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Introduction
It is almost twenty years since Branko Grünbaum lamented that the

‘original sin’ in the theory of polyhedra is that from Euclid onwards “the
writers failed to define what are the ‘polyhedra’ among which they are
finding the ‘regular’ ones” ([1, p. 43]). Various definitions of ‘regular’ can
be found in the literature with a condition of convexity often included (e.g.
[2, p. 301], [3, p. 77], [4, p. 47], [5, p. 435], [6, p. 16]). The condition of
convexity is usually cited to exclude regular self-intersecting polyhedra, i.e.
the Kepler-Poinsot polyhedra, such as the ‘great dodecahedron’ consisting
of twelve intersecting pentagonal faces shown in Figure 1 with one face
shaded. Richeson also notes ([4, pp. 47-48]) that, for a particular definition
of ‘regular’, convexity is needed to exclude the ‘punched-in’ icosahedron
shown in Figure 2.

FIGURE 1 FIGURE 2

A condition of convexity is clearly stronger than that of non-self-
intersection however, as shown by the existence of non-convex non-self-
intersecting polyhedra. This raises the question of why a condition of convexity
is generally included for regular polyhedra rather than the lesser condition of
non-self-intersection. This Article looks at the question of whether non-convex
non-self-intersecting regular polyhedra can exist for the various definitions of
‘regular’ found in the literature. It is found that, while most of the cases of
possible polyhedra can be dealt with very quickly, there is one case that slips
through the net and requires a longer analysis than might be expected. A proof
settling the question of the necessity of a condition of convexity for this special
case is given using elementary geometry.

Initial definitions
In light of the ‘original sin’, a polyhedron will be defined here, following

Coxeter's treatment in Regular polytopes [6, p. 4], as simply connected* and
consisting of ‘a finite, connected set of plane polygons, such that every side
of each polygon belongs to just one other polygon, with the proviso that the
polygons surrounding each vertex form a single circuit (to exclude anomalies
such as two pyramids with a common apex).’ Also following Coxeter's initial
definitions, the focus will be on polyhedra whose faces do not intersect each
other, the faces being non-self-intersecting polygons.

* i.e.  ‘every simple closed curve drawn on the surface can be shrunk’ [6, p. 9]
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Among the various possible definitions of a ‘regular polyhedron’, it can
be shown (e.g. [3, p. 77-78] and [5. p. 446]) that if a convex polyhedron is
bounded by equal regular polygons then the following further conditions are
equivalent:
(a) the polyhedron has the same number of faces at each vertex,
(b) all dihedral angles are equal (the dihedral angle of an edge being the

angle formed between two lines which meet on the edge and are both
perpendicular to the edge, one line lying in one face and the other in the
other face),

(c) the vertices of the polyhedron all lie on a sphere,
(d) for any two vertices of the polyhedron, there is a rigid motion of the

figure taking one to the other.
It should be noted that (d) refers to pairs of vertices, not to the symmetry of
the polyhedron as a whole. The condition captures the intuitive notion that
any two vertices are ‘the same’ if the arrangement of the face angles that
meet at both vertices are the same as well as the dihedral angles between
two corresponding faces. Such vertices will be described as ‘congruent’
hereafter.

The role of convexity in each of these conditions is not the same,
however. Considering each in turn:
(a) can be satisfied by a non-convex polyhedron, as witnessed by the

‘punched-in’ icosahedron in Figure 2 above; to exclude this figure from
the regular polyhedra we need to add the condition of convexity to
condition (a), as Richeson does in [4];

(b) implies convexity given that any non-convex polyhedron has a mixture
of dihedral angles, some less than  and some greater;180°

(c) also implies convexity (recalling that all polygons and polyhedra being
considered here are non-self-intersecting);

(d) is not so clear, it not being immediately obvious whether, like (a), it
needs an additional condition of convexity in order to define the usual
regular polyhedra, or whether, like (b) and (c), convexity follows
automatically. If the former, i.e. we need to state convexity as an
additional condition, then this could only be because of the possibility
of a non-convex polyhedron bounded by equal regular polygons that
satisfied (d). On the other hand, if it is possible to show that no such
polyhedron could exist, the condition of convexity is implied by (d) and
so need not be stated as an extra condition.

