[Gal(K/k),Gal(K/kM),M2(R)] and F[Gal(K/k),Gal(K/kM),H].
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Table 3. Galois types for the exceptional pairs.

ST group Galois type ST group Galois type

J(C1) F[C2, C1,H] C2,1 F[C2, C1,M2(R)]
J(C2) F[D2, C2,H] D2,1 F[D2, C2,M2(R)]
J(C3) F[C6, C3,H] C6,1 F[C6, C3,M2(R)]
J(D3) F[D6,D3,H] D6,1 F[D6,D3,M2(R)]

We next apply Proposition 2.19 to determine End(A)R for each Sato–Tate group G with
G0 = U(1). This computation shows, in particular, that for the four preceding pairs, the one-to-
one correspondence with Sato–Tate groups is as indicated in Table 3.

Any ψ ∈ End(AK)R acts via a block diagonal matrix

Ψ =
(
A 0
0 B

)
, A, B ∈M2(C).

Since ψ′ acts via the matrix S−1ΨTS, the Rosati form is given up to scalars by

ψ 7→ Trace(ΨSTΨTS) = 2 Trace(ABT ).

By positivity of the Rosati form, we must have B =A, whence

End(AK)R =
{(

A 0
0 A

)
:A ∈M2(C)

}
'M2(C).

For n > 1, the action of a generator of the component group of Cn is(
a b
c d

)
7→
(

a e2πi/nb

e−2πi/nc d

)
.

The fixed ring consists of those matrices with b= c= 0, and is thus isomorphic to C× C. If we
reinterpret C2 as D1, the action of the generator becomes(

a b
c d

)
7→
(
d −c
−b a

)
.

For n > 1, the fixed ring under Dn consists of matrices with a= d and b= c= 0, and is isomorphic
to C. The same is true for T and O.

The action of J is (
a b
c d

)
7→
(
d −c
−b a

)
,

so the fixed ring under J(C1) is isomorphic to the Hamilton quaternion ring H. For n > 1, the
fixed ring under J(Cn) consists of matrices with b= c= 0 and d= a, and is isomorphic to C.
The fixed ring under J(Dn) has the additional condition d= a, and is isomorphic to R; the same
is true for J(T ) and J(O).

The action of a generator of C2,1 is(
a b
c d

)
7→
(
d c

b a

)
,

so the fixed ring is M2(R). The fixed ring under D2,1 consists of matrices with a= d= d and
b=−c= c, and is isomorphic to R× R.
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The action of a generator of C4,1 is(
a b
c d

)
7→
(
d ic

−ib a

)
,

so the fixed ring consists of matrices with b= c= 0 and d= a, which is isomorphic to C, and
similarly for C6,1. The fixed ring under D4,1 adds the condition d= a, hence it is isomorphic
to R, and similarly for D6,1 and O1 (which contains D4,1).

Since D3,2 contains C3, its fixed ring only contains matrices with b= c= 0. Since D3,2 also
contains J(D1), we must also have a= a and d= d, so the fixed ring is isomorphic to R× R.
The same holds for D4,2 and D6,2.

4.6 Correspondence with Sato–Tate groups

Having completed the description of the 52 Galois types, let us now address the correspondence
with Sato–Tate groups included in Theorem 4.3, that is, the equivalence between the three sets
of data (a), (b), and (c) named in the theorem. Note that Proposition 2.19 implies that (a)
determines (b), and this has been made explicit in the preceding sections. Since it is clear that
(b) determines (c), it remains only to show that (c) determines (a).

We first note that the six choices for ST0
A give rise to six distinct isomorphism classes A,

B, C, D, E, and F for the R-algebra End(AK)R, so ST0
A and End(AK)R determine each other.

Thus, to prove that (c) determines (a), it is sufficient to distinguish Sato–Tate groups with the
same connected part.

To finish the argument, let us inspect Table 8 more closely. We find that the data given
by (Gal(K/k), End(AK)R, End(Ak)R) alone is sufficient to distinguish Sato–Tate groups but for
three exceptional pairs of groups where an ambiguity arises. The first ambiguous pair is J(C2)
and D2; these two may be distinguished by considering End(AL)R, where L/k runs over the
three quadratic subextensions of K/k. For J(C2) one obtains H, H, and C× C, since the index 2
subgroups of J(C2) are conjugate to J(C1), J(C1), and C2, whereas for D2 one obtains C× C
in all cases, since all index 2 subgroups of D2 are conjugate to C2. The second ambiguous pair
is J(C3) and C6,1; these two may be distinguished by passing from the cyclic group Gal(K/k)
of order 6 to its unique subgroup of order 2, thus reducing to the distinction between J(C1) and
C2,1. The third ambiguous pair is J(D3) and D6,1; these two may be distinguished by passing
from the dihedral group Gal(K/k) of order 12 to its unique cyclic subgroup of order 6, thus
reducing to the distinction between J(C3) and C6,1.

4.7 Realizability over Q

We now show that certain Galois types cannot occur over Q or, more generally, over a field with
a real place.

As determined at the end of § 4.4, the group Fc does not occur as a Sato–Tate group of an
abelian surface over any number field. The remaining 14 Galois types corresponding to Sato–Tate
groups ruled out by Remark 3.5 over a field with a real place are

F[Cn] with n ∈ {1, 2, 3, 4, 6},
F[Dn] with n ∈ {2, 3, 4, 6},

F[A4], F[S4], D[C1], D[C2, C], C[C1].
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This list can be recovered immediately from the discussion in §§ 4.2–4.5: for all of these Galois
types, k must contain either a quadratic imaginary field or a quartic CM-field.

The Galois type D[C2, R× R], corresponding to Fab, cannot occur over Q since it corresponds
to an abelian surface A over k such that A∼k E1 × E2, where Ei is an elliptic curve over k with
CM by a quadratic imaginary field Mi = Q(

√
−di), i= 1, 2, such that M1 6'M2 and kM1 = kM2.

Of course, this last condition does not hold if k = Q, but it can hold over a totally real field (e.g.,
k = Q(

√
d1d2)).

In order to complete the proof of Theorem 4.3, we still need to prove that three other Galois
types do not occur over Q. In fact, we show that they cannot arise over a field with a real place.

Proposition 4.11. The Galois types F[C2, C1,H], F[C4, C2], and F[C6, C3,H] cannot occur
over a field with a real place.

Proof. Let A be an abelian surface over k with Galois type F[C2, C1,H] (or, equivalently, with
STA = J(C1)). Note that K = kM/k is a quadratic extension and write Gal(K/k) = {e, τ}, where
e and τ denote the identity and complex conjugation, respectively. Extend scalars from k to R.
Thus, K ⊗ R = C and AC is isogenous to the square of some CM elliptic curve E over C. Let O
be the endomorphism ring of E, and take the curve E′ corresponding to the lattice O in C; this
is defined over R because the lattice is stable under complex conjugation. Then E and E′ are
isogenous over an algebraic closure of C, which is again C.

Thus AR is a twist of (E′)2 by some 1-cocycle f . If we normalize f(e) = 1, then f sends the
complex conjugation τ to some endomorphism α of (E′)2 for which ατ(α) = 1. If we translate
the action of τ on End(AC) into an action on End((E′C)2)R 'M2(C), then it is described by
conjugating the complex conjugation on M2(C) by α. By the Hilbert–Speiser theorem 90 (for
H1(Gal(C/R),GL2(C)), we can factor α as βτ(β)−1 for some β in GL2(C). Using this, we can
then calculate that the fixed subring of End(AC)R under τ is isomorphic to M2(R), just as for
(E′C)2. However, for J(C1) this R-algebra must be isomorphic to H.

Suppose now that the Galois type of A is F[C4, C2] (equivalently, that STA = C4,1). Note that
kM/k is the unique quadratic extension of K/k. Again, extend scalars from k to R, and note
that M ⊗ R = C. By the argument of the previous paragraph, End(AR)R has rank 4 as an R-
algebra. However, in case C4,1, no extension L of k contained in R can have endomorphism algebra
of rank greater than 2 (namely, if L does not contain M , then End(AL)R = End(Ak)R = C).

We can reduce the case of an abelian surface A with Galois type F[C6, C3,H] to the case of
an abelian surface with Galois type F[C2, C1,H] by considering AL, where L/k is the only cubic
subextension of K/k (note that L preserves the property of having a real place). 2

4.8 Examples

In §§ 4.2–4.5 we have shown that there are at most 52 Galois types that can arise for an abelian
surface over a number field. In § 4.7 we showed that 18 (respectively, 17) of these cannot occur
over Q (respectively, over a field with a real place). To complete the proof of Theorem 4.3, it
remains to show that each of the 52 Galois types is actually realized by an abelian surface A/k,
and that for the 34 Galois types admissible over Q, this can be achieved with k = Q.

Here we accomplish this goal by exhibiting explicit examples that are Jacobians of genus 2
curves; these curves have been chosen so that the Sato–Tate groups can be explained entirely
using automorphisms of the curves themselves, without having to study endomorphisms of the
Jacobians. The 52 curves are listed in Table 11 together with a corresponding Sato–Tate group,
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which, as shown in § 4.6, uniquely determines a Galois type. In this section we prove that each of
these curves has the Sato–Tate group listed in Table 11, and thus realizes the corresponding
Galois type. We note that the curves corresponding to Galois types admissible over Q are
all defined over Q, and that the curve given for D[C2, R× R] is defined over a totally real
field.

We begin with the Galois types in cases E and F. The first step is to compute the field K for
each curve. Let α and γ be automorphisms of a genus 2 curve C, such that α is a nonhyperelliptic
involution and α and γ do not commute. Let L/k denote the minimal field extension over which
α and γ are defined. The quotient E := C/〈α〉 is an elliptic curve over L. Recall that M denotes
Q if E does not have CM and denotes the CM-field of E otherwise. We claim that K = LM .
Indeed, there exists an elliptic curve E′ over L such that Jac(C)∼L E × E′. Since Aut(CL) is
nonabelian and injects into End(Jac(C)L)Q, we must have End(Jac(C)L)Q 'M2(End(EL)Q) and
E ∼L E′. It follows that K = LM .

