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Secondary motions in turbulent ribbed channel
flows
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We present data from direct numerical simulation (DNS) of the fully turbulent flow
through nominally two-dimensional channels containing longitudinal, surface-mounted,
rectangular ribs whose widths (W) are either one third of or equal to the gap (S − W)
between consecutive ribs across the domain, where S is the span (centre-to-centre spacing)
of the ribs. A range of the ratio of channel half-height (H) to span (S) is considered,
covering 0.25 ≤ H/S ≤ 2.5. In each case, a fixed rib height (h) of 0.1H was used, but
a number of cases with much smaller heights, h/H = 0.025 or 0.05, were also studied.
The secondary flows resulting from the presence of the ribs are examined, along with
their sources in terms of the axial vorticity transport equation, which highlights the effects
of spanwise inhomogeneity in the Reynolds stresses. We show that the strength of the
secondary flows depends strongly on H/S (and, correspondingly, on W/S) and that the
major sources of axial vorticity arise near the top corners of the ribs, with convection of
that vorticity dominating its spread. We also show that for smaller ribs, the secondary flow
strengths are similar to those predicted by Zampino et al. (J. Fluid Mech., vol. 944, 2022,
A4) using a linearised model of the Reynolds-averaged equations, which does not include
the vorticity convection process; the behaviour of secondary flow topology and strength
with varying W/H is thus noticeably different.

Key words: turbulent boundary layers, pipe flow

1. Introduction

It is well known that in turbulent flows over a surface characterised by spanwise
heterogeneity, arising because of changes either in surface condition (e.g. roughness or
type) or in surface height, secondary flows are created via the mechanism originally
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Figure 1. (a) Contours of the axial vorticity superimposed on flow vectors in the spanwise plane for case
S12W3 (see table 1). The colour scale runs from deep blue (negative vorticity) to deep red (positive vorticity).
In this case, there are three ribs across the span, S/W = 4 and Ly = 3.6H. (b) Sketch of the general
computational channel domain for an arbitrary Ly/S. Here, Lz ≡ H = 1 in all cases. In the case shown,
W = 2h = 0.2H, S/W = 4 and the spanwise domain width Ly is 2H (much lower than any of the actual cases).

postulated by Prandtl (1952). These ‘secondary flows of the second kind’ arise because of
spanwise inhomogeneities in the turbulence stresses in the cross-stream plane, which act
to produce axial vorticity. There have been numerous studies of such flows, in boundary
layers, ducts or open channels. The effects of spanwise changes in surface texture have
been investigated by, for example, Chung, Monty & Hutchins (2018) and Stroh et al.
(2020b). In such cases, typified by alternate strips of smooth and rough surface, Hinze
(1967) argued that upwelling occurs over the smooth strips and downwelling over the
rough parts, although he recognised that the reverse might be possible, without suggesting
conditions when that would occur. He also linked the upwelling regions to those where
dissipation of turbulence kinetic energy (TKE) exceeds its production, coinciding with
regions of low shear stress. However, this did not ultimately explain the basic source of the
axial vorticity patterns; it could be argued that the TKE dissipation/production imbalance
is simply the eventual result of the secondary motions produced by the mechanism
suggested by Prandtl (1952). Anderson et al. (2015) have shown that production of axial
vorticity occurs primarily in the regions close to the changes in surface stress.

Such surface stress changes naturally also occur if there are sudden changes in surface
height, rather than simply texture (or applied boundary condition) and there have been a
number of papers in recent years that discuss the effects of longitudinal ribs of various
shapes on channel or boundary layer flows (Hwang & Lee 2018; Medjnoun, Vanderwel
& Ganapathisubramani 2020; Stroh et al. 2020a; Castro et al. 2021; Zhdanov, Jelly &
Busse 2023). Attention in this paper is concentrated on channel flows containing secondary
motions arising because of multiple longitudinal, rectangular ribs of width W spaced
at a distance S from each other, as illustrated generically in figure 1. There have been
some similar investigations, largely addressing questions concerning the geometries (in
particular, W/S and H/S and the shape of the ribs) which give rise to the strongest and
most extensive secondary flow structures and it is generally suggested that the strongest
motions occur when H/S = O(1), but it is not clear to what extent the precise H/S leading
to strongest secondary flows might depend on W/S. The papers of Medjnoun et al. (2020)
and Castro et al. (2021) provide summaries of the current state of play. The former showed
that the secondary flow strength increased roughly linearly with increasing values of a
surface heterogeneity parameter, ξ , defined as the ratio of the wetted surface area in the
gaps between the ribs to that on the ribs themselves. For fixed ratios of rib height to span
(h/S), this parameter depends only on W/S and increases with decreasing W/S – i.e. with
an increasing width of the relative gap between ribs (1 − W/S), consistent with the fact
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that the secondary motions are likely to increase in strength when there is a larger region
in which they can develop between the ribs. However, this conclusion was from a set of rib
experiments having a fairly constant H/S (in fact, only varying between 0.8 and 0.88). As
the authors pointed out, a more appropriate surface heterogeneity parameter would need
to be a function of both ξ and H/S. Note that the work of Medjnoun et al. (2020) was in
the context of boundary layers, so that H was in fact the boundary layer thickness, δ, but
there is no reason to doubt that the same arguments hold for the corresponding channel
flows. One must be aware, however, that as a boundary layer grows, δ/S will also grow, so
secondary motions may change character as one proceeds downstream, as is evident in the
work of Hwang & Lee (2018).

In our earlier work (Castro et al. 2021), we showed how the secondary flow strength
varied with W/S, peaking at around W/S = 0.3–0.4, but the cases studied had different
values of H/S. It was postulated that for a fixed W/S, different values of H/S ‘might be
expected to change the secondary flow strength’, which is consistent with the proposal
by Medjnoun et al. (2020) that both ξ and H/S must be important, at least over a certain
range of H/S. This matter, among others, is addressed in the present work by computing
two series of ribbed channel flows having two fixed values of W/S but, in each series,
widely varying H/S, hence exploring a wider and fuller region of parameter space than
previously covered in the literature.

Zampino, Lasagna & Ganapathisubramani (2022) have confirmed that both (S − W)/H
and W/H (or, equivalently, both W/S and H/S) affect the strength of the secondary
motions, by performing comprehensive computations of linearised Reynolds-averaged
Navier–Stokes equations, derived by assuming that the rib height (expressed as h/H) is
a small parameter. They showed that for W/S = 0.5 and W/S = 0.25, the peak strength
occurs at H/S ≈ 0.7 and H/S ≈ 0.4, respectively. It is not clear from that work how large
h/H can become before the analysis becomes inappropriate (i.e. before nonlinear effects
become significant). However, one of the features of such a linear approach is that the term
(in the axial vorticity transport equation) representing convection of the axial vorticity is
identically zero. A major motivation of the present work was to assess the behaviour of the
different terms in the axial vorticity equation and thus (as it turned out) show that even for
h/H as small as 0.025, this convection of axial vorticity remains an important feature of
the flow.

The next section outlines the direct numerical simulation (DNS) methodology used and
is followed, in § 3.1, by presentation of the basic flow statistics – the mean axial flow and
the corresponding turbulence field. Section 3.2 considers the generation of the secondary
flows whilst their topology and strength are discussed in §§ 3.3 and 3.4, respectively. The
latter section includes comparisons with the linear computations of Zampino et al. (2022).
Final discussion and conclusions are presented in § 4.

