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1. INTRODUCTION 

It is known that families of periodic orbits in the general N-body 
problem (N>3) exist, in a rotating frame of reference (Hadjidemetriou 
1975, 1977). A special case of the above families of periodic orbits 
are the periodic orbits of the planetary type. In this latter case on­
ly one body, which we shall call sun, is the more massive one and the 
rest N-l bodies, which we shall call planets, have small but not negli­
gible masses. The aim of this paper is to study the prbperties of the 
families of periodic planetary-type orbits, with particular attention 
to stability. To make the presentation clearer, we shall start first 
with the case N=3 and we shall extend the results to N>3. We shall 
discuss planar orbits only. 

2. PERIODIC PLANETARY-TYPE ORBITS INVOLVING THE SUN AND TWO PLANETS 

(a) Families of Periodic orbits 

In order to compute periodic orbits of the planetary-type involving 
3 bodies, ŵ l may start from a degenerate family of periodic orbits whe­
re the massless bodies Pi and P3 revolve around P25 whose mass is fini­
te, in circular orbits in the same plane. We shall also assume that 
they revolve in the same direction. This motion is periodic with re­
spect to a rotating frame of reference Oxy whose x axis contains always 
P2 and Pi (the positive direction being from P2 to PiX. In fact, if we 
normalize the units so that the gravitational constant is equal to 1, 
the total mass is equal to 1 and the radius of Pi around P2 is equal 
to 1, the motion is periodic in the Oxy frame for any value R of the 
radius of P3 around P2, with a period equal to 

T = 2i/(l-T1/T3)f (1) 

where Ti, T3 are the periods of the two planets, respectively, in the 
inertial frame and T-L/^SR" 3/ 2, according to the normalization mentioned 
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above. Thus, we have a monoparametric family of periodic orbits, with 
R as the parameter, which can be considered as a particular case of 
the restricted circular 3-body problem. The continuation of the orbits 
of this family to periodic orbits of the general 3-body problem 
(mi,m3>0) is possible for all values of R except for those where T=27in, 
n=l,2,3,... In this latter case the continuation theorem is not appli­
cable (Hadjidemetriou 1975). These orbits correspond to the resonances 
for the periods of the two planets, given by 

V T 3 = n/(n+l), (2) 
as obtained from (1). The same result was obtained by Griffin (1920), 
by a different proceedure. 

The numerical computations have revealed that the orbits of the 
above degenerate family, for 1111=1113=0, can be extended to the general ca­
se (i.e.mi,ni3>0) even for large values of m^ and 1113 (Hadjidemetriou 1976). 
The motion obtained by this continuation process in a symmetric periodic 
motion of the general 3-body problem in a rotating frame Oxy whose ori­
gin coincides with the center of mass of P2 and Pi and the x axis con­
tains always these two bodies. The two planets Pi and P3 describe (in 
the inertial frame) nearly circular or elliptic orbits around the Sun 
(P2)» as we shall describe below. 

Let us see now how we can represent the above planetary-type perio­
dic orbits. The position of the three bodies, in the rotating frame Oxy 
can be determined by the coordinates x^ of Pi and (x3,y3) of P3. Conse­
quently, a symmetric periodic motion is specified by the initial condi­
tions xiQ,x3C)5y30 (f°r "the rest variables we have xio=y30=*30=0) • Tnus» 
a monoparametric family of periodic orbits is represented by a smooth 
curve in the space xio X30 £30* *n "this paper, we shall use the projec­
tion of this curve to the plane XIQ X305 which suffices for illustration 
purposes. 

We consider the space of initial conditions XIQ X30 (Fig.l). Evident­
ly, the family of degenerate orbits, where Pi and P3 have zero masses 
and describe circular orbits around P2* is given by the straight line 
xio=l. 