In Table 12, we list α, γ, and M for each of the 42 curves in cases E and F. From this data
one can immediately compute the fields K, which are listed in Table 11; note that when writing
the coefficients of α and γ in Table 12, there is an implicit reference to the generators of K given
in Table 11.

Except for J(E1) and E2, the Sato–Tate groups in case E are uniquely determined by
Gal(K/k), and in each such case this implies that the claimed Sato–Tate group is correct. One
finds that the curve C : y2 = x5 + x3 + x (respectively, C : x6 + x5 + 3x4 + 3x2 − x+ 1) listed
for J(E1) (respectively, E2) has End(Jac(C)Q)Q 'Q×Q (respectively, Q(

√
−2)), from which it

follows that End(Jac(C)Q)R ' R× R (respectively, C), as desired.

Except for the pairs J(C1) and C2,1, J(C2) and D2,1, J(C3) and C6,1, and J(D3) and D6,1,
the Sato–Tate groups in case F are uniquely determined by Gal(K/k) and Gal(K/kM); these
Galois groups can be directly computed from the data in Tables 11 and 12, and in each case one
finds that the claimed Sato–Tate group is correct. We now address the eight ambiguous cases.

(i) J(C1): The curve C : y2 = x5 − x over k = Q(i) has an automorphism β(x, y) =
(1/x, iy/x3) with β2 =−1. Since we also have γ2 =−1 and γ ◦ β =−β ◦ γ, we conclude that
End(Jac(C)k)R 'H.

(ii) C2,1: We observe that the curve C : y2 = x6 + 1 over k = Q has α2 = γ2 = 1 and α ◦ γ =
−γ ◦ α. It follows that End(Jac(C)k)R 'M2(R).

(iii) J(C2): The curve C : y2 = x5 − x over k = Q has an automorphism β(x, y) = (−1/x, y/x3)
of order 4, from which we deduce that End(Jac(C)k)Q 'Q(i) and therefore End(Jac(C)k)R ' C.

(iv) D2,1: Since the nonhyperelliptic involution α of C : y2 = x5 + x over k = Q is defined over
Q, we have End(Jac(C)Q)Q 'Q×Q and therefore End(Jac(C)k)R ' R× R.

(v) J(C3): It is enough to show that the curve C : y2 = x6 + 10x3 − 2 over k = Q(
√
−3)

has End(Jac(C)L)R 'H, where L= Q(a,
√
−3) is the unique subfield of K with index 2 (here

a= 3
√
−2). It suffices to find automorphisms β and δ defined over L that satisfy β2 = δ2 =−1

and β ◦ δ =−δ ◦ β. These automorphisms are

β(x, y) =
(

(−
√
−3 + 1)a2x+ 2(

√
−3 + 1)a

4x+ (
√
−3− 1)a2

,
−3 · 25

√
−3y

(4x+ (
√
−3− 1)a2)3

)
,

δ(x, y) =
(
−a2x− 2a

2x+ a2
,

12
√
−3y

(2x+ a2)3

)
.
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(vi) C6,1: For C : y2 = x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x+ 1 over k = Q, it suffices to show
that End(Jac(C)Q(a))R = M2(R), where Q(a) is the unique subfield of K with index 2. But this
is clear: the nonhyperelliptic involution α is defined over Q(a) and the noncommuting element
γ is also defined over Q(a) (in fact over Q), and thus End(Jac(C)Q(a))Q = M2(Q).

(vii) J(D3): The same argument used for J(C3) shows that the Jacobian of the curve
y2 = x6 + 10x3 − 2 over Q has Sato–Tate group J(D3).

(viii) D6,1: For C : y2 = x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x− 8 over k = Q, it suffices to show
End(Jac(C)L)R = M2(R), where L is determined in the following way: it is the field fixed by the
unique subgroup of order 2 in Gal(K/k) contained in the unique cyclic subgroup of order 6 in
Gal(K/k). More explicitly, L= Q(a,

√
6). It is enough to observe that

β(x, y) =
(

(−1
2a
√

6 + 1
2(a2 + a− 2))x+ 2

x+ 1
2a
√

6 + 1
2(−a2 − a+ 2)

,
((9a2 + 6a− 8)

√
6− 9a2 − 63a+ 54)y

(x+ 1
2a
√

6 + 1
2(−a2 − a+ 2))3

)
,

δ(x, y) =
(

(−a2 − a+ 8)x+ 2
x+ a2 + a− 8

,
(18a2 + 12a− 154)

√
6y

(x+ a2 + a− 8)3

)
do not commute and satisfy β2 = δ2 = 1.

We now consider the five Sato–Tate groups corresponding to Galois types in case D, which
are addressed in Table 11 using just two curve equations (over various number fields k). It
is enough to observe the following. First, the Jacobian of the curve C : y2 = x6 + 3x4 + x2 − 1
splits over Q as the product of elliptic curves with CM by Q(i) and Q(

√
−2), respectively.

Indeed, using an algorithm of Gaudry and Schost [GS01], one proves that the j-invariants
of the elliptic quotients of this curve are 1728 and 2000, which correspond to (nonisogenous)
elliptic curves E1 and E2 defined over Q with CM by Q(i) and Q(

√
−2), respectively.

From Proposition 4.5, it follows that K = Q(i,
√

2) and that Jac(C) is isogenous over Q to
E1 × E2. Second, for C : y2 = x5 + 1, it is well-known that End(Jac(C)K)Q 'Q(ζ5), where
K = Q(ζ5).

For the two Sato–Tate groups in case C, which are both addressed using the same curve
equation, the above procedure shows that the Jacobian of the curve y2 = x6 + 3x4 − 2 splits over
Q as the product of an elliptic curve without CM and an elliptic curve with CM by Q(i) (now
the j-invariants of the elliptic quotients are 3456 and 1728, respectively).

For the two Sato–Tate groups in case B, it is enough to check that the Jacobian of
the curve C1 : y2 = x6 + x2 + 1 splits over Q as the product of two nonisogenous curves
without CM, while the Jacobian of the curve C2 : y2 = x6 + x5 + x− 1 splits over Q(i) as
the product of two nonisogenous curves without CM that are Galois conjugates. Indeed,
the nonhyperelliptic involution α(x, y) = (−x, y) guarantees that Jac(C1) splits over Q as the
product of two elliptic curves E and E′ over Q, which do not have CM since their j-invariants
are −256/31 and 6912/31. Moreover, by Lemma 4.12 below, E and E′ are not Q-isogenous,
because

L5(Jac(C1), T ) = (1− T + 5T 2)(1 + 3T + 5T 2).

The curve C2 has a nonhyperelliptic involution α(x, y) = (−1/x,−iy/x3), which shows that
Jac(C2) splits over Q(i) as the product of two elliptic curves E and E′ over Q(i). These two

1422

https://doi.org/10.1112/S0010437X12000279 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000279


Sato–Tate distributions and Galois endomorphism modules in genus 2

elliptic curves do not have CM, since their j-invariants are the roots of the polynomial

j2 − 5328000
107

j +
9826000000000

11449
.

Moreover, they are not Q-isogenous, because

L13(Jac(C2), T ) = (1− T + T 2)(1 + 5T + T 2).

Lemma 4.12. Let A be an abelian surface over k for which there exists a field extension L/k
such that AL ∼L E × E′, where E and E′ are elliptic curves defined over L without complex
multiplication. Suppose there exists a prime p of k, of good reduction for A and of residue
degree 1 in L, such that Lp(A, T ) is not of the form P (T ) · P (±T ) for any degree 2 polynomial
P (T ) ∈Q[T ]. Then E and E′ are not Q-isogenous.

Proof. Suppose that E and E′ are Q-isogenous. Then there exists a quadratic extension L′/L
such that E′ ∼L E ⊗ χ, where χ is a character (either trivial or quadratic) of Gal(L′/L). Let P

be a prime of L lying over p. It follows that

LP(E′, T ) = LP(E,±T ).

Since p has residue degree 1 in L, we have

Lp(A, T ) = LP(AL, T ) = LP(E, T ) · LP(E,±T ),

which proves the claim. 2

For case A, we note that the Galois group of x5 − x+ 1 is the symmetric group S5. It follows
from a theorem of Zarhin [Zar00] that for the curve C defined by y2 = x5 − x+ 1 over Q we have
End(Jac(C)K)Q = Q.

4.8.1 Sato–Tate groups over field extensions. The curves in Table 11 were chosen to
minimize the degree of their fields of definition; this makes it necessary to use 34 distinct curves
(some considered over multiple number fields). However, if one relaxes this restriction on the
field of definition, one can reduce the number of curves by using the fact that every Sato–Tate
group that can arise in genus 2 is conjugate (in USp(4)) to a subgroup of one the groups

J(D6), J(O), J(E6), J(E4), Fac, Fa,b, N(U(1)× SU(2)), N(SU(2)× SU(2)),USp(4).

One can thus realize all 52 Sato–Tate groups by considering just the 9 curves of Table 11
corresponding to these groups over the appropriate number field. To justify this, we recall that
for an abelian surface A defined over k, Proposition 2.17 asserts that there is a bijection between
the conjugacy classes of subgroups of Gal(K/k) and the conjugacy classes of subgroups of STA

containing ST0
A. This bijection is given by sending the class of the subgroup H to the conjugacy

class of the group STAL , where L is the fixed field KH .

In Table 4, we illustrate how the Jacobian A= Jac(C) of the curve C of Table 11
corresponding to J(O) realizes 24 other Sato–Tate groups when considering subextensions of
K/k. We note that in this example there are 33 conjugacy classes of subgroups of Gal(K/k),
and thus 33 conjugacy classes of subgroups of J(O) containing U(1). However, considering
conjugation in USp(4) yields exactly the 25 nonconjugate subgroups listed in Table 4. We leave
the corresponding exercise for the other groups listed above to the reader.
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Table 4. Sato–Tate groups realized by the Jacobian A of the curve defined by y2 = x6 −
5x4 + 10x3 − 5x2 + 2x− 1 over extensions of Q, where a3 − 4a+ 4 = 0, b4 + 22b+ 22 = 0, and
c2 + a+ 4 = 0.