2. Methodologies

All the computations were undertaken using an in-house parallelised, DNS code –
CANARD (Compressible Aerodynamics & Aeroacoustics Research coDe) developed at
the University of Southampton. The salient features for the present computations were
essentially those described by Castro et al. (2021) and need not be repeated here. Full
details of the code are provided by Kim (2007, 2010, 2013). As indicated by the name,
CANARD is a compressible flow solver for which the Mach number (M) should be
specified. Here, M was set to 0.25 for all the cases, to keep the compressibility effects
minimal and not to cause excessive computational cost. To check that, indeed, the results
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were only very weakly dependent on M, a case (for a plane channel) was run with
M = 0.177 – so that M2 was smaller by a factor of two. The change in, for example,
uτ /Ub (where uτ and Ub are the friction and bulk mean velocities, respectively) was
negligible and the resulting uτ /Ub values from both runs were within 3 % of the result
reported by Hoyas & Jiménez (2008) at the same Reynolds number and obtained using
an incompressible code. This small difference was undoubtedly due to the fact that the
latter computed the full channel (height 2H), unlike the present half-height computations
which naturally required a different top boundary condition. Note that the bulk velocity,
Ub, was defined as the velocity averaged over the channel cross-section area (minus the
ribs); the volume flow rate thus varied a little from case to case, depending on the rib size
and spacing.

The number of ribs across the span was chosen to ensure that the spanwise domain
width, Ly in figure 1(b), was almost always (at least) πH; Ly depended on the choice of
H/S and W/S for each case. In all cases, the axial and vertical domain dimensions were
8H and H, respectively. All length scales were initially normalised by H in the current
DNS, hence H = 1. A slip wall (symmetry) boundary condition was used on the top wall,
periodic conditions at the axial and spanwise boundaries, and no-slip conditions on all
bottom and rib surfaces. Distributed over typically 10 368 processor cores, each simulation
took around 24 wall-clock hours to reach t+max = tmaxuτ /H ≈ 62 during which the flow at
the bulk velocity travelled approximately 1000H. The simulations were largely conducted
on the UK national supercomputer ARCHER2, although some initial test runs used the
IRIDIS-5 cluster at the University of Southampton.

The axial pressure gradient required to produce a bulk axial velocity (Reb = HUb/ν =
8950) was applied at each time step in all cases, designed to yield a channel Kármán
number, Reτ = Huτ /ν, of nominally 550, although some runs were undertaken at Reτ ≈
1000 (Reb = 17 900) – see table 1 – with appropriately refined grids near the ribs and the
bottom wall. This technique led naturally to an axial pressure gradient which fluctuated
in time until convergence was achieved, so the latter was checked in each case partly
by ensuring that the pressure gradient had stabilised. Actual Reτ values for each run are
included in table 1, with the final converged uτ chosen to ensure that the total shear stress
profile collapsed to the expected straight line (see § 3.1). Typically, in the case S8W4
as an example (see table 1), the number of grid points was 1000, 800 and 280 in the
axial, spanwise and vertical (x, y, z) directions, respectively, with each rib resolved by 100
and 40 points in the spanwise and vertical directions, respectively. In all cases, the first
wall-normal grid spacing was maintained at �+

y = �+
z ≈ 1.1. The same applied to the

h/H = 0.05 and h/H = 0.025 cases requiring, for the latter cases, 12 vertical cells to
resolve the height of the rib. Note that in these cases, the rib sits below the usual log law,
since huτ /ν ≈ 14.

All the results shown herein were obtained using a sufficiently extensive averaging time
to ensure convergence. In addition to checking stability of the axial pressure gradient,
convergence was assessed by checking that the z-profile of the total time-, spanwise- and
axially averaged shear stress collapsed well to the expected straight line. Table 1 lists all
the various cases considered here and includes the salient parameter values for each. In
summary, two series of computations were undertaken, each with a fixed ratio of rib width
to span (W/S), the first having W/S = 0.25 and the second, W/S = 0.5, where S − W
is the gap between consecutive ribs (recall figure 1 for the geometry). This distinguishes
the present work from most earlier studies because, for example, it allowed the strength
of the secondary motions to be determined as a function of H/S for fixed W/S. In many
previous studies, both parameters varied from case to case. The cases listed in table 1
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Figure 2. (a) Spatially averaged mean velocity profile for case S12W3 (H/S = 0.833, S/W = 4). The dashed
line is the standard log-law, with κ = 0.384, A = 4.65. The solid red line shows the modified log-law (i.e.
with the constants given by (3.1a,b)) and the black line shows the data. (b) Spatially averaged shear stresses
for S12W3. Reynolds stress, u′w′+ (red line), diffusive stress, ν∂ ū+/∂z+ (green line), dispersive stress, 〈ũ w̃〉+
(dashed line) and the sum of all three – the total shear stress (blue line). The straight, red dashed line is the
expected total (above the rib).

are delineated by nomenclature like S4W1 or S10W25, for example, meaning that the
unit span (i.e. a span comprising one rib and the gap between ribs) was 0.4H or 1.0H,
with rib widths of 0.1H or 0.25H, respectively. Rib heights were normally 10 % of the
channel half-height (H), but additional cases were run with h/H = 0.05 and 0.025. These
latter cases were chosen largely to compare results with the implications of the linearised
approach presented by Zampino et al. (2022), on the assumption that whilst h/H = 0.1
would be much too large to expect any such approach to work, h/H = 0.025 might be
small enough to yield usefully comparative results.

3. Results

3.1. Basic statistics – the mean and turbulence flow field
Our emphasis in this paper is on the way in which the secondary flows are generated
and how they vary with changes in the surface morphology, specifically H/S and W/H for
fixed W/S, but it is appropriate first to illustrate salient features of the mean and turbulence
fields. In many cases, we expected the converged, time- and spatially averaged axial mean
velocity field, plotted as a function of z, to reveal (at least roughly) the usual logarithmic
region, expressed as U+ = (1/κ) ln(z − d)+ + A, where d is the zero plane displacement,
which is the height at which the surface drag appears to act (Jackson 1981) – d = 0 for a
flat wall, of course. A typical mean flow profile is shown in figure 2(a). This case is chosen
as it is one giving one of the strongest set of secondary flows for W/S = 0.25. Castro et al.
(2021) argued that since the bottom boundary on which axial shear is developed is longer
than just the unit span (because of the rib surfaces), the effective log-law constants for
the specified pressure gradient, κ and A, must change from the standard values (0.384 and
4.65, respectively) for a plane channel with the same pressure gradient, to values given by

κrib = κ/β and Arib = β

(
1
κ

ln β + A
)

, (3.1a,b)
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where β is a function of W/S, h/H and d/h, given by

β2 =

(
1 − h

H
W
S

)
− d

H

(
1 − W

S

)

1 + 2
h
S

− 2
d
S

. (3.2)

In the present ribbed wall cases, d can be precisely computed from the data using the
stress profiles on the bottom wall and the rib’s side and top surfaces, as explained by
Castro et al. (2021). For simplicity in the present work, however, it was estimated by, first,
adjusting the uτ (only nominally set by the applied mass flux) to ensure that the resulting
total shear stress profile collapsed to the necessary straight line (as in figure 2b) and then
adjusting d to ensure as good a fit as possible between the U+ profile and the expected
log law (recognising that, in general, there is no physical reason to expect a good fit). In
most cases, this did yield good log law fits and d was found to be usually between 0.4h
and 0.7h, a little higher than the average surface height (0.25h for W/S = 0.25 and 0.5h
for W/S = 0.5). The kink in the velocity profile around z = h is inevitable because the
velocity on the rib’s top surface is zero, leading to a rapidly falling U+ as z approaches
h from above. (Note that below z = h, intrinsic averaging was used, i.e. spatial averaging
over the fluid region alone.) Profiles at specific spanwise locations do not of course show
such kinks nor, indeed, do they generally display a logarithmic region, as demonstrated by
Castro et al. (2021).

