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Abstract

In 1984, Elliott and Stenger wrote a joint paper on the approximation of Hilbert transforms
over analytic arcs. In the present paper we sharpen the previously obtained results of Elliott
and Stenger, and we also obtain formulas for approximating Cauchy integrals over analytic
arcs.

1. Introduction and summary

David Elliott has made excellent contributions to the approximate solution of Cauchy
singular integral equations (CSIE), to the approximation of Hilbert transforms, to
quadrature, and to the approximation of functions, the majority of his work being his
contributions to CSIE. During the past decade, CSIE have more and more frequently
arisen in the solution of boundary layer integral equations, which stem mainly from
partial differential equations. Accurate approximations of Hilbert transforms are re-
quired for the solution of CSIE, and Elliott has made several excellent contributions to
this area [3,14,16-18,20-28]. His many excellent contributions to the solution of in-
tegral equations include [1,2,4-10,13,15,16,19,22,27,29]. While much of Elliott's
excellent work is based on using polynomials as basis functions for approximation, in
[27] Elliott and Stenger also wrote a paper on the approximation of Hilbert transforms
and the solution of CSIE using Sine methods as bases. Formulas that are exact for
polynomials converge rapidly in cases when the solution to the CSIE is smooth on
the arc, whereas formulae based on Sine bases converge more rapidly in frequently
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occurring cases when the singular integral is analytic on interiors of the arc, but may
have singularities at the end-points of the arc.

In many instances when the solution to the boundary layer equation has been
determined, it is still necessary to obtain an analytic continuation of this solution to
the interior of the domain. In the present paper we derive such "missing link" formulae,
for the case of Sine approximation.

In Section 2 of the paper we shall review definitions and properties of Sine approx-
imation that are relevant for deriving the results. In Section 3, we derive Sine-based
formulae and error bounds for approximation of both Hilbert and Cauchy transforms
over rectifiable analytic arcs.

2. Sine spaces of approximation

We shall describe here some relevant notions about approximation by Sine methods.
Let $) denote a simply-connected domain in the complex plane C, let 1 < p < oo

and let Hp (^) denote the family of all functions / that are analytic in $), such that

Np{f,2>) =
(f \f(z)\"\dz\\ ' < oo if 1 < p < oo,

sup|/(z)|<oo ifp=oo.
(2.1)

Let <p denote a function which provides a conformal mapping of a simply connected
domain & onto <2)d where

®d = [weC: | » W | < d), (2.2)

with d a fixed positive number. The function cp is also a one-to-one map of f onto K,
with F an arc in Si, having end-points a and b, so that cp(a) = —<p(b) = - co . The
Sine points are defined for h > 0 and k 6 2 by Zk = <p~l(kh).

Let us describe some simple Sine spaces which go hand-in-hand with Sine methods.
Let a € (0, 1], 0 e (0,1] and 0 < d < n. Let M, ,^^ ) denote the family of all
functions/ € H°°(^), which have finite limits/ (a) and/ (b) at the end-points a and
b of F, such that if we set

p(z) = exp^(z)) (2.3)

then

f()f() 0(\()\a) as z - m ,
(2 4)

f (z) - f (b) = 0(\p(z)rfi) as z-+b,
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where the limits are taken with respect to z from within Q. The notation La ^(^) will
be used for that subset of functions / 6 Mo / ) (^) for which f(a)=f (b) = 0.

Let 9d be defined as in (2.2), and for 0 < d! < d, let q> map 9' to %>. The most
important properties of the spaces Lap(!0) and MOip(@) are, in essence, that if / e
Mo,,,(0), then/ ' /p ' e L M (0 ' ) ; i f / € M M ( ^ ) , and if (\/<p')' is uniformly bounded
in ®, t h e n / w / ^ ' ) " € La,^(^'), n = 1,2, 3 , . . . . Conversely, if f'/tf e La,^(^),
then/ € M a ^(^) . For example, if (a, 6) is a finite interval, if/ is of class Lipa on
[a, b] and if/ is analytic in some region containing (a, b), then/ e M^

3. Sine approximation

Next, we define bases for Sine approximation.
Let N denote a positive integer, and let integers M and m, a diagonal matrix D(u)

and an operator V be defined as follows:

TV = positive integer;

M = [0N/a];

m = M + N + l; (3.1)

D(u) = diag[u(z_M),... , u(zN)]; and

= (u(z-M),...,u(zN))T,

where [•] denotes the greatest integer function, u is an arbitrary function defined on T
and "7*" denotes the transpose. Letting Z denote the set of all integers, set