STAL L STAL L

J(O) Q J(C3) Q(b,
√
−11)

O Q(
√
−2) D3,2 Q(b,

√
22)

J(T ) Q(
√
−11) C4 Q(c,

√
−2)

O1 Q(
√

22) J(C2) Q(c,
√
−11)

J(D4) Q(a) C4,1 Q(c,
√

22)
T Q(

√
−2,
√
−11) D2,1 Q(c

√
−2,
√
−11)

J(D3) Q(b) D2 Q(c
√
−11,

√
−2)

D4 Q(a,
√
−2) C3 Q(b,

√
−2,
√
−11)

J(D2) Q(a,
√
−11) C2 Q(a, b,

√
−2)

D4,1 Q(a,
√

22) J(C1) Q(a, b,
√
−11)

J(C4) Q(c) C2,1 Q(a, b,
√

22)
D4,2 Q(c

√
−2) C1 Q(a, b,

√
−2,
√
−11)

D3 Q(b,
√
−2)

5. Numerical verification

In this section, we describe some numerical verifications of the refined Sato–Tate conjecture for
abelian surfaces.

5.1 Densities and moments

Using numerical computations, one can both provisionally identify the Sato–Tate group
associated to a particular abelian surface (which can then be confirmed through analysis of the
Galois type) and then test the equidistribution property predicted by the Sato–Tate conjecture.
In order to do this, however, we need a way to numerically compare the observed distribution of
normalized L-polynomials to the Sato–Tate prediction.

To facilitate this, we compute the distributions of the first and second coefficients of the
characteristic polynomial of a random conjugacy class in each of the 55 groups named in
Theorem 3.4 (including the three groups excluded by the comparison to Galois types in § 4.3),
under the image of the Haar measure. These distributions can be described in two equivalent
ways, via their density functions or their moment sequences. By computing these for the 55
groups, we see that the separate distributions of the first and second coefficients are already
sufficient to distinguish the groups. Thus no joint statistics are needed, but as a matter of
interest we give joint density functions for the six connected cases.

Remark 5.1. The moment statistics that we associate to a closed subgroup G of USp(2g) are
integer symmetric polynomials in the eigenvalues of a matrix chosen uniformly over G. They
are thus forced to be integers [KS09, Proposition 2].

Table 8 lists the real dimension d and the number of connected components c= |G/G0| for
each group G, along with the associated endomorphism algebra End(A)R. We also list invariants
z1 = z1,0 and z2 = [z2,−2, z2,−1, z2,0, z2,1, z2,2] defined by

Pr[ai = j] = zi,j/c,
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Table 5. Joint density functions c
√

max{ρ(a1, a2), 0} for the Sato–Tate groups G1,1 = U(1)×
U(1), G1,3 = U(1)× SU(2), G3,3 = SU(2)× SU(2), and USp(4).

G c ρ(a1, a2)

G1,1
2

π2
1/((a2

1 − 4a2 + 8)(a2 − 2a1 + 2)(a2 + 2a1 + 2))

G1,3
1

2π2
(4 + 2a2 − a2

1)2/((a2
1 − 4a2 + 8)(a2 − 2a1 + 2)(a2 + 2a1 + 2))

G3,3
1

2π2
(a2 − 2a1 + 2)(a2 + 2a1 + 2)/(a2

1 − 4a2 + 8)

USp(4)
1

4π2
(a2 − 2a1 + 2)(a2 + 2a1 + 2)(a2

1 − 4a2 + 8)

where the random variables a1 and a2 denote the linear and quadratic coefficients, respectively,
of the characteristic polynomial of a random conjugacy class in G. Additionally, we give the first
three nontrivial moments E[a2

1], E[a4
1], E[a6

1] and E[a2], E[a2
2], E[a3

2] of a1 and a2. We note that
the invariants d, c, z1, z2, and E[a2] already suffice to uniquely distinguish each Sato–Tate group
in genus 2.

To save space, we use the symbols G1, G3, G1,1, G1,3, and G3,3 to identify the connected
subgroups G0 = U(1), SU(2), U(1)×U(1), U(1)× SU(2), and SU(2)× SU(2) of USp(4),
respectively.

5.1.1 Computing the distributions of a1 and a2. Tables 9 and 10 give explicit formulas for
the moments of a1 and a2. Here we describe the derivation of these formulas, as well as the
computation of probability density functions for a1 and a2.

For G= USp(4), the moments of a1 and a2 may be directly computed using the Weyl
integration formula, as in [KS08]. A bit of calculus shows that the joint density function of
a1 and a2 is given by

√
max{ρ(a1, a2), 0}/(4π2), where

ρ(a1, a2) = (a2
1 − 4a2 + 8)(a2 − 2a1 + 2)(a2 + 2a1 + 2). (5.1)

The support of the joint density function is the region12 where ρ is nonnegative:

S = {(a1, a2) ∈ R2 : a2 > 2a1 − 2, a2 >−2a1 − 2, a2 6 1
4a

2
1 + 2}.

One recovers the density function for a1 by integrating with respect to a2, and vice versa; the
results can be expressed in terms of complete elliptic integrals, because ρ(a1, a2) is a polynomial
of degree 4 in a1 and of degree 3 in a2. A plot of the joint density function for USp(4) can be
found in Figure 2. A similar analysis can be applied to the groups U(1)×U(1), U× SU(2), and
SU(2)× SU(2), using products of the appropriate measures; the results are tabulated in Table 5.
In each of these cases the support of the joint density function is the two-dimensional region S.

In all other cases the support is one-dimensional, as may be seen in Table 6, which lists all
the component density functions for a1 and a2 that can arise in genus 2. With the exception of
USp(4), these distributions are all derived from the distributions a1,U(1) and a1,SU(2) that arise

12 Serre points out that the parabolic arc bounding the top of this region corresponds precisely to the Hodge
circle, and that the factorization of ρ is a special case of a general formula giving the product of the differentials
of fundamental characters [Ste65, Lemma 8.2].
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for the two connected Sato–Tate groups U(1) and SU(2) in genus 1 (where U(1) is embedded in
SU(2) = USp(2)). We recall that the even moments are given by

E[a2n
1,U(1)] =

(
2n
n

)
, (5.2)

E[a2n
1,SU(2)] =

1
n+ 1

(
2n
n

)
, (5.3)

while the odd moments are zero, and we have the density functions

dens(a1,U(1) = t) =
1

π
√

4− t2
for |t|< 2, (5.4)

dens(a1,SU(2) = t) =
√

4− t2
2π

for |t|< 2. (5.5)

For convenience, we define the sequences

bn = [Xn](X2 + 1)n and cn = bn
/(

n
2 + 1

)
,

where [Xn](X2 + 1)n denotes the coefficient of Xn in the expansion of (X2 + 1)n, so that
E[an1,U(1)] = bn and E[an1,SU(2)] = cn. These are sequences A126869 and A126120, respectively,
in the On-Line Encyclopedia of Integer Sequences [OEIS].

Each group G( USp(4) appearing in Theorem 3.4 may be expressed in the form 〈G0, H〉,
where H is a finite subgroup of USp(2g) whose intersection with G0 is {±1}, so that G/G0 '
H/{±1} (in most cases H may be constructed by simply omitting G0 from the list of generators
given for G in § 3). After picking a representative h ∈H for each coset of H/{±1}, the
distributions of the coefficients of the characteristic polynomial

∑
aiT

i of a random matrix
gh may then be computed in terms of a1,U(1) and a1,SU(2), where g ∈G0 is distributed according
to the Haar measure. This allows the moments and density functions of a1 and a2 to be computed
for the component hG0; averaging over the components yields results for G.

The derivation of the component distributions in the split cases, where G0 is U(1)×U(1),
U(1)× SU(2), or SU(2)× SU(2), is straightforward. The results are tabulated in Table 6
(see Table 5 for the joint distribution on the identity components). We now focus on the
G0 = U(1) and G0 = SU(2) cases, which account for 42 of the 55 Sato–Tate groups in genus
2, including the most complicated cases. There are 76 distinct components contained in
these groups, but only 20 different component distributions that arise, each of which is
determined by a triple (G0, s, r) that we now define. Let ϕ :G/G0→{±1} be the (possibly
trivial) homomorphism with kernel G ∩ Z. For each component hG0 of G, let k = k(h) ∈
{1, 2, 3, 4, 6} be the order of hG0 in G/G0 when s= s(h) = ϕ(hG0) = 1, and let k be the
order of JhG0 in 〈G, J〉/G0 when s=−1 (see § 3.4 for the definitions of Z and J). Finally,
we define r = r(h) = ζ2k + ζ−1

2k ∈ {−2, 0, 1,
√

2,
√

3}. Table 6 gives the component distributions
of a1 and a2 for each triple (G0, s, r), as well as the 10 component distributions that arise
among the 13 remaining groups (30 component distributions in total). The notation a′1,U(1)
denotes an independent random variable with the same distribution as a1,U(1), and similarly
for a′1,SU(2).

Using Table 6, one can determine the moments and probability density functions of a1 and a2

on each component, and then compute moments and density functions for any particular groupG.
The invariants z1 and z2, which simply count components on which a1 or a2 has a particular
fixed value, are also easily derived from Table 6.
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Table 6. Component distributions of a1 and a2. Here G1 = U(1), G3 = SU(2), G1,1 = U(1)×
U(1), G1,3 = U(1)× SU(2), and G3,3 = SU(2)× SU(2). See § 3.6 for definitions of the matrices a,
b, c, and J .