'10 Ti/T3*3/4 W 2 7 3 

3/5 

T1/T3«l/2 

3/4 5/7 2/3 

Tj/T =2/3 

1/2 2/5 1/3 3̂0 

T1/T3=l/2 

Fig.l: The space X10X30 of the initial conditions and the families of 
planetary-type periodic orbits (graphically). 
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On this line we mark the resonant orbits of the form Ti/T3=n/(n+l) for 
which the continuation theorem is not applicable. These orbits have an 
accumulation point at X3Q=1. When the degenerate family xio=l is extend­
ed to m1,mo>0, we obtain the set of families of periodic orbits shown in 
Fig.l (Hadjidemetriou 1976, Delibaltas 1977). The numerical computations 
were made for the cases mi=m3=0.001 and also for the cases mi*mass of 
Jupiter, m3=mass of Saturn and vice-versa. (The total mass was normaliz­
ed to 1). The results are qualitatively the same for all cases. We note 
that the degenerate family breaks to (presumably) an infinite number of 
families of periodic orbits, for mi,m3>0, which are "separated" by the 
resonant orbits Ti/T3«l/2, 2/3, 3/4,... The part of the families for 
ml>m3>^ which is near the line xio=l corresponds to nearly circular or­
bits of the two planets. The rest part corresponds to nearly elliptic 
orbits of the two planets, with eccentricities which increase as we go 
outwards. Along each elliptic branch the ratio T1/T3 of the osculating 
periods (at t=0) is almost constant for all members of the family. Note 
that there are two separate branches of nearly elliptic orbits of the 
two planets for each value of Ti/T3=l/2, 2/3... The difference between 
them is that at t=0 the two planets are in a different initial situation 
(at pericenter or apocenter). These elliptic branches can be associated 
with families of asteroids with the corresponding ratio T2/T3, with Ju­
piter as one of the planets and the asteroid as the other. Also, one 
member of the first family, in the circular part corresponds to the re­
sonance 2/5 and approximates the Sun-Jupiter-Saturn case. 

(b) Stability 

We shall study first the stability of the periodic planetary-type 
orbits where the two planets describe nearly circular orbits. We note 
that the degenerate periodic orbits of the family xio=l (Fig.l) are, 
evidently, all stable. It can be proved (e.g. Hadjidemetriou 1978) that 
there are for each degenerate periodic orbit two stability indices, cor­
responding to the nonzero characteristic exponents, which are equal to 
each other and are given, for the normalization used here, by 

K=-2cosT, (3) 

where T is given by (1). These stability indices are not, in general, 
critical (equal to K=±2) and consequently the orbits obtained by the con­
tinuation procces, by increasing the masses m^ and 1113 are stable, for 
continuation reasons. (The two zero characteristic exponents of the de­
generate orbit in the rotating frame are preserved when m^, 1113X), due to 
the existence of the energy integral). However, there are degenerate pe­
riodic orbits with critical stability indices, (K=2), corresponding to 
T=(2v+l)it, i.e. to the resonant orbits T1/T3=:(2v-l)/(2v+l). The resonant 
orbits Ti/T3-1/3, 3/5, 5/7, of this kind are shown in Fig.l. These orbits 
can become unstable when extended to m-^ii^X), i.e. |K|>2. And in fact, 
the numerical computations have revealed that in each of the families 
for mi,m3>0, in their part of circular orbits, there is a small unstable 
region, generated from the above critical degenerate periodic orbits. 
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We come now to the branches of the elliptic orbits of the families 
for ml5m3>0. Such an orbit can be considered to be obtained by the con­
tinuation of a degenerate periodic orbit where one planet describes an 
elliptic orbit* The stability indices in this latter case are all criti­
cal and may become stable or unstable when the masses are increased. The 
numerical computations have revealed that some of the branches of ellip­
tic orbits are stable and others are unstable (Hadjidemetriou 1976, De-
libaltas 1977). The unstable parts of the families are shown by bold 
lines in Fig.l. It was also revealed by the numerical computations that 
the stability of the same branch of elliptic orbits depends on the ratio 
1111/1113. For example, the resonant branch 1/2 of the first family is stable 
when the inner planet Pi has the mass of Saturn and the outer planet P3 
has the mass of Jupiter, but it is unstable when the inner planet P^ has 
the mass of Jupiter and the outer planet P3 the mass of Saturn. 

Another question concerning the stability is how the stability evol­
ves when the masses of the planets increase. A general result is that 
the unstable regions in the families of periodic planetary-type orbits 
extend when the masses of the planets increase. For example, the unstable 
region in the first family, at the resonance 1/3, extends and when the 
masses of the planets become about 38 times larger than the masses of 
Jupiter and Saturn, (the ratio mj/m3 being kept fixed) the unstable re­
gion covers the resonant orbit 2/5 which represents the Jupiter-Saturn 
system (Hadjidemetriou and Michalodimitrakis, 1978a). 

3. PERIODIC PLANETARY-TYPE ORBITS INVOLVING THE SUN AND THREE PLANETS 

The method used to compute periodic orbits of the planetary type in­
volving two planets can be extended to any number of plaiiets. We shall 
study here the case N«4, i.e. the Sun (or planet) and three planets (or 
satellites). We call Pi, P3 and P4 the three planets, respectively and 
P2 the Sun and consider the degenerate system with mi=m3ami+=0, m2=l, whe­
re the three planets revolve around the sun in circular orbits in the 
same plane. We shall also assume that they revolve in the same direc­
tion. The motion is periodic with respect to a rotating frame Oxy whose 
x axis contains the bodies P2 and P^, and the origin is at P2» if 

(w3-w1)/(ca1+-a)1) = p/q, (4) 

where p,q are integers and a)i=2n/Ti, i=l,3,4, Tj[ being the periods of 
the planets in the inertial frame. Using the same normalization as in 
the case Ns3 (i.e. G=l, mi+m2+m3+mi|=l, radius of Pi=l) we have for the 
period of the above degenerate periodic orbit in the rotating frame, 

