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A R I T H M E T I C O N C E R T A I N F A M I L I E S O F E L L I P T I C C U R V E S 

ANDRZEJ DABROWSKI AND MALGORZATA WIECZOREK 

Consider a family of elliptic curves £(B) :y2 = x3 + doAox + a%B (A, Ao, do fixed 
integers). We prove that, under certain conditions on Ao and do, the rational 
torsion subgroup of E(B) is either cyclic of order < 3 or non-cyclic of order 4. 
Also, assuming standard conjectures, we establish estimates for the order of the 
Tate-Shafarevich groups as B varies. 

INTRODUCTION 

Let E : y2 — x3 + Ax + B (A,B € Z , AA3 + 2 7 B 2 ^ 0 ) be a fixed elliptic curve 
over Q. For each d ̂  0 let Ed be the elliptic curve Ed : y2 = x3 + d?Ax + d3B. 

One can prove that for all but finitely many square-free integers d ̂  0 , the torsion 
subgroup of Ed{Q) is one of ( 0 ) , Z / 2 , Z / 2 © Z / 2 , and a necessary condition that Ed 
posseses Q-rational point of order greater than 2 is d \ 4A3 + 2 7 B 2 [10]. 

We shall prove that the Q-torsion subgroup of E^B) '• V2 = x3+doAox+doB (^4o,do 
fixed) is, under certain conditions on Ao and do, one of ( 0 ) , Z / 2 , Z / 3 , Z / 2 © Z / 2 
(Section 1). Let NB , RB, a Q d IJI(2?(B)) denote respectively the conductor, the reg­
ulator, and the Tate-Shafarevich group (conjecturally finite) of -E'(B)- Assuming the 
Birch and Swinnerton-Dyer conjecture for all E(B) w e prove that 

< 1 2 - £ « RB • Hm(E(B)) « N B

/ 1 2 + E 

for infinitely many B (the lower bound is actually valid for all B) (Section 2) . We also 
comment on the behaviour of the order of III in other families of elliptic curves. In 
section 3 we give some evidence for Mazur's conjecture on the variation of the rank in 
a family in a special case. 

1. TORSION POINTS ON CERTAIN FAMILIES OF ELLIPTIC CURVES 

l . l . CONSTRUCTION OF CERTAIN FAMILIES OF ELLIPTIC CURVES. We start with the 

following well known result. 
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320 A. Dabrowski and M. Wieczorek [2] 

PROPOSITION 1 . 1 . 1 . [12, Ex. 8.13(a), p.238] Let E/Q be an elliptic curve 
over Q with a rational torsion point of order > 4. Then E has an equation of the form 

(1) y2 + uxy +vy = x3 + vx2 

with u, v G Q. 

The family (1) can easily be rewritten into the following equivalent form: 

(2) E(u,v): V2 =
 x* + [-\v2 + [~\u2+\^v ~ l^)x 

Let E = E(A,B) : y2 = x3 + Ax + B [A,B G Z , 4A3 + TIB2 ^ 0) be an elliptic ' 
curve. For each 0 ^ d G Z consider its quadratic twist 

Ed : y2 = x 3 + d2Ax + d3B. 

Ed has a rational point of order > 4 if and only if it is of the form (2) with some 
u, v G Q. In particular, we have 

I6v2 + (8u2 - 2Au)v + (u4 + 48Ad2) = 0. 

Now 

A „ = (8u2 - 24u) 2 - 4 • 16 • (u 4 + 48Ad2) = 2 6 ( - 6 u 3 + 9u2 - A8Ad2). 

Hence A „ G Q 2 if and only if - 6 u 3 + 9u2 - 48v4d2 = y2 with certain y G Q if and only 
if E{A\ d): y2 = x3 - 27x - 54(32Ad2 - l) has solution in x, y G Q. 

Note that E(A; d) is an elliptic curve if and only if A ^ 0. 

PROPOSITION 1 . 1 . 2 . Assume A ^ 0. Then E(A;d)(Q) - (0) implies that 
the torsion part E(A,B)d{Q)toIS is one of (0), Z / 2 , Z / 3 , Z / 2 © Z / 2 . 