Component a1 a2

(G1, 1, r) ra1,U(1) a2
1,U(1) + r2 − 2

(G1,−1, r) 0 2− r2

(G3, 1, r) ra1,SU(2) a1,SU(2) + r2 − 2

(G3,−1, r) 0 2− a2
1,SU(2)

G1,1 a1,U(1) + a′1,U(1) a1,U(1)a
′
1,U(1) + 2

aG1,1, bG1,1, (ac)
2G1,1 a1,U(1) 2

abG1,1 0 2

cG1,1 0 a1,U(1)

acG1,1, (ac)
3G1,1 0 0

G1,3 a1,U(1) + a1,SU(2) a1,U(1)a1,SU(2) + 2

aG1,3 a1,U(1) 2

G3,3 a1,SU(2) + a′1,SU(2) a1,SU(2)a
′
1,SU(2) + 2

JG3,3 0 a1,SU(2)

USp(4) a1,USp(4) a2,USp(4)

To simplify the moment formulas, for i= 0, 1, 2, 3, 4 we define the sequences

bi,n = [Xn](X2 + iX + 1)n,

which for i= 0, 1, 2, 3, 4 correspond to sequences A126869, A0002426, A000984, A026375,
A081671 in the OEIS, respectively, and we note that bn = b0,n. We also define the sequences

di,n = [Xn](X2 + iX + 1)n − [Xn+1](X2 + iX + 1)n,

which for i= 0, 1, 2, 3, 4 correspond to sequences A126930, A005043, A000108, A007317,
A064613, respectively, and we may write dn for d0,n. Additionally, we let

b̂n =
∑
k

(
n

k

)
2n−kb2k and ĉn =

∑
k

(
n

k

)
2n−kc2

k.

5.1.2 Component distributions in the case G0 = U(1). We now consider the component
distributions of a1 and a2 whenG0 = U(1). From Table 6 we see that a1 = ra1,U(1) when s= 1, and
a1 = 0 otherwise. On a component hG0 with s= 1, the moments of a1 are given by Eh[an1 ] = rnbn,
where the subscript h identifies the component and thus determines r and s. The density function
for a1 on hG0 is

densh(a1 = t) =



(π
√

4r2 − t2)−1 if t2 < 4r2 and s= 1,

δ0 if r = 0 or s=−1,
0 otherwise,

(5.6)

where δk denotes the Dirac delta function centered at k.
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For a2 we have a2 = a2
1,U(1) + r2 − 2 when s= 1 and a2 = 2− r2 otherwise. The moments

of a2 on hG0 are given by

Eh[an2 ] =


n∑
k=0

(
n

k

)
b2k(r2 − 2)n−k = br2,n if s= 1,

(2− r2)n if s=−1,

(5.7)

and its density function is

densh(a2 = t) =


(π
√

4− (r2 − t)2)−1 if (r2 − t)2 < 4 and s= 1,
δ2−r2 if s=−1,
0 otherwise.

(5.8)

For any particular Sato–Tate group G, the moment sequences and density functions of a1

and a2 are then computed by averaging over the components. Taking G= T as an example,
averaging over the 12 components of G yields

E[an2 ] = 1
12(b4,n + 3bn + 8b1,n),

as listed in Table 10. A plot of the a2 density function appears in Figure 1.

5.1.3 Component distributions in the case G0 = SU(2). In this case we have a1 = ra1,SU(2)

when s= 1 and a1 = 0 otherwise. The nth moment of a1 on hG0 is Eh[an1 ] = rncn, and its density
function is

densh(a1 = t) =


1

2πr2

√
4r2 − t2 if t2 < 4r2 and s= 1,

δ0 if r = 0 or s=−1,
0 otherwise.

(5.9)

For a2 we have a2 = a2
1,SU(2) + r2 − 2 when s= 1 and a2 = 2− a2

1,SU(2) otherwise. The
moments of a2 on hG0 are given by

Eh[an2 ] =



n∑
k=0

(
n

k

)
c2k(r2 − 2)n−k = dr2,n if s= 1,

n∑
k=0

(
n

k

)
(−1)kc2k2n−k = (−1)ndn if s=−1,

(5.10)

and its density function is

densh(a2 = t) =



1
2π

√
4/(t− r2 + 2)− 1 if |t− r2|< 2 and s= 1,

1
2π

√
4/(2− t)− 1 if |t|< 2 and s=−1,

0 otherwise.

(5.11)

5.2 Testing the refined conjecture for genus 2 curves
Let us now see how the densities and moments computed in § 5.1 can be used to numerically
test the refined Sato–Tate conjecture; this will also provide some indication of how we assembled
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Table 7. Moment statistics for y2 = x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x+ 8 over Q(
√
−2).

a1 a2

N M2 M4 M6 M8 M1 M2 M3 M4 M5

10 1.79 11.74 134.59 1894.71 0.81 3.55 10.82 51.55 256.29
12 1.90 11.87 127.24 1714.90 0.91 3.81 11.46 52.13 246.15
14 2.01 12.54 130.43 1701.09 0.97 4.02 12.23 54.66 253.10
16 1.94 10.93 102.75 1266.03 0.97 3.86 11.05 46.56 203.16
18 1.96 11.45 111.89 1417.51 0.99 3.92 11.54 49.33 220.74
20 1.99 11.87 118.12 1513.12 1.00 3.98 11.88 51.37 232.49
22 1.99 11.89 118.64 1522.75 1.00 3.98 11.90 51.51 233.49
24 2.00 11.95 119.20 1528.43 1.00 3.99 11.96 51.74 234.53
26 2.00 11.99 119.80 1537.06 1.00 4.00 11.99 51.93 235.62
28 2.00 12.00 119.91 1538.51 1.00 4.00 12.00 51.97 235.83
30 2.00 12.00 120.02 1540.29 1.00 4.00 12.00 52.00 236.03

2 12 120 1540 1 4 12 52 236

the numerical evidence needed to formulate the conjecture in the first place. We limit ourselves
to testing the equidistribution of normalized L-polynomials (rather than the equidistribution of
classes in Conj(STA) described in Conjecture 1.1), and we consider only Jacobians of curves
of genus 2.

We first discuss how to test the conjecture for a single genus 2 curve C/k. For a given boundN ,
we consider the primes p of norm q = ‖p‖6N at which C has good reduction. For each p we
compute normalized L-polynomial coefficients

a1(p) = q−1/2
(
#C(Fq)− q − 1

)
, (5.12)

a2(p) = q−1
(
#C(Fq2) + (#C(Fq)− q − 1)2 − q2 − 1

)/
2,

and then calculate moment statistics Mn(ai) as the mean values of ai(p)n over ‖p‖6N . The
refined Sato–Tate conjecture implies that, as N →∞, each moment statistic Mn(ai) must
converge to the moment E[ani ] for the Sato–Tate group STJac(C) ⊆USp(4). We can test this
numerically for the first several values of n by comparing Mn(ai) to E[ani ] as we increase the
bound N . In addition, we may plot histograms of the ai(p) and compare the results to the density
function for ai in STJac(C).

For each of the example curves listed in Table 11, we have prepared animated histograms
of the a1 and a2 distributions demonstrating the convergence to the conjectured Sato–Tate
distribution, at the level of both densities and moments. These can be found online at

http://math.mit.edu/∼drew.

We give one representative example here, using the curve C/Q(
√
−2) with STJac(C) = T listed

in Table 11. We computed moment statistics Mn(ai) for this curve using N = 2k, with k ranging
from 10 to 30, the first several of which are listed in Table 7. For comparison, the last line of the
table lists the corresponding moments for the Sato–Tate group T .

The evident convergence of the moment statistics of C to the moments of STJac(C) extends
to moments well beyond the range of the table. With N = 230, the first 20 moment statistics
of a1 and a2 for C agree with the corresponding moments of STJac(C) with a relative error of
approximately 0.1% (ignoring the even moments E[a2k

1 ] = 0). By contrast, the best agreement
one finds using the moments of any of the other genus 2 Sato–Tate groups is worse than 40%.
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In particular, the corresponding moments of USp(4) are dramatically different: E[a8
1] is only 84,

rather than 1540, for example.
Histograms of a2(p) values for ‖p‖6N = 2k with k = 12, 14, 16, . . . , 30 are shown in Figure 1,

together with the a2 density function for STJac(C) = T . One can see the histogram data steadily
converging toward the density function. Indeed, when N = 230, the histogram data matches the
density function so closely that it is difficult to distinguish the two.

We may also compare the joint statistics of a1(p) and a2(p) for a given curve C with the joint
density function of a1 and a2 for the corresponding Sato–Tate group STJac(C). Figure 2 shows a
plot of these joint statistics for the curve y2 = x5 − x+ 1, using the bound ‖p‖6 230, alongside
a plot of the joint density function for its Sato–Tate group USp(4), computed using (5.1) and
plotted at the same number of points.

With N = 230, we must compute ai(p) for more than 54 million values of p (for each curve). To
make such computations practical, we employ the optimizations described in [KS08], as well as
several further improvements recently incorporated in the smalljac software library [Sut11a];
the most notable of these is the use of ideas in [GHM08] to efficiently implement the group
operation in the Jacobian of curves defined by a sextic equation. For all but very small values
of ‖p‖, we do not use (5.12) to compute ai(p) but instead apply

a1(p) = q−1/2 # Jac(C)(Fq)−# Jac(C̃)(Fq)
2(q + 1)

, (5.13)

a2(p) = q−1 # Jac(C)(Fq) + # Jac(C̃)(Fq)− 2(q2 + 1)
2

.

Here C̃ denotes a nonisomorphic quadratic twist of C over Fq. The computations of the group
orders # Jac(C) and # Jac(C̃) are performed using generic group algorithms described in [Sut07]
and [Sut11b]. As discussed in [KS08], the asymptotically faster p-adic and `-adic methods
available are not practically faster in genus 2 for the range of N considered here.

In cases where k 6= Q, we may take advantage of the fact that the moment statistics are
essentially determined by the degree 1 primes p, allowing us to work entirely over prime fields.
We can also exploit the situation where C/k is actually defined over Q, in which case ai(p)
depends only on p= ‖p‖. In this situation it suffices to compute ai(p) for just one prime of
norm p and then weight it with the correct multiplicity, as determined by the number of linear
factors of a defining polynomial for k/Q in Fp[x].