It is worth emphasising that there is no obvious physical reason why spanwise averaging
should necessarily lead to a log law, not least because it has long been known that
secondary motions within a boundary layer can lead to distortion of the mean velocity
profile (e.g. Mehta & Bradshaw 1988, and evidenced by the constant U contours seen in
figure 4). The fact that, in many of the present cases, a fit as good as that seen in figure 2(a)
occurs must be to some degree fortuitous. There are some cases when, although the total
shear stress fits are excellent (which is a necessary measure of good convergence in the
computation), the spanwise-averaged velocity profile does not display a satisfactory log
law region. This occurred for cases having the higher values of H/S, which are indicated
in table 1. Note that more of these cases were evident for W/S = 0.5 than for W/S = 0.25,
consistent with the expectation that the analysis leading to (3.1a,b) is likely to become less
satisfactory as W/S increases (see Castro et al. 2021).

Figure 2(b) shows the shear stress profiles for S12W3, corresponding to the velocity
profile in figure 2(a). Note that in this case, the dispersive shear stress – a measure of the
strength and extent of the secondary flows – is quite large over much of the channel height.
It is much larger than the diffusive shear stress which, at this Reynolds number, is always
small except in the immediate vicinities of the rib surfaces and z = 0, as expected. (For the
total stress to continue along the straight line in the region below the rib height, the stress
contribution arising from friction on the side walls of the ribs would need to be included.
This is an unnecessary nicety for the present purposes.)

The corresponding (normalised) Reynolds normal stresses and dispersive normal
stresses are shown in figures 3(a) and 3(b), respectively. In this case, the axial dispersive
stress, 〈ũ ũ〉+, is of the same order of magnitude as the corresponding Reynolds stress
over much of the domain. The other two dispersive stresses (〈ṽ ṽ〉+ and 〈w̃ w̃〉+) are,
however, very much smaller; note they are multiplied by a factor of ten in the figure. At any
height, they are no more than approximately 5 % of their corresponding Reynolds stresses.
Recall that figure 3(a) shows the Reynolds stresses averaged across the span, ‘hiding’ their
spanwise variation. It is the spanwise variations in v′v′ and w′w′ (and also v′w′) which
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Figure 3. (a) Spatially averaged normal Reynolds stresses for case S12W3 (H/S = 0.833, S/W = 4). (b)
Spatially averaged dispersive normal stresses for S12W3. Note that the spanwise and vertical dispersive stresses
have been magnified by a factor of ten, making them more visible.
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Figure 4. (a,b) Axial vorticity, Ωx, contours for cases (a) S12W3 and (b) S26W13 with cross-stream velocity
vectors on the right and (quasi-) streamlines on the left. The solid black lines show the locations where the axial
velocity is 90 % of its value (Uo) at the top of the domain which, for a plain channel, would lie along the red
dashed lines. (c,d) Corresponding swirl contours for the same two cases. Note the location of the major nodal
points (red circles) and saddle points (black squares), including the (half-) saddle at the top centre of the ribs.
Note also that in panel (a,b), the arbitrary vorticity colour scale is the same as it is for the swirl colour scale in
panel (c,d).

give rise to the secondary motions and the non-zero dispersive stresses, via their spatial,
cross-stream gradients. This is explored further in the following sections.

Apart from the distorted constant U contours (e.g. as in figure 4a), the most
obvious visual parameters indicating the presence of secondary flow arising from the
inhomogeneous bottom boundary is the non-zero axial vorticity, Ωx, and (alternatively)
the swirl. Swirling strength is defined as λCiΩx/|Ωx|, where λCi is the second invariant
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of the velocity gradient tensor (Zhou et al. 1999); this is usually reckoned to be a more
satisfactory way of identifying swirling motions. (Vorticity on its own cannot distinguish
genuine vortex motions from regions of strong shear.) Figure 4 shows both the vorticity and
the swirl, along with cross-stream velocity vectors and cross-plane (quasi-) streamlines,
for two cases, S12W3 (figure 4a,c) and S26W13 (figure 4b,d). These cases (one from each
series) are chosen as they are close to the H/S values giving the maximal strength of the
secondary motions (see § 3.4). In figure 4(a,b), the velocity vectors and streamlines are,
for clarity, each shown only on one half of the span. In this and subsequent figures, data
shown for the unit span S are obtained by averaging across as many unit spans (S) as there
are within the domain width, Ly; in the S12W3 case, for example, where Ly = 3.6H = 3S,
the three unit span results were averaged. Any slight asymmetry remaining was removed
by averaging the data in one half of the span with the corresponding (flipped) data in the
other half, so that in all these and similar figures, the data shown on the right half-span
are a mirror image of those on the left half-span. (Note that in most cases, the individual
span data vary little from span to span across the domain, indicating the generally good
symmetry obtained.)

The distortion of the axial velocity field is evident in figure 4(a,b) from the contour lines
representing U = 0.9U0, i.e. the line along which the axial velocity is 90 % of its value
at the top of the domain (U0). For a plain channel, this contour would be a straight line
at a height of approximately 0.45H, also shown in the figures. It was distortions such as
these which first prompted Prandtl to postulate the existence of what he called ‘secondary
flows of the second kind’ (Prandtl 1952). The topology of the secondary flows illustrated
by figure 4 is much as described by Castro et al. (2021); in the S12W3 case, figure 4(c),
there is a saddle point just above the centre of the rib (at approximately z = 2h), with
upward flow above it and downward flow beneath it, and a set of nodal points including
two just above the rib and two outboard of it and around z/S = 0.3. The situation for
S26W13, figure 4(d), is very different. Here there is no saddle just above the rib and there
is a downward flow all the way from the top boundary to the top of the rib, in contrast with
the upward flow that occurs (for S12W3) on y/S = 0.5 everywhere above the elevated
saddle point. The streamline patterns help to clarify this major difference, showing that
for S12W3, there is a region of upwelling above the rib, whereas for S26W13, strong
upwelling occurs above the rib corners and downwelling above the rib centreline. It is
interesting that a similar switch in the secondary flow topology between the two cases
seen in figure 4 has also been noted for two cases having fixed W/S = 0.5 and also fixed
H/S = 1, but with different heights of rough surface (width W) with respect to z = 0 by
Stroh et al. (2020b). In that work, when the strip roughness all occurs above the z = 0
datum, so that there is a significant change in surface elevation at the edge of the strip,
the flow looks much like that in figure 4(a), whereas when the roughness largely (but
not completely) lies below the z = 0 datum, there is downwelling above the centre of
the roughness strip, as in figure 4(b). However, there is no upwelling at the edges of the
strip because these edges are not accompanied by a sharp change in surface elevation as
occurs for the case shown in figure 4(b). We discuss in due course the extent to which
these structures change with changes in H/S and W/S. Meanwhile, it is worth noting
that, for rectangular ribs, the linear model by Zampino et al. (2022) consistently produced
one nodal point directly above each corner (on a vertical line aligned with the side wall)
irrespective of W/S, which differs from the nonlinear DNS solutions presented here.

It is also of interest that because, as we have seen, the secondary flows often lead
to significant distortion of the mean flow, we did not expect any outer layer similarity
in the mean flow profiles. Plotting (U+

o − U+) versus (z − d)/(H − d), we found, not
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surprisingly perhaps, that the divergence from the usual smooth-wall outer flow plot (with
d = 0) at the same Reynolds number was greatest when the secondary flow strength
(discussed in § 3.4) was greatest.