We note in passing that Coxeter's definition of a regular polyhedron
contains convexity as an implicit condition saying that ‘a polyhedron is
regular if its faces and vertex figures are all regular’ ([6, p. 16]) where the
vertex figure for a vertex  is the polygon whose vertices ‘are the mid-
points of all the edges through ’ (ibid.). For non-self-intersecting
polyhedra, the regularity of the vertex figures implies convexity given that
each internal angle of the non-self-intersecting regular polygon is non-

O
O
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convex from which it follows that all dihedral angles are equal. The question
of whether condition (d) needs an additional specification of convexity in
order to define the regular polyhedra is equivalent to the question of whether
there is any need for the condition of the regularity of vertex figures or
whether congruence among them is enough.

Simple exclusions
Without a condition of convexity there are many possible vertices, such

as those shown in Figure 3 where eight equilateral triangles meet at the first
vertex and five squares at the second. Examining whether condition (d)
automatically implies convexity requires us to consider such vertices to see
whether they could be the common vertex of a non-convex ‘regular’
polyhedron.

FIGURE 3

We note first that if three polygons meet at a vertex then the vertex is
rigid, i.e. cannot be deformed, just as a two-dimensional triangle cannot be
deformed. It follows that when creating a polyhedron with exactly three
equilateral triangles, squares or regular pentagons meeting at each vertex,
there is no ‘freedom’ in how the polyhedron is created and we get the
tetrahedron, cube or dodecahedron respectively.

To examine further cases it is useful to observe that the definition of
a polyhedron given above, in particular the condition of simple-
connectedness, implies that Euler's polyhedra formula
holds for the number of vertices, edge and faces (whether or not the
polyhedron is convex). One consequence of Euler's formula is Descartes'
earlier observation that the sum of the angular deficits of a solid is ,
where the angular deficit of a vertex is defined as  minus the sum of the
angles of the face angles (not the dihedral angles) that meet at a vertex*.

V − E + F = 2

720°
360°

Descartes' angular deficit formula shows that if all vertices of a
polyhedron are congruent, i.e. condition (d) holds, then the sum of the face
angles at any vertex must be less than , namely that if the sum were
greater than  then the vertex deficit at each would be negative and their
sum could not equal . This excludes a large number of possibilities for
regular polygons based on condition (d) without having to assume
convexity, for example, excluding having six or more equilateral triangles
around a vertex or four or more regular -sided polygons for .

360°
360°

720°

n n ≥ 4

* [5, p .449] gives a quick derivation of Descartes' observation from Euler's
formula.
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Four or five equilateral triangular faces
This leaves the possibility of four or five equilateral triangles

surrounding a vertex such as those around the ‘rim’ of the ‘punched-in’
icosahedron, where five equilateral triangles meet at a vertex. A polyhedron
being composed solely of such non-convex vertex cannot be ruled out by
Descartes' observation, as the angular defect of each is
and so twelve such vertices might conceivably form a polyhedron. A
polyhedron such as this cannot be excluded by Cauchy's rigidity theorem
either as we are not assuming convexity. It may feel ‘intuitively’ obvious
that a polyhedron could not be formed where every vertex was of this form
and congruent to each other, e.g. due to the sides going ‘in and out’, but
intuition is fallible. It can be noted for example that at least a few such
congruent non-convex vertices can be placed together, as they are in around
the rim of the punched-in icosahedron. The remainder of this Article shows
that the intuition about the impossibility of forming a polyhedron from a set
of such vertices is indeed correct although for five equilateral triangles it is
not a simple one-line argument.

360° − 5 × 60° = 60°

Before examining this argument, we note that a quick argument shows
that the only figure in which four equilateral triangles surround each vertex
is the octahedron. This is due to the fact that four equilateral triangles cannot
form a non-convex vertex in the same way that five equilateral triangles can.
Euler's formula can therefore be combined with Cauchy's rigidity theorem to
argue for the uniqueness of the octahedron. This is illustrated in Figure 4
where we start with four equilateral triangles around a vertex but in such a
way that the dihedral angles are unequal. This is continued to a second
vertex, forming the figure shown. Euler's formula implies that a polyhedron
with four equilateral triangles at each vertex must be formed of just eight
equilateral triangles but it is apparent that the figure cannot be completed in
this way. The only way to complete the figure is to start instead with a
vertex surrounded by equal dihedral angles, leading to the octahedron.