5.3 An exhaustive search
The general methodology described above allows us to numerically test the Sato–Tate conjecture
for individual curves. Using more specialized techniques, we can efficiently analyze L-polynomial
distributions for many curves at once. This was originally done to provide an empirical conjecture
for the classification of Sato–Tate groups; it now provides a partial check of the completeness of
this classification. Of course, one cannot really trust in the completeness without the proofs
of the theorems; after all, a similar search described in [KS09] found considerably fewer groups.13

To search for curves with exceptional L-polynomial distributions, we considered every
nonsingular curve of the form y2 = f(x) where f is a monic polynomial of degree 5 or 6 whose
coefficients lie in the interval [−128, 128). This amounts to more than 248 distinct curve equations,

13 The search in [KS09] only looked at a1-distributions of genus 2 curves over Q, finding 23 of the 26 distributions
identified here.
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Figure 1. The a2 density function for Sato–Tate group T and a2(p) histograms for the curve y2 =
x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x+ 8 over Q(

√
−2) for ‖p‖6 2N , with N = 12, 14, . . . , 30.
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Figure 2. Joint a1(p) and a2(p) statistics for the curve y2 = x5 − x+ 1 (left), and the joint
density function for the Sato–Tate group USp(4) (right). The vertical scale is exaggerated; the
peak at a1 = 0 and a2 = 2/3 has height 8/(π2

√
27).

of which approximately 247 are nonisomorphic. This is much a larger range than was used
in [KS09], which examined some 235 curves, yet it actually required less computational effort.
Here we summarize some of the optimizations that made this possible.

Of the 34 Sato–Tate groups that can arise for a genus 2 curve over Q, all but eight have a
density z1/c> 1/2 of zero traces. These eight exceptions correspond to the first eight distributions
listed in [KS09, Tables 11 and 13], where one can already find representative curves with small
coefficients. Thus we chose to focus our search on curves with z1/c> 1/2, allowing us to quickly
discard curves that do not exhibit an abundance of zero traces at small primes.

For a suitably chosen bound B, we imposed the constraint π(B)− 2z(C, B) 6 3, where π(B)
counts the primes p6B and z(C, B) counts the primes p6B where C has good reduction and
#C(Fp) = p+ 1. By initially checking this constraint for a small value of B, we can very quickly
discard the vast majority of curves. With this procedure, we ignore some curves with z1/c> 1/2,
but on average we expect to discard no more than half of the exceptional curves that we seek.

To distinguish exceptional curves, and to provisionally identify the Sato–Tate group G for
each curve C, we computed various statistics for C up to a larger bound B to obtain a ‘signature’
σ(C, B) that could be compared to signatures σ(G) derived from the group invariants defined
in § 5.1. Let ẑi,j denote the integer 48zi,j/c. We define σ(G) to be the tuple of integers

σ(G) = (ẑ1,0, ẑ2,−2, ẑ2,−1, ẑ2,0, ẑ2,1, ẑ2,2, E[a2
1], E[a4

2], E[a2], E[a2
2], E[a3

2]),

which suffices to uniquely distinguish all 55 of the Sato–Tate groups listed in Theorem 3.4.
Given a curve C and a bound B, one can compute the analogous tuple σ(C, B) by computing
the corresponding statistics and rounding to the nearest integer. We note that the number of
components c is typically not known a priori, but the ratios zi,j/c and the corresponding values
of ẑi,j can be computed without knowing c.

We now outline the search algorithm for exceptional curves C of the form y2 = f(x), where
f(x) =

∑
fix

i is a monic sextic with fi ∈ I = [−R, R) and f5 > 0, using bounds B1, B2, and B3.
For each combination of f2, f3, f4, f5 we perform the following three steps.

(1) For odd primes p6B1, count points on the curve C/Fp defined by y2 = f(x) for every
value of f0, f1 ∈ Fp, using the method of [KS08, § 3]. Let zp(f0, f1) = 1 if #C(Fp) = p+ 1 and 0
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otherwise. For each f0, f1 ∈ I, compute z(C, B1) =
∑

p zp(f0, f1) for the curve C/Q defined by
y2 = f(x). If 2z(C, B1)< π(B1)− 3, then reject C.

(2) For each remaining curve C, compute z(C, B2). If 2z(C, B2)< π(B2)− 3, then reject C.

(3) For each remaining curve C, initialize B to B3 and compute σ(C, B) using L-polynomial
data for C at primes p6B3. Then increase B by 50% and repeat until σ(C, B) is stable for
three consecutive values of B.

In our search, we used R= 128 as the coefficient bound, and used the prime bounds B1 = 83,
B2 = 1229, and B3 = 2741 in each of the three steps, values that were chosen after some initial
performance testing. Using B1 = 83, fewer than 1 in 100 000 curves pass step 1, and the average
time spent on each curve is very small: about 100 ns on a 3.0 GHz AMD Phenom II core. With
B2 = 1229, fewer than 1 in 100 of the curves that pass step 1 also pass step 2. Thus, out of a total
of 248 curves, we only needed to compute signatures for some ten million curves. On average, this
takes 1–2 s per curve, although in particularly difficult cases it may take as much as a minute.
Overall, we spent an average of less than 200 ns per curve.

The search found curves with matching signatures for all 26 of the 34 genus 2 Sato–Tate
groups over Q that have z/c> 1/2. Indeed, we found at least three curves for each group that
are not isomorphic over Q. As can be seen in Table 11, in each case we found a representative
curve with integer coefficients of absolute value at most 60. Thus, a posteriori, we see that
we could have used R= 64 rather than R= 128, which would have reduced the search time
dramatically.

6. Tables

In this section, we give tables listing the Sato–Tate groups identified in § 3 (Table 8), the moments
of a1 and a2 computed in § 5.1.1 (Tables 9 and 10), the curves analyzed in § 4.8 realizing each
Sato–Tate group (Table 11), and the automorphism data needed to verify these Sato–Tate groups
(Tables 12 and 13). To make the tables comprehensible, we recall in detail what data is tabulated.

In Table 8, each line corresponds to one of the 55 groups G named in Theorem 1.2. The
quantities d and c indicate the dimension ofG and the order of the component groupG/G0, whose
isomorphism class is also given. To partially determine the Galois type, we list the R-algebra
End(A)R, i.e., the fixed subalgebra of End(AK)R under the action of Gal(K/k) as determined
using Proposition 2.19. (It is not necessary to list the fixed subalgebras under subgroups of
Gal(K/k), as this can be inferred from the rows of the table corresponding to those subgroups.)
We also list the label associated to the Galois type by Theorem 4.3 (or * in the three cases that
cannot arise from abelian surfaces). The quantities z1 and z2 count components of H on which a1

and a2 are constant; see § 5.2. The quantities M [a2
1] and M [a2] are some initial terms of moment

sequences that are described more thoroughly in the tables that follow.
Tables 9 and 10 provide explicit formulas and initial terms for the a1 and a2 moment sequences

associated to each group in Table 8, as computed using the methods of § 5.1. Note that the 55
groups only give rise to 37 distinct a1 moment sequences, corresponding to 37 distinct Sato–
Tate trace distributions, of which 26 can arise over Q. Each of these distributions has been
assigned an identifier of the form #N consistent with the numbering used in [KS09]; note that
only the indices 1–23 correspond to distributions found in [KS09]. By contrast, the a2 moment
sequences in Table 10 are all distinct with one exception: the groups Fa and Fab have identical
a2 distributions (but distinct a1 distributions).
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Table 8. Sato–Tate groups in genus 2.

d c G [G/G0] End(A)R Galois type z1 z2 M [a2
1] M [a2]