T = 2*q/(l-T1/Tii). C5) 
Note that when p/q is fixed, for each radius R3 of P3 there corres­

ponds a certain radius Ri+ of P4, as can be seen from (4). Thus, for fix­
ed p,q, we have a monoparametric family of degenerate periodic orbits 
with R3 as the parameter, in which the three planets describe circular 

https://doi.org/10.1017/S0074180900012432 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900012432


STABILITY OF PERIODIC PLANETARY-TYPE ORBITS 27 

orbits. All these orbits can be continued to the general case mi, 1113, 
mij.>0 with the exception of those orbits where T=2im, n=l,2,3,... (Hadji-
demetriou, 1977). As a consequence, the degenerate family of periodic 
orbits mentioned above breaks to an infinite number of families of perio­
dic orbits when the masses are increased, in the same way as in the case 
N=3. These families, for mi, 1113, mi+X), contain symmetric periodic orbits 
with respect to a rotating frame Oxy whose origin is at the center of 
mass of P2»pi and its x axis contains always these bodies. As in the N=3 
case, these families contain branches along which the ratios T1/T3 and 
T1/T4 are nearly constant, but the eccentricities of the osculating or­
bits of Pi, P3, P4 around P2 vary. A detailed analysis of this type of 
planetary-type orbits, corresponding to the case p/qs2/3 will be given 
elsewhere (Hadjidemetriou and Michalodimitrakis, 1978b). We describe he­
re four distinct branches, A,B,C,D, of the above monoparametric families, 
corresponding to the ratios ̂ ^3=1/2, T^T^-lA. This case represents 
the motion of the three inner Galilean satellites of Jupiter. The compu­
tations were made for the actual masses of Jupiter and its three satel­
lites. Branch A corresponds to the actual case. The main characteristics 
of these branches are shown below, a stands for apojove and p for peri-
jove at t=0. 
Branch 1 n IJI Initial situation Stability 

A P P P I* H I in conjunction, II in opposition stable 
B a a a I, III " " , II " " unstable 
C p p p I, II " " , III " " unstable 
D a a a I, II " " , III " " unstable 

De Sitter (1908, 1909, 1918, 1928) (see Hagihara 1961) has obtained one 
periodic orbit with the properties of the branch A and one with the pro­
perties of B. It is clear however from this analysis that there, exists 
an inifinite number of such orbits, with the same resonance but different 
eccentricities. 

4. THE RESTRICTED PLANETARY 4-BODY PROBLEM. 

As an approximation to the above families of periodic orbits we con­
sider now the case where the mass of one planet is negligible. This is 
justified in the Solar System where the main planets are Jupiter and Sa­
turn. Thus, we may consider a four-body system with P2 as the Sun, ?± as 
Jupiter, P3 as Saturn and P^ as a massless planet, and take the case 
Ti/T3=2/5, as in the actual motion of the Sun-Jupiter-Saturn system. 
Since the motion of P^ does not affect the motion of Pi,P2 and P3, its 
motion is determined from a system with two degrees of freedom (for pla­
nar motion), in the rotating frame of reference Oxy defined in section 3. 
This case can be considered as the generalization of the restricted 3-bo-
dy problem. The conditions under which the motion of P^ is periodic are 
similar to the general case N=4, discussed in section 3. A complete des­
cription of this problem will be given elsewhere (Hadjidemetriou 1978). 

We shall present here one example of a periodic motion, corresponding 
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to the case p/q=-l/9, This motion approximates the system Sun-Mars-
Jupiter- Saturn, as the "radius" of the nearly circular orbit of P^ is 
equal to 1.51 A.U. There are two such periodic orbits with the same re­
sonance, differing in phase. One of them corresponds to X^Q>0, X 3 Q < 0 , 
x^o>0» anc* the other to x-j^O, X3Q<0, X^Q<09 at t=0. The numerical com­
putations revealed that the first periodic orbit is stable and the se­
cond is unstable. 

Let us draw now our attention to the unstable case. The orbits of 
all the planets are nearly circular and this periodic motion can be con­
sidered to be obtained from a degenerate periodic motion where all the 
planets have zero masses and describe circular orbits, by continuing 
through the masses. Evidently, if only the mass of Jupiter is increased, 
and its motion is kept circular, the motion of P4 is determined from the 
well-known restricted circular 3-body problem. The numerical integra­
tions reveal in this case that the motion of P^ is stable. Let us intro­
duce now the planet Saturn with its actual mass. The above results show 
that the orbit of P^ may become unstable due to the effect of Saturn! 
This indicates that the stability analysis of planetary systems based 
on the study of the restricted 3-body problem may not be always correct, 
because the effect of other planets than Jupiter is not taken into 
account. 
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