FIGURE 4

Vertex patterns
The remaining case where five equilateral triangles meet at a vertex will be

considered in the remainder of this Article. We label the dihedral angles around
a vertex  to , describing the vertex arrangement as  where the order of
the letters matters. A vertex with dihedral angles  is therefore congruent
to one with angles , neither being congruent to a vertex described by

. If it turns out that two of the dihedral angles are the same, e.g. ,
then this is indicated by saying that the vertex is of the form .

A E ABCDE
ABCDE

BCDEA
ACDBE A = E

ABCDA
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Theorem 1: If a polyhedron is composed of congruent vertices each
consisting of five equilateral triangles then at each vertex either three
adjacent dihedral angles are the same or two pairs of adjacent dihedral
angles are the same, i.e. the vertices are of the form  or .AAADE AABBC

X EB
A A

DC
Y

E
E

A
EB

A A

DC

D C

Z

A

A

AA

A

A

C

C
E

E
E

E

E

B

B

Z

A A

A

C
E

E
E

D

D
C

C
CE

DE

Y′

Y

A A

DD
D

CC

E
E

A
B

(a) (b) (c) (d) (e)
FIGURE 5: Dihedral angles around vertices

Proof: Fig. 5 (a) shows a vertex with the dihedral angles , , , ,  going
anti-clockwise around it. The diagram has one edge ‘opened’ to allow the
vertex to be flattened onto a page leading to the two s which represent the
same edge. The dihedral angles around the vertex at the other end of the
edge , labelled , can go either (i) anti-clockwise or (ii) clockwise (if we
insist that they can only go in the same direction as for the original vertex,
i.e. anti-clockwise, this only shortens the argument).

A B C D E

A

B X

Case (i): If the angles around  go anti-clockwise then, given that we
already have  in place, we get Figure 5 (b). We consider next another
vertex at the centre of the bottom of Figure 5 (b), labelled ,
considering again the cases when the dihedral angles go ( ) anti-
clockwise or ( ) clockwise.

X
B

Y
α

β
Case ( ): If the angles around  go anti-clockwise then  follows .
This can only happen for a vertex arrangment  if either

, i.e. we actually have , or , i.e. we have
. These are of the same form and so we only need to consider

one of them, e.g. . If we redraw the diagram based on this and
extend it around the vertex labelled  we get Figure 5 (c). The vertex
labelled  on the left-hand side (this appears in three places in the
diagram due to the ‘opening’ of edges), shows that there are two
adjacent dihedral angles both . But  appears on either side of  in
the pattern currently being considered, , and so  and
the angles must be of the form , i.e. the first of the two
possible arrangements in the Theorem.

α Y A C
ABCDE

D = A ABCAE E = C
ABCDC

ABCAE
Y

Z

E A E
ABCAE E = A

ABCAA

Case ( ): If the angles around  go clockwise then we have
following . This means that we must either have , i.e.

, or , i.e. . These are again of the same form
and so choosing the first and again redrawing the diagram and
completing the angles around  gives Figure 5 (d). Again we have a
vertex at  with adjacent s, leading to either , i.e. , or

, i.e.  as stated in the Theorem.

β Y C
A B = C

ACCDE B = A AACDE

Y
Z E D = E ACCEE

E = A ACCDA
Case (ii): If we let  go clockwise around  we get Figure 5 (e).
The vertex in the middle of the top of the diagram labelled  has an
next to an  and so we have either , i.e. , or , i.e.

. Considering also the vertex at the middle of the bottom we

ABCDE X
Y ′ A

A B = A AACDE E = A
ABCDA
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have  next to  and so for the  case we must have either
, i.e.  or , i.e. , with similar results if we

choose the  case. 

C C AACDE
C = A AAADE D = C AACCE

ABCDA
In each of these cases we have ended up with a set of dihedral angles of the
form either  or .AAADE AABBC

It should be noted that it is not possible to continue this line of argument
further to show that all dihedral angles must be equal, i.e. to a vertex pattern
of , as Figure 6 illustrates a case where a full icosahedron net has
been filled with vertices with pattern  (with the dotted lines
indicating which vertices of the net are connected). An argument can be
given that the vertex pattern  must lead to , but this can go no
further as an icosahedron net can also be filled with  and so an
argument along the lines of the next section is needed in either case.