1 1 C1 C1 M2(C) F[C1] 0 0, 0, 0, 0, 0 8, 96, 1280 4, 18, 88
1 2 C2 C2 C× C F[C2] 1 0, 0, 0, 0, 0 4, 48, 640 2, 10, 44
1 3 C3 C3 C× C F[C3] 0 0, 0, 0, 0, 0 4, 36, 440 2, 8, 34
1 4 C4 C4 C× C F[C4] 1 0, 0, 0, 0, 0 4, 36, 400 2, 8, 32
1 6 C6 C6 C× C F[C6] 1 0, 0, 0, 0, 0 4, 36, 400 2, 8, 32
1 4 D2 D2 C F[D2] 3 0, 0, 0, 0, 0 2, 24, 320 1, 6, 22
1 6 D3 D3 C F[D3] 3 0, 0, 0, 0, 0 2, 18, 220 1, 5, 17
1 8 D4 D4 C F[D4] 5 0, 0, 0, 0, 0 2, 18, 200 1, 5, 16
1 12 D6 D6 C F[D6] 7 0, 0, 0, 0, 0 2, 18, 200 1, 5, 16
1 12 T A4 C F[A4] 3 0, 0, 0, 0, 0 2, 12, 120 1, 4, 12
1 24 O S4 C F[S4] 9 0, 0, 0, 0, 0 2, 12, 100 1, 4, 11
1 2 J(C1) C2 H F[C2, C1,H] 1 1, 0, 0, 0, 0 4, 48, 640 1, 11, 40
1 4 J(C2) D2 C F[D2, C2,H] 3 1, 0, 0, 0, 1 2, 24, 320 1, 7, 22
1 6 J(C3) C6 C F[C6, C3,H] 3 1, 0, 0, 2, 0 2, 18, 220 1, 5, 16
1 8 J(C4) C4 × C2 C F[C4 × C2, C4] 5 1, 0, 2, 0, 1 2, 18, 200 1, 5, 16
1 12 J(C6) C6 × C2 C F[C6 × C2, C6] 7 1, 2, 0, 2, 1 2, 18, 200 1, 5, 16
1 8 J(D2) D2 × C2 R F[D2 × C2,D2] 7 1, 0, 0, 0, 3 1, 12, 160 1, 5, 13
1 12 J(D3) D6 R F[D6,D3,H] 9 1, 0, 0, 2, 3 1, 9, 110 1, 4, 10
1 16 J(D4) D4 × C2 R F[D4 × C2,D4] 13 1, 0, 2, 0, 5 1, 9, 100 1, 4, 10
1 24 J(D6) D6 × C2 R F[D6 × C2,D6] 19 1, 2, 0, 2, 7 1, 9, 100 1, 4, 10
1 24 J(T ) A4 × C2 R F[A4 × C2,A4] 15 1, 0, 0, 8, 3 1, 6, 60 1, 3, 7
1 48 J(O) S4 × C2 R F[S4 × C2, S4] 33 1, 0, 6, 8, 9 1, 6, 50 1, 3, 7
1 2 C2,1 C2 M2(R) F[C2, C1,M2(R)] 1 0, 0, 0, 0, 1 4, 48, 640 3, 11, 48
1 4 C4,1 C4 C F[C4, C2] 3 0, 0, 2, 0, 0 2, 24, 320 1, 5, 22
1 6 C6,1 C6 C F[C6, C3,M2(R)] 3 0, 2, 0, 0, 1 2, 18, 220 1, 5, 18
1 4 D2,1 D2 R× R F[D2, C2,M2(R)] 3 0, 0, 0, 0, 2 2, 24, 320 2, 7, 26
1 8 D4,1 D4 R F[D4,D2] 7 0, 0, 2, 0, 2 1, 12, 160 1, 4, 13
1 12 D6,1 D6 R F[D6,D3,M2(R)] 9 0, 2, 0, 0, 4 1, 9, 110 1, 4, 11
1 6 D3,2 D3 R× R F[D3, C3] 3 0, 0, 0, 0, 3 2, 18, 220 2, 6, 21
1 8 D4,2 D4 R× R F[D4, C4] 5 0, 0, 0, 0, 4 2, 18, 200 2, 6, 20
1 12 D6,2 D6 R× R F[D6, C6] 7 0, 0, 0, 0, 6 2, 18, 200 2, 6, 20
1 24 O1 S4 R F[S4,A4] 15 0, 0, 6, 0, 6 1, 6, 60 1, 3, 8
3 1 E1 C1 M2(R) E[C1] 0 0, 0, 0, 0, 0 4, 32, 320 3, 10, 37
3 2 E2 C2 C E[C2, C] 1 0, 0, 0, 0, 0 2, 16, 160 1, 6, 17
3 3 E3 C3 C E[C3] 0 0, 0, 0, 0, 0 2, 12, 110 1, 4, 13
3 4 E4 C4 C E[C4] 1 0, 0, 0, 0, 0 2, 12, 100 1, 4, 11
3 6 E6 C6 C E[C6] 1 0, 0, 0, 0, 0 2, 12, 100 1, 4, 11
3 2 J(E1) C2 R× R E[C2, R× R] 1 0, 0, 0, 0, 0 2, 16, 160 2, 6, 20
3 4 J(E2) D2 R E[D2] 3 0, 0, 0, 0, 0 1, 8, 80 1, 4, 10
3 6 J(E3) D3 R E[D3] 3 0, 0, 0, 0, 0 1, 6, 55 1, 3, 8
3 8 J(E4) D4 R E[D4] 5 0, 0, 0, 0, 0 1, 6, 50 1, 3, 7
3 12 J(E6) D6 R E[D6] 7 0, 0, 0, 0, 0 1, 6, 50 1, 3, 7
2 1 F C1 C× C D[C1] 0 0, 0, 0, 0, 0 4, 36, 400 2, 8, 32
2 2 Fa C2 R× C D[C2, R× C] 0 0, 0, 0, 0, 1 3, 21, 210 2, 6, 20
2 2 Fc C2 * * 1 0, 0, 0, 0, 0 2, 18, 200 1, 5, 16
2 2 Fab C2 R× R D[C2, R× R] 1 0, 0, 0, 0, 1 2, 18, 200 2, 6, 20
2 4 Fac C4 R D[C4] 3 0, 0, 2, 0, 1 1, 9, 100 1, 3, 10
2 4 Fa,b D2 R× R D[D2] 1 0, 0, 0, 0, 3 2, 12, 110 2, 5, 14
2 4 Fab,c D2 * * 3 0, 0, 0, 0, 1 1, 9, 100 1, 4, 10
2 8 Fa,b,c D4 * * 5 0, 0, 2, 0, 3 1, 6, 55 1, 3, 7
4 1 G1,3 C1 R× C C[C1] 0 0, 0, 0, 0, 0 3, 20, 175 2, 6, 20
4 2 N(G1,3) C2 R× R C[C2] 0 0, 0, 0, 0, 1 2, 11, 90 2, 5, 14
6 1 G3,3 C1 R× R B[C1] 0 0, 0, 0, 0, 0 2, 10, 70 2, 5, 14
6 2 N(G3,3) C2 R B[C2] 1 0, 0, 0, 0, 0 1, 5, 35 1, 3, 7

10 1 USp(4) C1 R A[C1] 0 0, 0, 0, 0, 0 1, 3, 14 1, 2, 4
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Table 9. Moments of a1 for Sato–Tate groups in genus 2.

G Mn = E[an1 ] M2 M4 M6 M8 M10 Type [KS]

C1 2nbn 8 96 1280 17920 258048 #27
C2 1/2(2n + 0n)bn 4 48 640 8960 129024 #13
C3 1/3(2n + 2)bn 4 36 440 6020 86184 #28

C4 1/4(2n + 0n + 2 · 2n/2)bn 4 36 400 5040 68544 #29

C6 1/6(2n + 0n + 2 + 2 · 3n/2)bn 4 36 400 4900 63504 #30
D2 1/4(2n + 3 · 0n)bn 2 24 320 4480 64512 #21
D3 1/6(2n + 3 · 0n + 2)bn 2 18 220 3010 43092 #12

D4 1/8(2n + 5 · 0n + 2 · 2n/2)bn 2 18 200 2520 34272 #17

D6 1/12(2n + 7 · 0n + 2 + 2 · 3n/2)bn 2 18 200 2450 31752 #15
T 1/12(2n + 3 · 0n + 8)bn 2 12 120 1540 21672 #31

O 1/24(2n + 9 · 0n + 8 + 6 · 2n/2)bn 2 12 100 1050 12852 #32
J(C1) 1/2(2n + 0n)bn 4 48 640 8960 129024 #13
J(C2) 1/4(2n + 3 · 0n)bn 2 24 320 4480 64512 #21
J(C3) 1/6(2n + 3 · 0n + 2)bn 2 18 220 3010 43092 #12

J(C4) 1/8(2n + 5 · 0n + 2 · 2n/2)bn 2 18 200 2520 34272 #17

J(C6) 1/12(2n + 7 · 0n + 2 + 2 · 3n/2)bn 2 18 200 2450 31752 #15
J(D2) 1/8(2n + 7 · 0n)bn 1 12 160 2240 32256 #23
J(D3) 1/12(2n + 9 · 0n + 2)bn 1 9 110 1505 21546 #20

J(D4) 1/16(2n + 13 · 0n + 2 · 2n/2)bn 1 9 100 1260 17136 #22

J(D6) 1/24(2n + 19 · 0n + 2 + 2 · 3n/2)bn 1 9 100 1225 15876 #24
J(T ) 1/24(2n + 15 · 0n + 8)bn 1 6 60 770 10836 #25

J(O) 1/48(2n + 33 · 0n + 8 + 6 · 2n/2)bn 1 6 50 525 6426 #26
C2,1 1/2(2n + 0n)bn 4 48 640 8960 129024 #13
C4,1 1/4(2n + 3 · 0n)bn 2 24 320 4480 64512 #21
C6,1 1/6(2n + 3 · 0n + 2)bn 2 18 220 3010 43092 #12
D2,1 1/4(2n + 3 · 0n)bn 2 24 320 4480 64512 #21
D4,1 1/8(2n + 7 · 0n)bn 1 12 160 2240 32256 #23
D6,1 1/12(2n + 9 · 0n + 2)bn 1 9 110 1505 21546 #20
D3,2 1/6(2n + 3 · 0n + 2)bn 2 18 220 3010 43092 #12

D4,2 1/8(2n + 5 · 0n + 2 · 2n/2)bn 2 18 200 2520 34272 #17

D6,2 1/12(2n + 7 · 0n + 2 + 2 · 3n/2)bn 2 18 200 2450 31752 #15
O1 1/24(2n + 15 · 0n + 8)bn 1 6 60 770 10836 #25
E1 2ncn 4 32 320 3584 43008 #5
E2 1/2(2n + 0n)cn 2 16 160 1792 21504 #11
E3 1/3(2n + 2)cn 2 12 110 1204 14364 #4

E4 1/4(2n + 0n + 2 · 2n/2)cn 2 12 100 1008 11424 #7

E6 1/6(2n + 0n + 2 + 2 · 3n/2)cn 2 12 100 980 10584 #6
J(E1) 1/2(2n + 0n)cn 2 16 160 1792 21504 #11
J(E2) 1/4(2n + 3 · 0n)cn 1 8 80 896 10752 #18
J(E3) 1/6(2n + 3 · 0n + 2)cn 1 6 55 602 7182 #10

J(E4) 1/8(2n + 5 · 0n + 2 · 2n/2)cn 1 6 50 504 5712 #16

J(E6) 1/12(2n + 7 · 0n + 2 + 2 · 3n/2)cn 1 6 50 490 5292 #14
F b2n 4 36 400 4900 63504 #33
Fa 1/2(bn + b2n) 3 21 210 2485 31878 #34
Fc 1/2(b2n + 0n) 2 18 200 2450 31752 #35
Fab 1/2(b2n + 0n) 2 18 200 2450 31752 #35
Fac 1/4(b2n + 3 · 0n) 1 9 100 1225 15876 #19
Fa,b 1/4(b2n + 2bn + 0n) 2 12 110 1260 16002 #8
Fab,c 1/4(b2n + 3 · 0n) 1 9 100 1225 15876 #19
Fa,b,c 1/8(b2n + 2bn + 5 · 0n) 1 6 55 630 8001 #37
G1,3 cnbn+2/2 3 20 175 1764 19404 #36
N(G1,3) 1/2(cnbn+2/2 + cn) 2 11 90 889 9723 #3
G3,3 cncn+2 2 10 70 588 5544 #2
N(G3,3) 1/2(cncn+2 + 0n) 1 5 35 294 2772 #9
USp(4) cncn+4 − c2n+2 1 3 14 84 594 #1
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Table 10. Moments of a2 for Sato–Tate groups in genus 2.