3.2. The generation of the secondary flows
These secondary mean flows are uniquely determined by the distribution of the axial
vorticity component of the mean flow (Ωx = ∂W/∂y − ∂V/∂z), whose steady transport
equation can be written as

V
∂Ωx

∂y
+ W

∂Ωx

∂z
− ν

(
∂2Ωx

∂y2 + ∂2Ωx

∂z2

)
= ST , (3.3)

where ST is the source term responsible for production of the longitudinal vorticity. It
contains spatial gradients of the Reynolds stresses and is given by

ST = ∂2

∂y∂z
(v′2 − w′2) +

(
∂2

∂z2 − ∂2

∂y2

)
v′w′ ≡ S1 + S2. (3.4)

Note that this form of the transport equation is only valid for a flow that is homogeneous
in the axial (x) direction, so that the usual vortex stretching and tilting term is identically
zero. For the spanwise homogenous flow in a plain channel, the cross-stream Reynolds
stress gradients are also ideally zero so no axial vorticity is produced. Otherwise, as in all
the present cases, the two gradient terms S1 and S2 combine to produce Ωx, which can
then be transported by the first two (convective) terms of (3.3) and diffused by the third,
viscous term. The stress gradient terms, S1 and S2, are essentially torques acting on the
fluid (Einstein & Li 1958; Nikitin, Popelenskaya & Stroh 2021).

As is common with nearly all flows containing external corners (like those in a square
duct with no-slip walls, for example), the dominant region of Ωx production is around
the corners themselves, particularly any external (i.e. convex) corners, e.g. Moinuddin,
Joubert & Chong (2004) and Hu (2009). Incidentally, even for flows produced using strip
roughness (i.e. spanwise heterogeneity produced by alternating strips of low and high
surface roughness), where there is no significant change in surface height and thus no
external corners, it has been shown that the dominant region of Ωx production occurs in
the region very close to the change in roughness (e.g. Anderson et al. 2015). Figure 5
emphasises the corner region of the rib in case S12W3, showing contours of vorticity,
the source terms S1 and S2, and their sum ST . Notice first that in regions where they are
most dominant (the external corner), the two source terms are of almost equal magnitude
but opposite sign, see figure 5(c,d). This ‘butterfly’ pattern, as Khalid, Joubert & Chong
(2004) called it in their experimental study, was noted in the large eddy simulation (LES)
study of flow through an annular square duct by Xu & Pollard (2001). They found that
(in contrast with a concave corner flow) the shear stress (S2) and normal stress (S1)
contributions were of nearly equal magnitude. In fact, this feature was evident in a number
of the much earlier studies reviewed by Demuren & Rodi (1984) and the pattern is rather
like that of sound sources near a corner – dominant production regions of consecutively
opposite sign, six of them here but often quadrupoles in the sound source case (Devenport
et al. 2018). So the resulting total source ST (figure 5b) arises from the difference of two
relatively large terms and is only significant very close to the corner. All three of these
terms are very large compared with the diffusive terms, so the convective term closely
matches the total source term. The convective term acts to spread significant non-zero
vorticity into a much larger region, well away from the dominant source regions near the
corner, as figures 5(a) and 4(a) illustrate.
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Figure 5. (a) Axial vorticity, Ωx, in the corner region of the ribs in case S12W3. Note that for clarity, the
vector lengths are constant, rather than chosen to reflect the values. (b) Total source term, ST , for production of
Ωx. (c,d) Individual source terms, S1 and S2, respectively. For panels (b)–(d), the colour scale is the same.
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rib is indicated by the black rectangle. Case S12W3.

We emphasise the behaviour using figures 6 and 7. In these figures, the profiles of the
various terms in (3.3) are plotted against y′/W, where y′ is chosen so that the unit span
covers the range from −1 to +1. Figure 6 shows spanwise profiles of the three (collected)
terms in (3.3) and the vorticity itself, along a spanwise line a little above the top of the
rib (z = 1.3h). Note first that this close to the rib, the diffusive term is not insignificant
in the rib region itself. Second, the total source (ST ) and convective terms are generally
dominant and act close to the rib corner locations. Even at this height (z = 1.3h), the
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vorticity has already been spread significantly by the convective term. Figure 7(a) shows
similar profiles at z = 2h and in figure 7(b), the separate source terms are shown along
with the diffusive term. This latter term is clearly insignificant this far above the rib.
Notice how closely the two source terms follow each other but with opposite sign. It should
also be noted that although the reduction in the maximum value of the total source term
(ST ) between the two heights z = 1.3h and z = 2h is around an order of magnitude, the
maximum vorticity reduction is only approximately a factor of three (compare figures 6
and 7a). This emphasises how effective the convective term is in spreading significant
axial vorticity into regions where there is practically no generation of vorticity.

Similar behaviour occurs in most of the cases studied. The exceptions are for the cases
in which the rib was only 2.5 % of the domain height, when diffusional effects are, not
surprisingly perhaps, more dominant in the vorticity transport processes close to the rib.
This is illustrated in figure 8 for case S20W10_025, which for clarity shows only the
left-hand side of the unit span. At a height near the rib (z/h = 1.6), figure 8(a) shows
that, in contrast to the S12W3 case in figure 7(a), diffusion roughly balances the total
source term and is thus responsible for most of the initial transport of vorticity away
from the corner; convection of vorticity is relatively small. (This must also be true for
the h/H = 0.1 cases too, of course, provided one looks close enough to the rib; diffusion
is always bound to be dominant close enough to the surface.) Higher up, however (z/h = 4,
figure 8b), convection again roughly balances the total source term above the rib’s corner,
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Figure 9. Axial vorticity and cross-stream velocity vectors in the corner region (a) without and (b) with a
rounded corner, for case S12W3. The (arbitrary) vorticity scale is the same in both figures. Note the saddle
of separation at approximately y/S = 0.43 and the centreline saddle at z/S = 0.13, shown by black squares in
panel (b), and the nodal points (red circles) in panel (a,b).

but not always elsewhere. Far away from the rib, whatever its height, the diffusion term
in the axial vorticity transport equation must always become negligible, so the equation
will essentially express a balance between convective transport and the total source term,
but the magnitudes of all these will naturally fall as the magnitude of the dispersive stress
terms fall; the latter are discussed in § 3.4.

If the Reynolds number is sufficiently large, separation must always occur at sharp
corners. Given the fine details of the sources of vorticity around the rib corners, it is of
interest to ask whether, if the corners were not sharp, these details would be sufficiently
different to affect significantly the resulting strength of the secondary flows. This was
explored briefly by running the S12W3 case again, but with a rib having rounded corners
(with a radius of h/4). Figure 9 shows the comparison, with the rib coloured grey for
greater clarity very near to the corner. One obvious effect of rounding the corner is to
move the surface separation point from the corner itself (at y/S = 0.375, figure 9a) to a
little way inboard (y/S ≈ 0.43, figure 9b), as evident from the sign of the velocity vectors
just above the surface. Although the details of the various contributions to (3.3) differ
somewhat, figure 9 indicates that the overall strength of the resulting vorticity is not hugely
changed by rounding the rib corner (but see later), although it is noticeably weaker. With
a rounded corner, the nodal point above the rib (at y/S = 0.45, z/S = 0.125) for the sharp
corner case has moved a little lower and nearer to the rib centreline and, in addition, the
centreline saddle has moved down from above z/S = 0.15 to approximately z/S = 0.125.
These are only minor changes in critical point locations and the topological structure
of the secondary flow is not changed at all. We conclude that corner rounding does not
lead to large changes in the overall secondary flow field unless, presumably, the change
is much more severe than used here (e.g. from a rectangular to a semi-circular rib). It is
the large-scale surface features which determine the overall topology, rather than their fine
details.