PROOF: Combine the above construction with Mazur's theorem [9]. D 

1.2. TORSION PART OF E(A\ d)(Q). Assume that E(<Q)tors ^ (0); then we know [9] 

that E(Q)tora contains only points of orders 2 or 3 or 5 or 7. 
(a) Non-existence of point of order 5. 
By [5] we know that E(A; d)(Q) contains a point of order 5 if and only if E(A; d) 

is of the form 

y2 + (1 — c)xy — cy = x3 — cx 2 , with some c G Q, 
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which is equivalent to 

y2 = x 3 + ]C2

 + IC(C-l)
2-L(C-l)4

+IC(C-l) 

+ 
_2_ 

27' (-
C + J<C - D2) " |* " 1) (-C + J(C - L)A) + JC 

Comparing the coefficients we obtain 

- ( c - l ) 4 + 8c(c - l ) 2 + 8c 2 - 24c + 2 4 3 4 = 0. 

The above equation has no solution in c 6 Q, hence E(A;d)(Q) contains no points of 

order 5. 

(b) Non-existence of point of order 7. 

We know [5] that E(A\ d)(Q) contains a point of order 7 if and only if E(A; d) is 

of the form 

y2
 + (1 + t - t2)xy + (t2 - t3)y = x 3 + (t 2 - r 3 ) x 2 , with some t e Q, 

which is equivalent to 

y2 = x 3 + 

+ 

- | (\ A+* -12)2+(t2 -13)) +\(i+t-t2) (t2
 -13) 

i(\{i+t-t
2)2

+(t
2-t3)y 

I (\ A+* -1 2 ) 2 +E 2 - ̂ 3)) A+1 -12) (t2 -t3)+\ (t
2 - t3f 

Comparing the coefficients we obtain 

(1 + t- t2)4+&{l + t - t2)2(t2 - t 3 ) + 16(r2 - t 3 ) 2 - 2 4 ( l + * - t 2 ) ( t 2 - t3) - 2 4 3 4 = 0. 

The above equation has no integer (hence rational) solutions, 

(c) Points of order 3. 

We have, similarly to [5], that E(A; d)(Q) contains a point of order 3 if and only 

if E(A; d) is of the form 

y2 + axy + by — x 3 (o, b 6 

which is equivalent to 

y2 = x 3 + (-È°4+HX 

( 1 a 1 l . , \ 

https://doi.org/10.1017/S0004972700022322 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022322


322 A. Dabrowski and M. Wieczorek [4] 

Comparing the coefficients we obtain an equation in a: 

A 1 2 _ 2 5 A 9 _ 2 4 3 5 A 8 + 2 9 3 5 A 5 + 3 8 3 ^ 4 _ 3 X 2 3 6 ^ _ 3 5 ^ 2 ^ 3 _ 3 1 2 3 1 2 = q 

In the case A = 1 one checks the above equation has no rational solutions, 
(d) Points of order 2. 
E(A; d)(Q) contains a point of order 2 if and only if x3 - 27x - 54(32Ad2 - l ) = 0 

has solutions in x € Z . Certainly this is not the case for A — 1, d = 2 (mod 5). 

1.3. FREE PART OF E(A;d)(Q). It is not difficult to calculate finite products of 
the type f(x) = _Q (p~x$E(A; d ) ( F p ) ) , x big enough. One expects that the rank of 

p<x 

E(A;d)(Q) is zero if f(x) is bounded. To calculate the rank exactly one can use, say, 
(pseudo)algorithms described in Cremona's book [1], or an executable version of the 
program from his ftp server. For example: rank E(l; 2)(<Q>) = 0, rank E(l; 7)(Q) = 1. 

1.4. A N EXAMPLE. Take AQ — 1, do = 2 , and consider the family E(B) • y2 — 
a;3-t-4x + 8B. Considering the reduction modulo 5, and applying Proposition 1.1.2 and 
[10], we conclude that 

£ ( 2 B ) ( Q ) t o r s C Z / 3 f o r B = 2 ' 3 ( m o d 5 ) > 

^ ( 2 B ) ( Q ) t o r s C Z / 2 © Z/2 for 5 = 0, l,4(mod 5), 

£ ( 2 B + i ) ( Q ) t o r s = (0) for B = 0,4(mod 5), 

^ ( 2 B + i ) ( Q ) t o r s C Z / 2 © Z/2 for 5 = 1,2,3(mod 5). 