. sin(7rz)
sinc(z) = ,

nz

zj=<p-1(jh), j e Z ,

aj = sinc{[<p -jh]/h), j = -M N,

Wj=Cj, j=-M + l A ^ - l , (3.2)
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We remark that in the special case when we know a priori that / vanishes at the
left end-point a of I \ then it is more convenient to take w-M = CT_M; and similarly,
we take wN = aN for the case when / vanishes at the right end-point b of I\ Let us
also define a row vector of basis functions,

with Wj defined as in (3.2).
Finally, we define a norm by

) . . . . , wN(z)), (3.3)

||/||=sup|/(x)|. (3.4)

Next, we describe interpolation, definite and indefinite integration, and the approx-
imation of Hilbert transforms via Sine methods. In cases when proofs are omitted,
they may be found in [30]; we shall, however, include proofs for the cases of Hilbert
and Cauchy transforms.

3.1. Sine interpolation Now we describe the basic procedure of Sine interpolation.

THEOREM 3.1. / / / e H»,^(^), then as N ->• oo,

| | / - w Vf || = &(eN). (3.5)

3.2. Sine collocation While the above defined Sine basis completely determines
the formulae of Sine approximation, the role of the basis is primarily in the evaluation,
or plotting, of the final solution. This is the point of the theorem of this section, which
enables us to reduce all Sine computations to the solution of (linear or nonlinear)
algebraic equations.

THEOREM 3.2. Let c = ( c _ M , . . . ,cN)Tbe a vector of complex numbers, such that

<SN, (3.6)

where SN is a positive number, depending only on N. If the conditions of Theorem 3.1
are satisfied then, as N -*• oo,

| | / - w • c|| = <?(eN + SN). (3.7)

33. Sine quadrature Sine quadrature approximation may be described as follows.

THEOREM 3.3. Iff/<p' e LOi/i(0), then, as N - • oo,

I f(x)dx-(V(h/<p'))TVf = 0{eN). (3.8)

Indeed, it may be shown that by taking h = (2nd/(f}N))l/2, the right-hand side of
(3.8) may be replaced by e^.
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3.4. Sine indefinite integration For the case of Sine indefinite integration and
Sine convolution, we need to determine matrices A and B of order m as follows.
Corresponding to an arbitrary integer I, we define 8^ by

f
J—oo

«J- = / sinc(*)rfjc, (3.9)

we form an m x m matrix 7(-1) = [5,-lJ*], with 5,-lJ' denoting the (i,j)'h element of
7 ( - ' \ and we then set A = h 7(-" D(\/<p') and B = h {I(~l))T D(l/<p').

THEOREM 3.4. Iff/<p' e L,aA@)> then> as N

f(t)dt-(wAVf)(x)

b

f(t)dt-(YiBVf)(x)

and

(3.10)

3.5. Sine convolution For the case of Sine convolution, we define matrices A and
B as for Sine indefinite integration above, and in addition we shall also require the
"Laplace transform",

F(s)= e~"sf(t)dt, E2(0,(b-a)), (3.11)
JE

where the quotes indicate that we have replaced the s in the usual Laplace transform
with \/s.

Our model integrals to be collocated are

p(x)= f f(x-t)g(t)dt and q(x)= [ f(t-x)g(t)dt, (3.12)
Ja Jx

where x € T.
In presenting these convolution results, we shall assume that r = (a, b) c DS. For

Sine collocation of p and q, we assume that:

(1) The "Laplace transform" (3.11) exists for all s such that SRs > 0;
(2) and (roughly—see [30] for more precise assumptions) that p and q belong to

THEOREM 3.5. If the above assumptions are satisfied, and if A and B are defined
as in the previous subsection, then, as N -> oo,

||/>-wF(A)V*|| = <?(£*,) and \\q-yvF(B)Vg\\ = 0(eN). (3.13)
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3.6. Cauchy and Hilbert transforms It is convenient here to present results derived
in [27] along with newly derived results for Cauchy transforms.

We take x e F and z e @+, with @+ denoting the part of @ to the right of F as we
traverse F from a to b, and we define the functions

h sin{K(<p(x)-kh)/h)
sk(x) = -r—-. , (3.14)

n <p'(zk)(x - zk)

n i <P'(zt)(x - Zk)
h exp[ixMz)-kh)/h}-l

ck(z) = — — . (3.16)
2ni <p'(Zk)(z - zk)

Note that for z = x, we have ck(x) = | (sk(x) + tk(x)). If k and I are integers, we
have

tk(zt)=
.
'ni<p'(zk)(Zk-Zi) l * ' (3.18)

0 if k = I and

h 1 - (-1)'-*
2wi ^(zt) (z* - zd ' (3.19)
1/2 if* = £.