3.3. The topology of the secondary flows
It was noted earlier that the vertical flow direction above the rib centre depends on the
controlling parameters, H/S and W/S (compare figures 4a and 4b). The different locations
of the salient critical points (nodes and saddles) reflect the changes in these parameters and
they are driven essentially by the available space for development of the large recirculating
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Figure 10. Vorticity, (quasi-) streamlines and cross-stream vectors in the extreme cases for (a,b) W/S = 0.25
and for (c,d) W/S = 0.5. (a) H/S = 2.5, case S4W1; (b) H/S = 0.385, case S25W65; (c) H/S = 2.5, case
S4W2; (d) H/S = 0.25, case S40W20. Red circles are nodes, black rectangles are saddles. The vorticity scales
are arbitrary and the same for all plots, and the vectors’ scale is the same in each. The solid black lines are the
U = 0.9U0 contours. Note the much smaller domain depths in panel (b,d), as is clear from the axis scales.

regions above the rib. In all of the W/S = 0.25 cases, there is a saddle point above the
rib centre, as seen in figure 4(a,c), but this saddle gradually moves upwards as H/S
decreases. Figure 10(a,b) show the two extreme cases for W/S = 0.25. For H/S = 2.5
(S4W1, figure 10a), the saddle point above the rib centreline is around zs/h = 1.3, whereas
by H/S = 0.385 (S25W65, figure 10b), it has moved up relative to the rib height to
zs/h = 4.2.

It is emphasised that we have not included all the critical points in these figures. In
particular, we exclude those in regions where the cross-stream velocities are particularly
small compared with those delineating the main secondary motions, so that exact
streamline paths are more uncertain. The complete topology within typical domains is
explained more fully by Castro et al. (2021). For the W/S = 0.5 cases, there are situations
where the central saddle above the rib disappears, so that flow moves downwards from
the top half-saddle all the way to the rib surface, as seen in figure 4(d) for S40W20
(H/S = 0.25). Figure 10(c,d) show the two extreme cases for W/S = 0.5. The only case
in figure 10 which does not have a region of upward flow above a free saddle above the
rib is that of W/S = 0.5, H/S = 0.25 – figure 10(d). However, for W/S = 0.5, all those
cases with H/S ≤ 0.714 have downward flow all the way from the top of the domain to
the rib surface. In every case, half-saddles at y/S = 0.5 exist on the rib surface and the
top of the domain and, although they are not included in the figures, there are also always
saddles of separation at the rib corners (except when the corner is rounded, as explained
in § 3.2). Note also that in the two H/S = 2.5 cases shown in figure 10, there is very little
distortion of the axial velocity field, even though the overall strength of the secondary
flow is somewhat larger than it is for the other two cases (see § 3.4). This is because
in the former cases, all the important secondary flows occur in a vertically small region

988 A2-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.366


Secondary motions in turbulent ribbed channel flows

10 2.0

1.5

1.0

0.5

8
6
4
2

0

10
8
6
4
2

01 2 3

H/S
0 1 2 2 4 6 8 103

H/S H/W

z s
/h

z s
/S

z s
/h

(b)(a) (c)

Figure 11. Movement of the above rib saddle point as H/S varies. The dashed lines indicate the top of the
domain. Triangles refer to W/S = 0.25, h/H = 0.1, circles to W/S = 0.5, h/H = 0.1 and red circles in panel
(b) are for W/S = 0.5, h/H = 0.025. Red triangles in panel (a,c) refer to the three extra W/S = 0.25, h/H =
0.1 cases (not listed in table 1).

of the total domain depth, whereas for S25W65 (figure 10b) and S40W20 (figure 10d),
the domain depths are themselves relatively small (compared with the span) so that the
secondary flows have a strong influence over the entire domain. The weakness of the
secondary flows above approximately z/S = 1 in the H/S = 2.5 cases is evidenced not
least by the very short vectors over most of the height of the domain – they are in fact
hardly discernible compared with those at lower heights (below approximately z/S = 1 in
figure 10a,d).

In general, of course, the existence and location of any saddle point above the rib
centreline must depend on the three independent geometrical parameters: W/S, H/S and
h/H (as well as the Reynolds number). The movement of this saddle as H/S varies but with
fixed W/S and h/H is illustrated by figure 11. In the W/S = 0.5 cases, once H/S exceeds
approximately 0.7, it is clear that a saddle appears above the rib at approximately zs/h = 6
and then gradually moves downward until the situation shown in figure 10(c) for case
S4W2 (H/S = 2.5). However, when W/S = 0.25 there is always such a saddle point above
the rib, again moving down as H/S increases from 0.385 to 2.5 – the two extreme cases
shown in figure 10(a,b). This difference is evident also in the results of Wang & Cheng
(2006), who studied open channel flow over ribbed (and striped) surfaces: they showed that
in the rib cases, for H/S = 0.53, there was no upper saddle point when W/S = 0.5, but
one appeared (around z/h = 6) when W/S = 0.33. In the present cases, most of the saddle
point movement occurs before H/S reaches approximately unity, particularly for the much
smaller rib (h/H = 0.025) – see the red symbols in figure 11(b). Plotting the above-rib
saddle location as a function of H/W, as done in figure 11(c), suggests that it may be
this parameter, almost independently of W/S, that controls when the topology changes,
with the saddle moving down from the top boundary once H/W exceeds around 1.3. We
confirmed that by running three additional cases for W/S = 0.25 (which are not included
in table 1), having H/W = 1.25, 1.33 and 1.43; the resulting saddle point locations are
included in figure 11(a,c) and identified as solid red triangles.

Various other nodes and saddles (not shown) appear well away from the rib and at
differing locations as H/S varies, particularly for large H/S but, as noted above, these
occur in places where the cross-stream velocity magnitudes are very low compared with
those nearer to the rib and there is little to be gained by exploring them in detail. It is more
important to explore the overall strength of the secondary flows and we discuss this next.

3.4. The strength of the secondary flows

3.4.1. Initial remarks
Recall from § 3.1 and figure 3 that the axial dispersive stress can be of similar magnitude
to the axial normal stress, whilst the other two normal dispersive stresses are relatively
very small indeed (but enough to generate the secondary flows, as explored below).
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Figure 12. (a,c) Profiles of 〈ũ ũ〉+ for W/S = 0.25 and 0.5, respectively (above z = h). The legends give values
of W/H, H/S. (b) Profiles of 〈ũ ũ〉+ at fixed heights of z/h = 0.6, 0.7 and 0.8 for the two series. S/W = 0.25
data are red triangles; S/W = 0.5 data are black circles.

It is expected that the magnitude of the axial dispersive stress will depend on the strength
of the secondary flows. Before discussing the latter, we show in figure 12(a) profiles of
〈ũ ũ〉+ for the various cases with W/S = 0.25 and, in figure 12(c), similar profiles for
W/S = 0.5. In figure 12(b), 〈ũ ũ〉+ at fixed z/h (in the outer region of the channel) is
shown as a function of W/H. It is evident that 〈ũ ũ〉+ can be large across the whole domain,
emphasising earlier conclusions in the extant literature (e.g. Zampiron, Cameron & Nikora
2020) and the evidence of figure 10(b,d), which indicate very significant distortion of the
axial velocity field (as evidenced by the U = 0.9Uo contour). Peak magnitudes occur when
W/H is approximately 0.4 (H/S = 0.625) in the W/S = 0.25 cases and approximately 1.6
(H/S = 0.313) in the W/S = 0.5 cases. When H/S is large (2.5, say), the dispersive stress
is only significant for z/H ≤ 0.2, suggesting that the secondary motions must be very weak
in the outer part of the channel and thus have little influence on the axial velocity field,
just as implied by figure 10(a,c), which show that the U = 0.9Uo contour is virtually flat
when H/S = 2.5.