Note however (by the Lutz-Nagell theorem) that 5 ( B ) ( Q ) contains a point of order 
2 if and only if B = k(k2 + l ) , k £ Z . 

2. BOUNDS ON THE SIZE OF THE ORDER OF THE TATE-SHAFAREVICH GROUP 

In this section we shall establish estimates for the orders of Ul(E(B)) as B varies 
(Theorem 2.4.1). 

2.1. BOUNDS ON THE REAL PERIOD. Let itooiE) denote the real period of E. 

L e m m a 2 . 2 . 1 . We have ^ ( ^ ( A o . S ) ^ ) » < B _ B . 

PROOF: Note that 

*OO(E{A0,B)d0)=4/2*OO(E(A0,B)). 
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Now 

=£ V x 3 + x x + B - r + L + C • 
r°° dx r°° dx f00

 dx 1 / 6 

J i \ / x 3 + A0x + B A y/x3 + B Ji (x + B1/3)3'2 

f1

 t . dx

A « f1 * «B - w . 

/ - 1 _ = ( / " B l / 3

 + T 1 \ <** < < ; y_oo x/a;3 + ^ o ^ + B \J-co J-B1'3J V*3 + A0x + B 
The above proves the part. For the " » " part see [6, p. 159]. D 

2.2. BOUNDS ON THE CONDUCTOR. Let 

EiAcB)^: y2 = x3 + d2A0 + d3

0B. 

We have 
A = -2 4(4dgj4g + 27d 0 B 2 ) < B2. 

Hence W B = A ^ o . B ) ^ < B 2 -
Now assume Aodo / 0. 

L E M M A 2 . 2 . 1 . For infinitely many integers B we have NB 3> B2. 

PROOF: Indeed, by Iwaniec's work [4] we know that the polynomial 27x2 + a 
(a fixed odd integer) takes infinitely many values of the form pip2, {pi,p2 different 
rational primes). The assertion follows. D 

2.3. AN UPPER BOUND FOR l\np. 

L E M M A 2 . 3 . 1 . We have 

J J *P = 0(B*). 
V\NB 

PROOF: Take a rational prime p \ NB- We obtain, using Tate's algorithm [13], 
that the corresponding Kodaira symbol is never of type I„ [u > 0) . Hence TTP < 4, 
and the assertion follows. Q 

2.4. ESTIMATES ON THE ORDER OF III. 
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324 A. Dabrowski and M. Wieczorek [6] 

THEOREM 2 . 4 . 1 . Fix integers A0: d 0 (A0do £ 0). Assume the Birch and 
Swinnerton-Dyer conjecture holds for ail £ ( B ) = i ^ A o , / ? ) ^ . Then 

(A) RB • №(E(B)) » NB

/12~£. 

(b) Assume additionally the generalised Lindeldf conjecture [3] for the family 
E(AQ, B)DQ . Then there exist infinitely many B such that 

RB • №{E(B)) « NB

/12+£. 

PROOF: 

(a) Using the above bounds and the Birch and Swinnerton-Dyer conjecture 
for all E(A0, S ) d o , we have 

RB • №(E{B)) > -° 1 / 6 _ £ » NB

/12-£. 

(b) The generalised Lindelof hypothesis for L(E,s) implies L^R\E,\) = 
0(N%) (see [3 , p.154]). On the other hand ^ ( ^ ( A o , B ) D Q ) < B~ll&. 
Also we have B)d(Q)t0IS < 16 by [9], and f l c P >°1. 

V\NB 

The above estimates and the Birch and Swinnerton-Dyer conjecture for all the 
E(AQ,B)^ imply RB • | n i ( £ ,

( B ) ) « B 1 / 6 + £ . By Iwaniec's result we have NB > B2 

for infinitely many B. The assertion follows. D 

2.5. REMARK . Assuming additionally the Lang conjecture RE ~> Nge, one can state 
the result in the form: 

NB

/12-*<&№(E[B))<£NB

/12+e 

for infinitely many B. 