AAAAA
AABBC

AAADE AAAAD
AAAAD

C C

C

C

C

C
B B B

B

B

B

B

B

B

B B

B

B
B

B
A

A A
A A

A A

A

A

A

A

A

AA A

CB A A
A

FIGURE 6

Spherical pentagons
We show instead that the angles must all be equal by considering a

spherical pentagon drawn on the surface of a sphere centred at one of the
vertices with a radius less than the length of the shortest edge coming from
that vertex, illustrated in Figure 7. Given that each of the faces of the
original polyhedron is an equilateral triangle, the spherical pentagon will
also be equilateral, albeit with arcs as sides rather than the sides of the
triangles.

FIGURE 7

The geometric fact needed is that the angles at the base of an isosceles
triangle are equal, valid in spherical geometry just as it is for planar
geometry. We use this to show the following Theorem.
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Theorem 2: If two adjacent angles in a planar or spherical equilateral
pentagon are equal then the two angles adjacent to those angles are also
equal to each other.

P

Q

R S

T

U

P

Q

R S

T

U

P
Q

R S

T

U

P

Q

R S

T

U

(a) (b) (c) (d)
FIGURE 8: Two adjacent equal angles in an equilateral pentagon

Proof: The four cases to consider are shown in Figure 8 with similar
reasoning holding in each.

As the pentagon is equilateral, , and we
can suppose that . Let  be the intersection of  and .
Then  and both are are isosceles so  and

.  is therefore isosceles with
 and so .  is therefore isosceles with

.  is also isosceles with .

PQ = QR = RS = ST = TP
∠QRS = ∠RST U QS TR

�QRS   �  �RST QS = RT
∠RQS = ∠RSQ = ∠SRT = ∠RTS �RUS
UR = US UQ = UT �QUT
∠TQU = ∠QTU �PQT ∠PQT = ∠PTQ

For the cases shown in Figures 8 (a) and (b):

∠PQR = ∠RQS + ∠TQU + ∠PQT = ∠RTS + ∠QTU + ∠PTQ = ∠PTS
and the cases for Figures 8 (c) and (d) just need the slight modification that:

∠PQR = ∠RQS + ∠TQU − ∠PQT = ∠RTS + ∠QTU − ∠PTQ = ∠PTS.

Regularity established
We show lastly:

Theorem 3: If each vertex of a polyhedron is composed of five equilateral
triangles, then the dihedral angles around each vertex are all equal to each
other.

Proof: Figure 9 shows the two cases  or  reached at the end of
Theorem 1.

AAADE AABBC

In Figure 9 (a) we have . By Theorem 2
 and  and so all angles are equal

∠PQR = ∠QRS = ∠RST
∠PQR = ∠PTS ∠QPT = ∠RST

In Figure 9 (b) we have  and . By
Theorem 2  and so  and so all angles are
equal.

∠QPT = ∠PRQ ∠QRS = ∠RST
∠PTS = ∠QRS ∠QPS = ∠QRS
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P

Q

R S

T

U

P

Q

R S

T

U

(a) (b)
FIGURE 9:  and  angles in a pentagonAAADE AABBC

It has been shown that if a polyhedron has five equilateral triangles
around each vertex and all vertices are congruent then each dihedral angle is
the same, i.e. we have the icosahedron. This completes the list of the five
regular non-intersecting polyhedra, i.e. the Platonic solids.

Conclusion
To summarise, among the possible conditions (a)-(d) of regularity

considered above, an additional condition of convexity is only needed with
(a). Convexity follows immediately for (b) and (c), and eventually for (d)
too, though the latter takes more work than might be expected. To impose a
condition of convexity solely to avoid the argument given here would seem
to imply the possibility of a non-convex polyhedron which satisfied one of
(b)-(d) but it has been shown that there is no such figure.

We note finally that the above discussion justifies the argument that
Euclid makes at the end of the Elements for there being only five regular
solids, the argument being based on there being at most five triangles, three
squares or three pentagons around a vertex. There can be more than this
number of triangles, squares or regular pentagons, or even higher-sided
regular polygons, around a vertex but such vertices cannot lead to a regular
non-self-intersecting polyhedron by any of the standard definitions of regular.
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