There are various ways in which one could assess the secondary flow strength more
directly. A particularly useful approach is to determine the total integrated kinetic
energy per unit area in the cross-stream mean motions, which we call KE+, as defined
by

KE+ =
∫ 1

0

∫ 1

0

1
2u2

τ

(V2 + W2)d( y/S)d(z/H). (3.5)

Before considering how this quantity varies with H/S or W/H and with rib height, h/H,
and given that it is normalised using the friction velocity, uτ , it is pertinent to ask how uτ

varies with rib height. Figure 13 shows the variations of both uτ /Ub and U+
0 (the mean

axial velocity at z = H) with h/H for the S16W4 cases. (Ub is the bulk velocity which, it
will be recalled, was exactly the same in all cases.) It is evident that the changes in uτ are
quite small. As expected, an increase in rib height from zero (the plain channel) increases
the axial pressure gradient (and thus the uτ ) needed to maintain the same mass flux; U+

0
consequently decreases somewhat. At fixed h/H, there is a monotonic fall in uτ /Ub as H/S
falls (unlike the changes in KE+ with falling H/S), simply because Ub was fixed (see § 2)
whilst the contribution of the rib to the bottom surface area falls; there is thus no direct
link between secondary flow strength and the drag. (Note, however, that if W/H and H/S
are both fixed, changes in h/H lead to concomitant changes in secondary flow strength and
drag, as implied by figures 13 and 14(b), and as shown by Stroh et al. (2020a).)
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Figure 13. Variation of (a) friction velocity uτ /Ub and (b) U+
0 with rib height, for the S16W4 case

(H/S = 0.625, W/S = 0.25). Note the false origins for the vertical axes.
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Figure 14. Total cross-stream kinetic energy, KE+ as (a) H/S and (b) W/H vary. The legends identify the
two main sets of data. In panel (a), the single solid green triangle is case S12W3 but with a rounded corner,
the two red plusses and the two orange crosses refer to the Re = 1000 cases for W/S = 0.25 and W/S = 0.5,
respectively. In panel (b), the red dotted line (with small red circles) shows data for W/S = 0.5 with the small
rib (h/H = 0.025) and the vertical red lines join data for ribs of height h/H = 0.05 and h/H = 0.025 to
the main sequences. The (long-)dashed red line is from the linearised model of Zampino et al. (2022) (with
h/H = 0.025) and the horizontal red dotted line is for a plain channel (see text).

Figure 14 shows how KE+ varies with H/S or W/H. The figures change very little
in shape if the kinetic energy is normalised by the integrated kinetic energy per unit
area of the mean axial velocity, which we could call UKE+, because the latter typically
varies within only ±10 % of the average of approximately 138 over all the (h/H = 0.1)
cases. Incidentally, this latter value, compared with the typical KE+ values in figure 14,
emphasises how weak the secondary motions are: their ratio (KE/UKE) hardly ever
exceeds 10−4 across all the cases. We emphasise too that using total area-integrated swirl
as an alternative to KE+ yields results very similar to those in figure 14. Furthermore,
if KE+ is measured only over the top 70 % of the domain (thus ignoring contributions
closer to the ribs), the results are again very similar to the latter; the locations of the peak
values hardly change. The general behaviour of KE+ versus W/H is very similar to that
of the axial dispersive stress shown in figure 12(b), as would be expected. It is notable,
however, that for both series, the peak KE+ occurs at slightly smaller W/H values than
those that yield the (local) peak dispersive stresses (cf. figures 14b and 12b); the difference
is not large and varies somewhat depending on which height is chosen for the latter.
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By comparison between figures 11(a) and 14(a), it is interesting to note that although,
for W/S = 0.5, there are large and non-monotonic changes in KE+ as H/S varies up
to approximately 0.7, the upper saddle point remains fixed at the upper boundary, only
beginning to sink towards the rib when KE+ is well beyond its peak. It is also notable that
for H/S ≥ 1, the cases having a stronger KE+ (i.e. for W/S = 0.25) lead to a saddle point
closer to the rib, which is perhaps not surprising.

Figure 14(b) includes data for the h/H = 0.025 cases. As h/H → 0, the geometry
naturally becomes that of the regular plain channel. Because of the limited spanwise extent
of our plain channel DNS, we do not expect the secondary flows to be entirely absent (see
Lozano-Durán & Jiménez 2014, for a discussion of domain size effects). Figure 14(b)
includes the KE+ value (0.00082) for the plain channel with a span of 4H. This is a
factor of 4.5 × 10−6 times the integrated axial kinetic energy (UKE+) and one might
expect it to fall further with increasing spanwise domain width. It is possible that the
data for the h/H = 0.025 cases, particularly, might be affected by the finite domain width.
We do not believe, however, that such effects are very significant, not least because the
minimum KE+ values in these cases are approximately twice the plain channel value, but
also because the location of the secondary motions is clearly fixed in each case by the
rib geometry. Before exploring (in § 3.4.5) the conditions which lead to peak energies in
the secondary flows, there are three issues in relation to figure 14 that are worth some
discussion.

3.4.2. Reynolds number
Consider first the effect of changes in Reynolds number. Recall that four cases (S8W2 and
S16W4 for W/S = 0.25, and S8W4 and S26W13 for W/S = 0.5) were run at roughly
double the Reynolds number (Reτ = Huτ /ν ≈ 1000), see table 1. The resulting KE+
data are included in figure 14(a). It is evident that for the two larger H/S = 1.25 cases,
remote from the H/S values which give maximum peak energy, doubling Reτ makes an
insignificant change in the total cross-stream kinetic energy. For the two cases representing
situations for which KE+ is near its peak (S8W4, H/S = 0.385 for W/S = 0.5, and S8W2,
H/S = 0.625 for W/S = 0.25), KE+ falls noticeably with increasing Reτ but only in the
S8W4 case. Visualising the cross-stream contours of the vorticity or swirl shows that in
the case where there is a larger gap between ribs (W/S = 0.25), allowing more room for
the motions to develop and expand in the gap, the vortices in the gap become significantly
‘tighter’ as Reτ increases; they therefore spread rather less into the region above the rib
and in the gap, but this has little overall effect on the area-averaged KE+. However, the
tightening of the vortices with increased Reτ in the S8W4 case seems even more noticeable
and this significantly reduces their area so that the area-averaged KE+ (i.e. averaged over
the entire domain) reduces. This general ‘tightening’ of the vortices as Reτ increases is not
surprising and was noted in our earlier work (Castro et al. 2021). Overall, increasing Reτ ,
even by the factor of two used here, has only weak effects and does not alter the topology of
the secondary flows, as found by previous authors (e.g. Vanderwel & Ganapathisubramani
2015).

3.4.3. Corner effects
Consider secondly the effect of rounding the rib corners. It was noted in § 3.2 that this
leads to a small weakening of the vorticity around the corner (compare figures 9a and 9b).
However, figure 14(a) shows that the overall KE+ is increased a little by corner rounding.
This is because the major two outboard vortices centred at approximately z/S = 0.3, see
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figure 4(c), actually strengthen somewhat with a rounded corner, despite the vorticity
immediately near the corner becoming weaker and despite also the fact that the source
and convective terms in the axial vorticity transport equation have a very similar structure
and strength. However, the secondary flow is directed smoothly around the corner, gaining
strength as it goes and sweeping upwards at the centreline with greater velocity than if the
flow were forced to separate by a sharp corner. This, again, is perhaps not surprising and
it is consistent with the findings of Medjnoun et al. (2020), in that obstacle shapes that
promote merging of the flow being deflected (like a triangular rib, for example) generate a
stronger central upwash. Such shapes, like our rounded corner rib, create less of an extreme
resistance to the spanwise flows below z = h, with concomitant increase in strength of the
secondary flows, as also noted in other studies (see Goldstein & Tuan 1998; Hwang &
Lee 2018, for example). Again, however, the overall effect is not extreme – a mere 16 %
increase in KE+ on rounding the rib corners in this particular case. We speculate that the
effect is likely to be smaller for H/S values away from those leading to peak secondary
flow energy.