2.6. EXAMPLE . Consider the family E(B) : y2 = x3 + 12x + 16B, (B e Z ) . Here 
A = 2 8 3 3 ( l + B2), and one checks that the reduction is split multiplicative at all primes 
p 7^ 2,3. On the other hand, it is classical that every odd prime divisor of 1 + B2 is of 
the type 4fc + 1. Hence, using [ 1 1 , Propositions 1 and 3] we conclude that for infinitely 
many B's the root number e(E(B)) depends only on the local root numbers at 2 and 
3. As a consequence we obtain that, at least conjecturally, the rank is even (maybe 
zero) for infinitely many 5 ' s . 

2.7. REMARKS. 

(i) Part (b) of the theorem is consistent with the following conjecture of Lang. 
Write E : y2 = x3 + ax + 6, with a, b € Z ; let H{E) = max(|a| 3 , \b\2). 
Lang [6] conjectures that 

RE • $UI(E) < H(E)l/12Ne^cr(logN)r, 
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with some universal constant c, and e(N) -* 0 as N —• oo. 
(ii) The case A — 0. Note that E(0;d) is not an elliptic curve. Hence the 

family E(0, B)^ cannot be treated by our method. Such a family was 
studied from an analytic point of view in [ 7 ] ; consequences for the order 
of III (in a case E(d) : x3 + y3 = d, d cubic-free) are as follows: 

^ p < < t t I I l ( B ( d ) ) < < i V ^ 

for infinitely many d. 
(iii) The family E(A0;d) (d G Z ) also has interesting properties. Take, say, 

= 1 > and denote E(d) = E(l; d). One can show that for all d G Z 

N^d

2~£ « tfLH(£(d)) • RE(d) « N%£'. 

(iv) Consider the family E(p) : y2 = x3 + px (p prime = 7,11 (mod 16)). 
Then rank E(p)(Q) = 0 [12, p.311], and one can show (assuming the 
Birch and Swinnerton-Dyer conjecture) that 

^ p p < < t ) i n № ) ) < < i v ^ 

for all such primes. 
(v) Denote by Ed (d square-free integer) the quadratic twist of E. Mai and 

Murty [8] proved, assuming the Birch and Swinnerton-Dyer conjecture for 
all Ed's, that there exist infinitely many d such that Ed has rank zero 
and 

W(Ed) » N 1 ^ . 

As for the upper bound, one can prove [2] (assuming additionally the 
generalised Lindelof hypothesis) that for the same family Ed (of rank 
zero) one has 

№(Ed) « ATJ/4+£. 
2.8. NUMERICAL OBSERVATION. Let E(d) :y2 = x 3 - d2x (d > 1 an odd square-free 

integer) denote the congruent number elliptic curve. Let 

V(z)=q1/24f[(l-qn), 6 ( z ) = £ qn\ 
n=l n= —OO 

oo 

f(z) := V(8z)r,(16z)e(2z) = _ T o ( n ) 9

n . n=l 
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For E(d) 's of rank zero (assuming the Birch and Swinnerton-Dyer conjecture) we have 

(see [14]): 

where r(d) denotes the number of divisors of d. 
We have tabulated all odd square-free d's (d < 20000) such that rankE'(d) = 0 

and §UI(E(d)) = 1. The calculations led us to the following observation. Let 

CONJECTURE. Let n be a positive integer. Then n € B if and only if 9 f n. 

In this section we check Mazur's conjecture in a special case, which concerns the 
variation of rank E(l; t)(Q) with t € Q: either there are only finitely many t £ Q such 
that the rank of E(l; t)(Q) is positive, or else the set of all such t is dense in R. 

First, it is plain that (x, y) = (—2,5) is a point of infinite order on E(l; 5/24) : y2 — 
x 3 - 2 7 x - 2 1 . Also, ( -2 ,5 /24) is a point of infinite order on E : 54-32?/2 = x 3 - 2 7 x + 2 9 . 
Therefore, E(Q)nE(R)° is dense in E(R)°, and hence E(Q) contains points of infinite 
order of the form (q,k/l) with q e <Q>, k,l e Z , (k,l) = 1. Since the curves E(l;t) 
have no rational torsion points for a dense set of t € Q C R (use Section 1.2), we obtain 
the following result. 

THEOREM 3 . 1 . The set of all rational t such that E(l, t)(Q) has positive rank 
is dense in R. 

QUESTION. It would be interesting to have any information concerning the behaviour 
of rank E(Ao; d)(Q) as d e Z varies. One possible way is to study the variation of the 
root number in such a family using ideas from [11]. 
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