THEOREM 3.6. (a) (/"g € H'(^) , then, for all x e F, we
00

= g(x) - J]
t=-oo

S m l ^ - - • dK. (3.20)

(b) Ifg 6 H'(0), then, for all x € F, we

2K J3S

(c) //g € H'(0), then, for all z e 9+, we have

(3-21)
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!£. (3.22)
199 (£ - z) sin (f <

We may note, for example, that in view of (3.18), (3.21) yields the approximation

(yg)(ze) m™[j«LdtM]L £ i M I ^ z i ^ . (3.23)
n i J t Z niJ£<p(Z) zk - Zi

For purposes of truncation of the above sums, we have the following theorem.

THEOREM 3.7. Ifg e Hl(@), x e T anrfz 6 @+, then

2n smh(nd/h)
e-nd/h , 1

|£2(*)l< • . , ,.,N(g,2),x) and (3.24)
2nsvrih(nd/h)

e-nd/h i 1

\S3(Z)\ < - • • , T / / , ^ ( g , ^ , Z),
2^-sinh(7rrf//i)

dt

where in each of the last three inequalities,

= f
J3S t-z

(3.25)

We remark that under our assumptions on g, the terms N(g, 2), z) may become
unbounded as z approaches a point of 3 ^ . In such a case the above sums must be
interpreted in the sense of a relative error.

Of course, a uniform bound may be possible, that is, these equations will hold for
all z e 9', if N(g, 9) = supa e S n N(g, 9, z) < oo, with 9' defined at the end of
Section 2, and with N(g, 9, z) defined as above. This was shown to be the case, for
example, in [31] for several particular regions, for the case when g e La,^(^).

In addition, we have the bounds

eh

sup\sk(x)\<eh, sup |**C*)| <eh and sup \ck(z)\ < —=, (3.26)
.rer jrer ze®+ V2

which are useful for bounding the error of approximation by a finite number of terms
of the series (3.20H3-22).

The expressions for e^x) and £2(x), as well as the above bounds on these terms,
were established in [27]. We now prove the given results for e3.

PROOF. Proceeding similarly as in [32, p. 247], we take z 6 @+, and we start with
the identity
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2ni
f

J3

- <P(z)
- Z) sin (f

[8]

(3.27)

We now multiply both sides of this equation by <p'(t)/[2Tci{<p(t) — <p(z)}], integrate
with respect to t over F, and use the identities

i r s(k, h)(t)
t-z

_ 2-f{z-kh) '
> 0

and

sin( exp{f wsgnSu;} -exp{f zsgnSz
2i(w - z)

(3.28)

(3.29)

to deduce the expressions

27Ti t-Z

1 /•
(3.30)

Now, in view of the inequalities

exp{—

expj — < 1 and
(3.31)

we get

where

V •*:'''? N(g,@,z), (3.32)

, z) is defined as in (3.25). This establishes the inequality (3.24).

COROLLARY 3.8. Let a and P denote positive numbers such that 0 < a < 1 and
0 < ft < I, let g € Lap(@), let N be a positive integer, select M as in (3.1) and h,
Zj and sN as in (3.2). Let @+ denote the part of & to the left ofT as we traverse V
from a to b. Let us assume that N(g, @,z) < N(g, &), z e &, with &' defined as
at the end of Section 2. Then there exist positive constants Cit i = 1,2,3, that are
independent ofN, such that

sup g(x)- 2^ g(Zj)sj(x)
j=-M

< Cx eN,- x e T,
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sup

sup 2nijrt-z ,£-,
g(Zj)Cj(z)

< C2eN, x e F and

C3

95

(3.33)

PROOF. The proof is straightforward, using Theorem 3.6 and the inequalities (3.26).
We omit the details.

Finally, we illustrate the application of Sine convolution to the approximation of
Cauchy integrals.

Since we can express the "Laplace transform" of the function (2ni(t — iy))~l in
terms of the exponential integral, that is,

m J_ rst^.d, > exp{-») E, (-»).
2ni Jo t — ty 2ni [ s\ \ s)

(3.34,

we define a square matrix A of order m = M + N + las'm Section 3.4, and if the
assumptions of Corollary 3.8 are satisfied, we arrive at the approximation

(3-35)
•-x-iy

for which the relative error is &{sN) for every fixed z = x + iy e @+. We have not
yet made any numerical experiments on the use of this method for computation of
Cauchy integrals.
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