3.4.4. Comparisons with the linear model
Figure 14(b) plots the same data against W/H, because this more easily allows comparison
with the implications of the linearised model of Zampino et al. (2022). The latter is not
expected to be satisfactory for a rib as large as h/H = 0.1, but the figure includes our
h/H = 0.025 data for W/S = 0.5 along with the implications of the model of Zampino
et al. (2022) for that size rib. It is interesting that the model predicts the overall strength
of the secondary motions reasonably well, but the peak occurs at a rather smaller W/H
(around 0.6, compared with 0.8 from our DNS). With the rib four times as large, the peak
in our DNS data occurs at even larger W/H (approximately 1.3), but its magnitude is far
lower than would be implied by the linear model of Zampino et al. (2022). With h/H = 0.1
(not shown), this yields very much larger KE+. The peak naturally occurs at the same W/H
but its value is in excess of 0.052. This is 16 times larger than with h = 0.025H, since the
rib is four times larger and the model is linear, so that secondary velocities are four times
larger.

It seems clear that for any but the smallest ribs, the linearised model does not capture
the secondary motions adequately, no doubt partly because it cannot capture the precise
details of the relative size of the terms in the axial vorticity transport equation. This must
surely be true whatever the shape of the ribs. In particular, the convective terms in the
linearised version of (3.3) are completely absent from the model because they are second
order in the perturbation velocities. This means that the production of axial vorticity by
the source terms has to be exactly balanced by diffusion everywhere. It was shown in
§ 3.2 that only for the small rib height cases and close to the rib is the flow characterised
by a balance between the source and diffusion terms, with convection being relatively
very small, see figure 8(a) for z/h = 1.6. Larger ribs inevitably have convection balancing
production almost everywhere (see figure 6 for z = 1.3h), so that the linearised model
inherently cannot capture the flow processes. Perhaps the crucial point regarding the linear
model is that it assumes the rib height is small compared with any inner (as well as
outer) scale, which requires huτ /ν � 1. The present computations with h/H = 0.025 have
huτ /ν ≈ 12, which hardly fulfils that requirement. Even for the present Reynolds numbers
(Huτ /ν ≈ 550), one would need a rib at least an order of magnitude smaller, but such a
rib size is likely much smaller than in typical engineering or environmental applications
of these flows, unless one is adding ribs (‘riblets’ in the usual terminology) to reduce the
surface drag, but in that case, they would be much closer together. The recent work of
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Figure 15. Streamline patterns and x-vorticity for S26W13 (H/S = 0.385), with (a) h/H = 0.1 and

(b) h/H = 0.025. The (arbitrary) colour scale is the same for both cases.

von Deyn, Gatti & Frohnnapfel (2022) confirms that riblets cease to yield drag reductions,
giving increased drag instead (undoubtedly linked to the development of secondary flows),
once the viscous-scaled square root of the groove area between ribs exceeds approximately
17 (see also García-Mayoral & Jiménez 2011; Modesti et al. 2021). In terms of the present
parameters, this scaled groove area can be written as

l+g =
√

(S/H − W/H)h/HReτ . (3.6)

Our h/H = 0.025, W/S = 0.5 cases have 55 ≤ l+g ≤ 94. Reducing the rib height by an
order of magnitude would, at the lower end of this range, yield l+g ≥ 17 (and h+ ≥ 1.3)
which is perhaps marginal for the linear analysis to be appropriate (although higher
Reynolds number might widen the h/H range yielding secondary flows whilst still
expecting the linear analysis to be appropriate). It would be a mistake to conclude that any
smaller rib height in our cases would be likely to yield drag reduction (and no secondary
flows), since the ribs are much too far apart for the usual drag reduction mechanisms to
operate. As shown by von Deyn et al. (2022), for example, these require S and h to be of
the same order. Simply reducing h in the present cases leads to a surface morphology more
like a flat surface with occasional very small excrescences.

A further indication of the expected tendency for the linear model to work better as
h/H → 0 is seen in comparing the streamline patterns for a typical case. Figure 15 shows
a repeat of (the left-hand side of) figure 4(b) (h/H = 0.1) along with the corresponding
flow for h/H = 0.025. The overall topology is the same, but the main central vortex above
the rib in the former case is significantly narrower when h/H is only 0.025. It seems likely
that for an even smaller h/H, this central vortex would narrow further. The linear model
does not produce such a vortex at all, showing again that even for a rib whose height
is only 2.5 % of the domain height, there are flow features which cannot be captured by
that model. Note that, as discussed by von Deyn et al. (2022), for genuine riblets where
both S+ and h+ are of the same order (or, in the case of h+, much less) than the viscous
sublayer height, there are linear models which compute the small-scale flows around the
riblets themselves and can capture the changes in drag quite successfully, although they
do not address the issue of the large-scale secondary flows discussed in this paper (see for
example Bechert & Bartenwerfer 1989; Luchini, Manzo & Pozzi 1991).
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3.4.5. Geometries for maximal secondary flow strength
Finally, we consider the geometrical conditions for the most energetic secondary motions.
The data of both Castro et al. (2021) and Vanderwel & Ganapathisubramani (2015) suggest
that the maximum secondary flow strength occurs when W/S is approximately 0.4 but, as
noted earlier, this must depend significantly on specific values of H/S. The W/S = 0.5
data from the present computations – not very far from W/S = 0.4 – show that the peak
energy is actually lower than it is for the W/S = 0.25 cases (see figure 14) but, for both
sets, the strength is indeed very dependent on H/S (or, equivalently, W/H). It is clear
from figure 14(a) that the peak energy occurs around H/S = 0.8 in the W/S = 0.25 cases,
whereas for the W/S = 0.5 cases the peak occurs around H/S = 0.4. These correspond to
W/H = 0.3 and W/H = 1.3, respectively.

By studying boundary layer flow over ribs of various different shapes (but roughly the
same h/H and S/H, where H is the boundary layer thickness), Medjnoun et al. (2020)
argued convincingly that the influence of the surface heterogeneity on the flow must be a
function not just of H/S, as previous work indicates, but also of a surface parameter, ξ ,
defined as the ratio of the perimeters of the elevated and recessed areas. So they suggested
that a surface heterogeneity parameter H could be written as H = F(ξ, S/H). In the case
of rectangular ribs, ξ is given by

ξ = S − W + 2h̄
W + 2(h − h̄)

, (3.7)

where h̄ = h(W/S) is the average surface height. Following the suggestion of Medjnoun
et al. (2020) that H = F(ξ, S/H), one could postulate a heterogeneity parameter like, for
example, H = ξ(S/H)n. Figure 16(a) shows the KE+ data as a function of H, with n
chosen as n = 1.3 to yield a reasonable collapse in the location of the peak KE+ for the two
main series having h/H = 0.1. In that respect, H works well. However, the h/H = 0.025
series (having W/S = 0.5) has a peak KE+ at a very different location, suggesting that H
is not sufficient for predicting when the peak KE+ occurs. This is in fact self-evident, for
if W/S = 0.5, the parameter ξ is always unity independently of h/H for a given H/S. It
would be possible to add a further functional dependence to the heterogeneity parameter –
H = (ξ, S/H, h+) for example – but it is not obvious what precise dependence would be
appropriate, nor what physical argument might be offered to explain it.