G Mn = E[an2 ] M1 M2 M3 M4 M5

C1 b4,n 4 18 88 454 2424
C2 1/2(b4,n + bn) 2 10 44 230 1212
C3 1/3(b4,n + 2b1,n) 2 8 34 164 842
C4 1/4(b4,n + bn + 2b2,n) 2 8 32 150 732
C6 1/6(b4,n + bn + 2b1,n + 2b3,n) 2 8 32 148 712
D2 1/4(b4,n + 3bn) 1 6 22 118 606
D3 1/6(b4,n + 3bn + 2b1,n) 1 5 17 85 421
D4 1/8(b4,n + 5bn + 2b2,n) 1 5 16 78 366
D6 1/12(b4,n + 7bn + 2b1,n + 2b3,n) 1 5 16 77 356
T 1/12(b4,n + 3bn + 8b1,n) 1 4 12 52 236
O 1/24(b4,n + 9bn + 8b1,n + 6b2,n) 1 4 11 45 181
J(C1) 1/2(b4,n + (−2)n) 1 11 40 235 1196
J(C2) 1/4(b4,n + bn + 2n + (−2)n) 1 7 22 123 606
J(C3) 1/6(b4,n + 2(b1,n + 1) + (−2)n) 1 5 16 85 416
J(C4) 1/8(b4,n + bn + 2(b2,n + 0n) + 2n + (−2)n) 1 5 16 79 366
J(C6) 1/12(b4,n + bn + 2(b1,n + b3,n + 1 + (−1)n) + 2n + (−2)n) 1 5 16 77 356
J(D2) 1/8(b4,n + 3(bn + 2n) + (−2)n) 1 5 13 67 311
J(D3) 1/12(b4,n + 3(bn + 2n) + 2(b1,n + 1) + (−2)n) 1 4 10 48 216
J(D4) 1/16(b4,n + 5(bn + 2n) + 2(b2,n + 0n) + (−2)n) 1 4 10 45 191
J(D6) 1/24(b4,n + 2(b1,n + b3,n + 1 + (−1)n) + 7(bn + 2n) + (−2)n) 1 4 10 44 186
J(T ) 1/24(b4,n + 3(bn + 2n) + 8(b1,n + 1) + (−2)n) 1 3 7 29 121
J(O) 1/48(b4,n + 9(bn + 2n) + 8(b1,n + 1) + 6(b2,n + 0n) + (−2)n) 1 3 7 26 96
C2,1 1/2(b4,n + 2n) 3 11 48 235 1228
C4,1 1/4(b4,n + bn + 2 · 0n) 1 5 22 115 606
C6,1 1/6(b4,n + 2(b1,n + (−1)n) + 2n) 1 5 18 85 426
D2,1 1/4(b4,n + bn + 2n+1) 2 7 26 123 622
D4,1 1/8(b4,n + 3bn + 2(2n + 0n)) 1 4 13 63 311
D6,1 1/12(b4,n + 3bn + 2(b1,n + (−1)n) + 2n+2) 1 4 11 48 221
D3,2 1/6(b4,n + 2b1,n + 3 · 2n) 2 6 21 90 437
D4,2 1/8(b4,n + bn + 2b2,n + 2n+2) 2 6 20 83 382
D6,2 1/12(b4,n + bn + 2(b1,n + b3,n) + 6 · 2n) 2 6 20 82 372
O1 1/24(b4,n + 3bn + 8b1,n + 6(2n + 0n)) 1 3 8 30 126
E1 d4,n 3 10 37 150 654
E2 1/2(d4,n + dn) 1 6 17 78 322
E3 1/3(d4,n + 2d1,n) 1 4 13 52 222
E4 1/4(d4,n + dn + 2d2,n) 1 4 11 46 182
E6 1/6(d4,n + dn + 2(d1,n + d3,n)) 1 4 11 44 172
J(E1) 1/2(d4,n + (−1)ndn) 2 6 20 78 332
J(E2) 1/4(d4,n + dn + 2(−1)ndn) 1 4 10 42 166
J(E3) 1/6(d4,n + 2d1,n + 3(−1)ndn) 1 3 8 29 116
J(E4) 1/8(d4,n + dn + 2d2,n + 4(−1)ndn) 1 3 7 26 96
J(E6) 1/12(d4,n + dn + 2(d1,n + d3,n) + 6(−1)ndn) 1 3 7 25 91

F b̂n 2 8 32 148 712

Fa 1/2(b̂n + 2n) 2 6 20 82 372

Fc 1/2(b̂n + bn) 1 5 16 77 356

Fab 1/2(b̂n + 2n) 2 6 20 82 372

Fac 1/4(b̂n + 2 · 0n + 2n) 1 3 10 41 186

Fa,b 1/4(b̂n + 3 · 2n) 2 5 14 49 202

Fab,c 1/4(b̂n + 2bn + 2n) 1 4 10 44 186

Fa,b,c 1/8(b̂n + 2(bn + 0n) + 3 · 2n) 1 3 7 26 101
G1,3

∑
k

(
n
k

)
2n−kbkck 2 6 20 76 312

N(G1,3) 1/2(
∑
k

(
n
k

)
2n−kbkck + 2n) 2 5 14 46 172

G3,3 ĉn 2 5 14 44 152
N(G3,3) 1/2(ĉn + cn) 1 3 7 23 76
USp(4)

∑
k

(
n
k

)
2n−k(ckck+2 − c2k+1) 1 2 4 10 27

1436

https://doi.org/10.1112/S0010437X12000279 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000279


Sato–Tate distributions and Galois endomorphism modules in genus 2

Table 11. Genus 2 curves realizing Sato–Tate groups.

G Curve y2 = f(x) k K

C1 x6 + 1 Q(
√
−3) Q(

√
−3)

C2 x5 − x Q(
√
−2) Q(i,

√
2)

C3 x6 + 4 Q(
√
−3) Q(

√
−3, 3√2)

C4 x6 + x5 − 5x4 − 5x2 − x+ 1 Q(
√
−2) Q(

√
−2, a); a4 + 17a2 + 68 = 0

C6 x6 + 2 Q(
√
−3) Q(

√
−3, 6√2)

D2 x5 + 9x Q(
√
−2) Q(i,

√
2,
√

3)

D3 x6 + 10x3 − 2 Q(
√
−2) Q(

√
−3, 6√−2)

D4 x5 + 3x Q(
√
−2) Q(i,

√
2, 4√3)

D6 x6 + 3x5 + 10x3 − 15x2 + 15x− 6 Q(
√
−3) Q(i,

√
2,
√

3, a); a3 + 3a− 2 = 0

T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x+ 8 Q(
√
−2) Q(

√
−2, a, b);

a3 − 7a+ 7 = b4 + 4b2 + 8b+ 8 = 0

O x6 − 5x4 + 10x3 − 5x2 + 2x− 1 Q(
√
−2) Q(

√
−2,
√
−11, a, b);

a3 − 4a+ 4 = b4 + 22b+ 22 = 0

J(C1) x5 − x Q(i) Q(i,
√

2)

J(C2) x5 − x Q Q(i,
√

2)

J(C3) x6 + 10x3 − 2 Q(
√
−3) Q(

√
−3, 6√−2)

J(C4) x6 + x5 − 5x4 − 5x2 − x+ 1 Q see entry for C4

J(C6) x6 − 15x4 − 20x3 + 6x+ 1 Q Q(i,
√

3, a); a3 + 3a2 − 1 = 0

J(D2) x5 + 9x Q Q(i,
√

2,
√

3)

J(D3) x6 + 10x3 − 2 Q Q(
√
−3, 6√−2)

J(D4) x5 + 3x Q Q(i,
√

2, 4√3)

J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x− 6 Q see entry for D6

J(T ) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x+ 8 Q see entry for T

J(O) x6 − 5x4 + 10x3 − 5x2 + 2x− 1 Q see entry for O

C2,1 x6 + 1 Q Q(
√
−3)

C4,1 x5 + 2x Q(i) Q(i, 4√2)

C6,1 x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x+ 1 Q Q(
√
−3, a); a3 − 3a+ 1 = 0

D2,1 x5 + x Q Q(i,
√

2)

D4,1 x5 + 2x Q Q(i, 4√2)

D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x− 8 Q Q(
√
−2,
√
−3, a); a3 − 9a+ 6 = 0

D3,2 x6 + 4 Q Q(
√
−3, 3√2)

D4,2 x6 + x5 + 10x3 + 5x2 + x− 2 Q Q(
√
−2, a); a4 − 14a2 + 28a− 14 = 0

D6,2 x6 + 2 Q Q(
√
−3, 6√2)

O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x+ 4 Q Q(
√
−2, a, b);

a3 + 5a+ 10 = b4 + 4b2 + 8b+ 2 = 0

F x6 + 3x4 + x2 − 1 Q(i,
√

2) Q(i,
√

2)

Fa x6 + 3x4 + x2 − 1 Q(i) Q(i,
√

2)

Fab x6 + 3x4 + x2 − 1 Q(
√

2) Q(i,
√

2)

Fac x5 + 1 Q Q(a); a4 + 5a2 + 5 = 0

Fa,b x6 + 3x4 + x2 − 1 Q Q(i,
√

2)

E1 x6 + x4 + x2 + 1 Q Q
E2 x6 + x5 + 3x4 + 3x2 − x+ 1 Q Q(

√
2)

E3 x5 + x4 − 3x3 − 4x2 − x Q Q(a); a3 − 3a+ 1 = 0

E4 x5 + x4 + x2 − x Q Q(a); a4 − 5a2 + 5 = 0

E6 x5 + 2x4 − x3 − 3x2 − x Q Q(
√

7, a); a3 − 7a− 7 = 0

J(E1) x5 + x3 + x Q Q(i)

J(E2) x5 + x3 − x Q Q(i,
√

2)

J(E3) x6 + x3 + 4 Q Q(
√
−3, 3√2)

J(E4) x5 + x3 + 2x Q Q(i, 4√2)

J(E6) x6 + x3 − 2 Q Q(
√
−3, 6√−2)

G1,3 x6 + 3x4 − 2 Q(i) Q(i)

N(G1,3) x6 + 3x4 − 2 Q Q(i)

G3,3 x6 + x2 + 1 Q Q
N(G3,3) x6 + x5 + x− 1 Q Q(i)

USp(4) x5 − x+ 1 Q Q
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Table 12. Some automorphisms of the curves in Table 11.