Note also in figure 16(a) that the magnitudes of KE+ do not collapse. Using a scaling
argument applied to the axial vorticity transport equation (see Appendix A), it is possible
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to argue that a representative kinetic energy (KE+
ref ) can be written as

KE+
ref = 1

2
(W+2

ref + V+2
ref ) ≈ σ 2(S − W)2 + h2

2HS
, (3.8)

where σ is an arbitrary parameter (σ < 1). This representative KE+
ref can be used to scale

the KE+ shown in figure 16(a) and the resulting scaled values are shown in figure 16(b).
Note however that since the horizontal length scale �y = σ(S − W), used in the derivation
of KE+

ref , should likely depend on h+ (since as h+ → 0, the length scale must also tend to
zero), we have written the σ in (3.8) as σ = σ0h+k. In all the present cases, with σ0 = 0.1
and k = 0.25, this yields horizontal scales between approximately 0.2 and 0.3 of S − W,
which seems entirely reasonable. The data in figure 16(b) for h/H = 0.1 suggest that the
resulting KE+/KE+

ref yields a fair collapse. Again, however, the peak scaled KE+ remains
horizontally mismatched for the h/H = 0.025 cases, emphasising the importance of h/H
or h+, beyond that included in (3.8), in setting the strength of the secondary motions.
Scaling H = F(ξ, S/H) by an additional factor of h+2k can (as hypothesised earlier), with
an appropriate value for the index k, lead to a reasonable collapse of all three series, as
shown in figure 16(c) but, again, it is not obvious whether such scaling would work more
generally. Further study for additional W/S values would be necessary to determine this.

4. Final discussion and concluding remarks

An unsurprising conclusion of the present work is the confirmation that in the case of
a channel containing longitudinal rectangular ribs, generation of axial vorticity arises
predominantly very close to the corners of the ribs – i.e. the locations of a sudden change
in surface stress – where there is the greatest inhomogeneity in the cross-stream Reynolds
stresses. It is largely convection of that axial vorticity that is the main means of distributing
the vorticity across the channel. This agrees with the conclusion of Anderson et al.
(2015), who used LES to study cases in which the spanwise heterogeneity was formed
by alternating axial strips of high and low roughness, with (in the present terms) fixed
values of W/S ≈ 0.18 and H/S ≈ 0.32 (i.e. 1/π). Axial vorticity generation close to the
edges of the roughness strips was essentially independent of the ratio of the two roughness
‘strengths’. Our results show that the general behaviour is also independent of W/S, H/S
and h/H. It is worth noting that secondary flows similar to those discussed here can also
occur above three-dimensional rough surfaces, as illustrated by Kaminaris et al. (2023),
who studied the evolution of a turbulent boundary layer over various configurations of
truncated cones. However, in that case, there was a significant influence of the vortex
stretching/tilting term (VST) in the axial vorticity transport equation, particularly near the
leading edge of the roughness, and the authors argued that the resulting secondary flows
were thus essentially of Prandtl’s first kind. Although they had some similar features, they
should therefore not be confused with the secondary flows studied here, which arise in the
complete absence of the VST, because of the axial homogeneity of the surface topology.

A further conclusion is that very close to the rib surfaces, diffusion will always be
significant but, at least for the largest ribs studied here (h/H = 0.1), it hardly contributes to
the dispersion of the vorticity, which is largely controlled by convection. This remains true
for the smallest ribs (h/H = 0.025, h+ ≈ 12). A direct implication, constituting another
of our main conclusions, is that models based on linearised equations cannot generally
reproduce either the maximum strength of the secondary motions, or where that occurs as
a function of W/H, because such models implicitly do not include the convective terms
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in the axial vorticity equation (since they are second order). It was argued that reducing
the rib size sufficiently to satisfy the linear model assumption that the rib scale must be
smaller than the inner length scale of the flow would (at least for Reτ ∼ 500) lead to ribs
so small that they merely become occasional excrescences on an otherwise flat surface.
At sufficiently high Reynolds number, however, there maybe a range of h/H within which
drag is increased and a linear model is appropriate. This is perhaps worth further study.
Additionally, we found in the present cases that the effects of rounding the rib corners or
doubling the Reynolds number are small.

Finally, we conclude also that for a fixed rib height (h/H = 0.1), the peak secondary
flow strength occurs when the surface heterogeneity parameter introduced by Medjnoun
et al. (2020), (3.7), but modified by an appropriate power of S/H – i.e. H = ξ(S/H)1.3

– has a value around three, independent of W/S. However, this seems not to carry over
to other values of h/H, not surprisingly, and it is not clear how a more general parameter
should be formulated, although it has been shown that using an additional factor of h+
to scale both the surface heterogeneity parameter H = ξ(S/H)1.3 and the area-integrated
secondary flow kinetic energy can lead to a reasonable collapse of all the data.
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Appendix A. Determining a representative cross-stream kinetic energy

The axial vorticity transport equation (3.3) can be written in terms of the secondary
velocities (since Ωx = ∂W/∂y − ∂V/∂z) as

V
(

∂2W
∂y2 − ∂2V

∂y∂z

)
+ W

(
∂2W
∂z∂y

− ∂2V
∂z2

)
− ν

(
∂3W
∂y3 − ∂3V

∂y2∂z
+ ∂3W

∂y∂z2 − ∂3V
∂z3

)
= ST .

(A1)

Here, we consider a small area between two successive ribs where a good level of
secondary flow is developed (as shown in figure 5) but is not too close to the ribs where
the source term is particularly significant. We may define the size of the ‘reference’ area
with �z = h and �y = σ(Sr − Wr), which is a fraction of the gap between successive
ribs determined by the arbitrary parameter σ < 1. It is suggested in § 3.4.5 that this
parameter may have a form of σ = σ0h+k, where σ0 and k are constants. Here, Wr and
Sr are used to distinguish them from the cross-stream velocity W and the source term ST .
In this reference area, we evaluate the scale of each term of the equation. For example, we
take ∂2W/∂y2 ≈ Wref /�y2 = Wref /[σ(Sr − Wr]2, ∂2V/∂z2 ≈ Vref /�z2 = Vref /h2, etc.
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Applying these scalings to the equation and after some rearranging, we obtain(
Wref

�y
− Vref

�z

) [
1

�y

(
Vref − ν

�y

)
+ 1

�z

(
Wref − ν

�z

)]
≈ ST . (A2)

The above equation may be normalised by using global velocity and length scales. We
choose uτ for the velocity scale and

√
HSr for the length scale. Multiplying this equation

by HSr/u2
τ results in a non-dimensional form:

(W+
ref

�y∗ −
V+

ref

�z∗

) [
1

�y∗

(
V+

ref − 1
�y+

)
+ 1

�z∗

(
W+

ref − 1
�z+

)]
≈ HSr

u2
τ

ST , (A3)

where �y∗ = �y/
√

HSr and �z∗ = �z/
√

HSr. Now, since the reference area is fairly
distant from the ribs, we can assume (on the evidence of § 3.2) that the source terms are
very small compared with the other terms, so that ST ≈ 0, and thus one or other of the
major bracketed terms in this equation must approach zero, i.e. either

W+
ref

�y∗ −
V+

ref

�z∗ ≈ 0 (A4)

or
1

�y∗

(
V+

ref − 1
�y+

)
+ 1

�z∗

(
W+

ref − 1
�z+

)
≈ 0. (A5)

The second condition is satisfied when both V+
ref ≈ 1/�y+ and W+

ref ≈ 1/�z+, which
becomes unrealistic (singular) when either Sr − Wr or h is diminishingly small (i.e. the
plain channel condition is approached). The first condition is thus chosen, which could
suggest (although not exclusively) that

W+
ref ≈ �y∗ = σ(Sr − Wr)√

HSr
and V+

ref ≈ �z∗ = h√
HSr

. (A6a,b)

A representative kinetic energy of the secondary flow (deduced from the reference area)
may therefore be estimated as

KE+
ref = 1

2
(W+2

ref + V+2
ref ) ≈ σ 2(S − W)2 + h2

2HS
, (A7)

where we have switched back to the usual geometric parameters W and S to be consistent
with the body of the paper. This can be used to normalise the measured KE+ in each of
the computed cases, as discussed in § 3.4.5.
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