G α γ M

C1, C2,1 (−x, y)
(

1
x
, 1
x3 y
)

Q(
√
−3)

C2, J(C1), J(C2)
(
i
x
,
ζ38
x3 y
)

(−x, iy) Q(
√
−2)

C3, D3,2 (−x, y)
(

41/3

x
, 2
x3 y
)

Q(
√
−3)

C4, J(C4)
(−(2a2+13)x+1

x+2a2+13
,

Qα,C4
(x+2a2+13)3

y
) (−x−1

x−1
, −2

√
−2

(x−1)3
y
)

Q(
√
−2)

C6, D6,2 (−x, y)
(

21/3

x
, 21/2

x3 y
)

Q(
√
−3)

D2, J(D2)
(

3
x
, 33/2

x3 y
) (

−x, iy
)

Q(
√
−2)

D3, J(D3), J(C3)
(−21/3

x
,
√
−2
x3 y

) ( (1−
√
−3)21/3

2x
,
√
−2
x3 y

)
Q(
√
−2)

D4, J(D4)
(√

3
x
, 33/4

x3 y
) (

−x, iy
)

Q(
√
−2)

D6, J(D6)
(
x+1
x−1

, 2
√

2
(x−1)3

y
) ( Pγ,D6

2x+(a2+3)
,

Qγ,D6
(2x+(a2+3))3

y
)

Q(
√
−3)

T, J(T )
( Pα,T
Rα,T

,
Qα,T
R3
α,T

y
) ( Pγ,T

x+1−a ,
Qγ,T

(x+1−a)3 y
)

Q(
√
−2)

O, J(O)
( Pα,O
Rα,O

,
Qα,O
R3
α,O

y
) (

ax+a2−2
2x−a ,

Qγ,O
(2x−a)3 y

)
Q(
√
−2)

J(C6)
(−x−2

2x+1
, 3
√
−3

(2x+1)3
y
) (−(a+1)x−a

x+a+1
, −3ia2−3ia

(x+a+1)3
y
)

Q(
√
−3)

C4,1, D4,1

(√
2
x
, 23/4

x3 y
) (

−x, iy
)

Q(
√
−2)

C6,1

( (1−a)x+a
x+(a−1)

, −3a2+3a
(x+(a−1))3

y
) (

x−1
x
, −1
x3 y

)
Q(
√
−3)

D2,1

(
1
x
, 1
x3 y
)

(−x, iy) Q(
√
−2)

D6,1

(−2
x
, −2

√
−2

x3 y
) ( (a−1)x+2

x+1−a ,
Qγ,D6,1

(x+1−a)3 y
)

Q(
√
−3)

D4,2

( Pα,D4,2
Rα,D4,2

,
Qα,D4,2
R3
α,D4,2

y
) ( Pγ,D4,2

x−
√
−2+1

, −8
(x−
√
−2+1)3

y
)

Q(
√
−2)

O1

( Pα,O1
Rα,O1

,
Qα,O1
R3
α,O1

y
) ( Pγ,O1

Rγ,O1
,
Qγ,O1
R3
γ,O1

y
)

Q(
√
−2)

E1 (−x, y)
(−1
x
, 1
x3 y
)

Q

E2

(
x+1
x−1

, −2
√

2
(x−1)3

y
) (−1

x
, 1
x3 y
)

Q

E3

(−ax−a+1
x+a

, 3a2−3a
(x+a)3

y
) (−x−1

x
, 1
x3 y
)

Q

E4

( (a2−3)x+1

x−a2+3
, −3a3+10a

(x−a2+3)3
y
) (−1

x
, 1
x3 y
)

Q

E6

( Pα,E6
Rα,E6

,
Qα,E6
R3
α,E6

y
) ( −1

x+1
, 1

(x+1)3
y
)

Q

J(E1)
(

1
x
, 1
x3 y
) (

−x, iy
)

Q

J(E2)
(−i
x
, i−1√

2x3 y
)

(−x, iy) Q

J(E3)
(

41/3

x
, 2
x3 y
)

(ζ3x, y) Q

J(E4)
(√

2
x
, 23/4

x3 y
)

(−x, iy) Q

J(E6)
( (−2)1/3

x
,
√

2
x3

)
(ζ3x, y) Q
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Table 13. Polynomials describing the automorphisms of Table 12.

Qα,C4 =
√
−2(29a3 + 187a)

Pγ,D6 = −(a2 + 3)x+ 2(a2 + 2)
Qγ,D6 = −21ia2 − 6ia− 83i
Pα,T =

((−a2

7 −
a
6 + 2

3

)
b3 +

(
3a2

14 + a
3 −

7
6

)
b2 +

(−10
21 a

2 − 2
3a+ 7

3

)
b+

(−2
21 a

2 + 2
3

))
x

+
(

1
21a

2 − 1
3

)
b3 +

(−5
21 a

2 − 1
3a+ 4

3

)
b2 +

(−2
7 a

2 − 2
3a+ 2

3

)
b+

(
10
21a

2 − 8
3

)
Qα,T =

√
−2
((

10
27a

2 + 11
27a−

49
27

)
b3 +

(
8
27a

2 + 22
27a−

49
27

)
b2

+
(

32
27a

2 + 46
27a−

182
27

)
b+

(
76
27a

2 + 110
27 a−

392
27

))
Rα,T = x+

(
a2

7 + a
6 −

2
3

)
b3 +

(−3
14 a

2 − a
3 + 7

6

)
b2 +

(
10
21a

2 + 2
3a−

7
3

)
b+

(
2
21a

2 − 2
3

)
Pγ,T = (a− 1)x+ 2a2 + 2a− 8
Qγ,T =

(
−a2 + 3

2a
)
b3 +

(
a2

2 −
a
2

)
b2 + (−5a2 + 12a− 7)b− 5a2 + 8a

Pα,O =
((

19
429a

2 + 23
429a−

58
429

)
b3 +

(−5
78 a

2 − 2
39a+ 3

13

)
b2 +

(
11
78a

2 + 7
39a−

4
13

)
b

+
(

31
78a

2 + 5
13a−

35
39

))
x+

(−23
429 a

2 − 6
143a+ 76

429

)
b3 +

(
2
39a

2 + 1
39a−

10
39

)
b2

+
(−7

39 a
2 − 10

39a+ 22
39

)
b+

(−23
26 a

2 − 9
13a+ 101

39

)
Qα,O =

√
−2
((

a2

39 + 20
351a−

22
351

)
b3 +

(−11
702 a

2 − 44
351a−

22
117

)
b2

+
(

107
351a

2 + 232
351a−

146
351

)
b+

(
11
26a

2 + 110
117a−

121
117

))
Rα,O = x+

(−19
429 a

2 − 23
429a+ 58

429

)
b3 +

(
5
78a

2 + 2
39a−

3
13

)
b2

+
(−11

78 a
2 − 7

39a+ 4
13

)
b+

(−31
78 a

2 − 5
13a+ 35

39

)
Qγ,O = 8

√
−11

((
1

286a
2 + 3

143a−
7

143

)
b3 +

( −7
572a

2 + 5
286a+ 5

143

)
b2

+
(

1
13a

2 − 1
26a−

1
13

)
b+

(
3
52a

2 + 9
26a−

21
26

))
Qγ,D6,1 =

√
−3(3a2 − 6a+ 1)

Pα,D4,2 = (a3 + a2 − 14a+ 17)x+ (2a3 + 2a2 − 28a+ 29)
Qα,D4,2 = −160a3 − 168a2 + 1904a− 2184
Rα,D4,2 = 5x− (a3 + a2 − 14a+ 17)
Pγ,D4,2 = −(

√
−2 + 1)x+ 1

Pα,O1 =
(( −3

580a
2 − 13

116a−
7
58

)
b3 +

( −1
1160a

2 + 15
232a+ 17

116

)
b2 +

(−17
232 a

2 − 117
232a−

63
116

)
b

+
(

13
290a

2 − 21
58a−

18
29

))
x+

( −7
580a

2 − 11
116a+ 3

58

)
b3 +

(
23
580a

2 + 3
116a+ 15

58

)
b2

+
(−15

116 a
2 − 35

116a−
1
58

)
b+

(
109
580a

2 − 11
116a+ 61

58

)
Qα,O1 =

(−2277
24389 a

2 + 7186
24389a−

495
24389

)
b3 +

(
1287
48778a

2 − 34813
48778a−

13115
24389

)
b2

+
(−26733

48778 a
2 + 83435

48778a+ 26255
24389

)
b+

(−12375
24389 a

2 + 8303
24389a−

29200
24389

)
Rα,O1 = x+

(
3

580a
2 + 13

116a+ 7
58

)
b3 +

(
1

1160a
2 − 15

232a−
17
116

)
b2

+
(

17
232a

2 + 117
232a+ 63

116

)
b+

(−13
290 a

2 + 21
58a+ 18

29

)
Pγ,O1 = (−a2 + a− 8)x− a2 − a− 6
Qγ,O1 = 4

√
−2((−2a2 + 4a− 10)b3 + (−3a2 + 4a− 25)b2

+(−2a2 + 10a)b− 18a2 + 32a− 110)
Rγ,O1 = 4x+ a2 − a+ 8
Pα,E6 = (a2 − a− 5)x+ a2 − a− 4
Qα,E6 =

√
7(−a2 + 2a+ 6)

Rα,E6 = x− a2 + a+ 5
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Table 11 lists the example curves used in § 4.8 to prove that there do exist 52 distinct Galois
types arising from abelian surfaces over general number fields, of which 34 do occur over Q. For
each curve, we indicate the field of definition k and the minimal extension K/k over which all
endomorphisms of its Jacobian are defined. It is proved in § 4.8 that the field K and the Galois
type agree with the claimed values; in most cases, the proof makes use of certain noncommuting
automorphisms α and γ of the curve. These automorphisms are listed in Table 12, together
with the value of the intermediate field M used in the alternate description of the Galois type
in § 4. To make things more readable, some rather complicated polynomials appearing in the
definitions of the automorphisms have been moved to Table 13. Note that in each formula in
Tables 12 and 13, the symbols a and b represent elements of K as presented in the corresponding
line of Table 11; consequently, the meaning of these symbols varies from line to line.
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