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ARITHMETIC ON CERTAIN FAMILIES OF ELLIPTIC CURVES

ANDRZEJ DABROWSKI AND MALGORZATA WIECZOREK

Consider a family of elliptic curves E(gy : y? =z +diAox +d3B (A, Ao, do fixed
integers). We prove that, under certain conditions on A and dp, the rational
torsion subgroup of E(p) is either cyclic of order < 3 or non-cyclic of order 4.
Also, assuming standard conjectures, we establish estimates for the order of the
Tate-Shafarevich groups as B varies.

INTRODUCTION

Let E:y> =23+ Az + B (A,B € Z, 4A3 + 27B? # 0) be a fixed elliptic curve
over Q. For each d # 0 let E4 be the elliptic curve Eq:y% = 2% + d?Az + d°B.

One can prove that for all but finitely many square-free integers d # 0, the torsion
subgroup of E4(Q) is one of (0), Z/2, Z/2® Z/2, and a necessary condition that Ey4
posseses Q-rational point of order greater than 2 is d | 443 + 2782 [10].

We shall prove that the Q-torsion subgroup of Egy : y? = z3+d} Aoz +d3B (Ao, do
fixed) is, under certain conditions on Ao and dy, one of (0), Z/2, Z/3, Z/2d Z/2
(Section 1). Let Np, Rp, and III(Ep)) denote respectively the conductor, the reg-
ulator, and the Tate-Shafarevich group (conjecturally finite) of E(py. Assuming the
Birch and Swinnerton-Dyer conjecture for all E(g) we prove that

N§/12—5 < Rp - um(E(B)) < N;/12+E

for infinitely many B (the lower bound is actually valid for all B) (Section 2). We also
comment on the behaviour of the order of I in other families of elliptic curves. In
section 3 we give some evidence for Mazur’s conjecture on the variation of the rank in
a family in a special case.

1. TORSION POINTS ON CERTAIN FAMILIES OF ELLIPTIC CURVES

1.1. CONSTRUCTION OF CERTAIN FAMILIES OF ELLIPTIC CURVES. We start with the
following well known result.
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PrOPOSITION 1.1.1. [12, Ex. 8.13(a), p.238] Let E/Q be an elliptic curve
over Q with a rational torsion point of order > 4. Then E has an equation of the form

(1) y? + uzy + vy = 23 + vz’

with u,v € Q.

The family (1) can easily be rewritten into the following equivalent form:

3 6 2

+ 2 v+lu2 3—luv v+ o2 +-1-v2
27 4 6 4 4 '
Let E = F(A,B): y>* =23+ Az + B (A,B € Z, 443 + 27B? # 0) be an elliptic -
curve. For each 0 # d € Z consider its quadratic twist

1 1 1
(2) E(w,v): y*=z+ (—lvz + (——u2 + —u)v - —u4>x

Eg: y? =2+ d®Az + d°B.

E; has a rational point of order > 4 if and only if it is of the form (2) with some
u,v € Q. In particular, we have

1602 + (8u? — 24u)v + (u* + 484d%) = 0.
Now
A, = (8u? — 24u)? — 416 - (u* +48Ad?) = 25(—6u® + 9u® — 48Ad?).
Hence A, € Q? if and only if —6u3 + 9u? — 48 Ad? = y? with certain y € Q if and only
if E(A;d): y? = z®— 27z — 54(32Ad? — 1) has solution in z,y € Q.

Note that E(A;d) is an elliptic curve if and only if A # 0.

PROPOSITION 1.1.2. Assume A # 0. Then E(A;d)(Q) = (0) implies that
the torsion part E(A, B),(Q),,,s is one of (0), Z/2, Z/3, Z/2® Z/2.

PRrROOF: Combine the above construction with Mazur’s theorem [9]. 0

1.2. TORSION PART OF E(A;d)(Q). Assume that E(Q),,., # (0); then we know [9]
that E(Q),,, contains only points of orders 2 or 3 or 5 or 7.

(a) Non-existence of point of order 5.

By [5] we know that E(A;d)(Q) contains a point of order 5 if and only if E(4;d)
is of the form

y?+ (1 - c)zy — cy = z° — cz?,  with some ¢ € Q,
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which is equivalent to

3 48( 1)* + c(c—l)]

. [227( et 2e-1) )3—%c(c—1)(—c+%(c—l)2) +ic2].

Comparing the coefficients we obtain

1 1 1
vy =2+ [——62 + gc(c -1)2-

—~(c=1)* +8c(c — 1) + 8c® — 24c + 2*3* = 0.

The above equation has no solution in ¢ € Q, hence E(A;d)(Q) contains no points of
order 5.

(b) Non-existence of point of order 7.

We know (5] that E(A;d)(Q) contains a point of order 7 if and only if E(A;d) is
of the form

V+(Q+t—tzy+ (E-)y=2>+ (t* -~ t*)z?, with somet € Q,

which is equivalent to
1 2 3 2 1 2 3
v =2+ (1+t—t) + (82 - t%) +2(1+t—t)( -tz
2 (1 2 )’
+[27( (1+¢—12)° + (82 t))
—%(%(1+t—t2)2+(tz—t3))(l+t—t2)(t2—t3)+%(t2—t3)2].
Comparing the coefficients we obtain

(14+¢— 1) +8(1+ 1t — %) (2 — 13) +16(£2 — 3)° - 24(1 + ¢ — £2) (2 = £3) —293% = 0

The above equation has no integer (hence rational) solutions.

(c) Points of order 3.

We have, similarly to [5], that E(A;d)(Q) contains a point of order 3 if and only
if E(A;d) is of the form

V+ary+by=22 (a,beQ),

which is equivalent to

1
2 _ .3
y .’B+< a+2ab)

1 6 3 3
27-32° 24“ b+ b)

i
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Comparing the coefficients we obtain an equation in a:
a'? — 2%¢° - 2%3%a® + 2°3%0° + 283%* — 21%35(1 - 2°d%A)a® - 2'23"% = 0.

In the case A =1 one checks the above equation has no rational solutions.

(d) Points of order 2.

E(A;d)(Q) contains a point of order 2 if and only if 23 — 27z - 54(324d%2 - 1) = 0
has solutions in z € Z. Certainly this is not the case for A=1, d = 2(mod 5).

1.3. FREE PART OF E(A;d)(Q). It is not difficult to calculate finite products of

the type f(z) = [1 (p~E(A;d)(Fp)), = big enough. One expects that the rank of
p<z
E(A;d)(Q) is zero if f(z) is bounded. To calculate the rank exactly one can use, say,

(pseudo)algorithms described in Cremona’s book [1], or an executable version of the
program from his ftp server. For example: rank E(1;2)(Q) =0, rank E(};7}(Q) = 1.

1.4. AN EXAMPLE. Take Ap = 1, dy = 2, and consider the family Eg) : y* =
z3 + 4z +8B. Considering the reduction modulo 5, and applying Proposition 1.1.2 and
[10], we conclude that

E(28)(Q)ors € Z/3 for B = 2,3(mod 5),
E25)(Q)iors C Z/2® Z/2 for B =0,1,4(mod 5),
E2841)(Q)0r = (0) for B = 0,4(mod 5),
E(2541)(Q)tors C Z/2® Z/2 for B = 1,2,3(mod 5).

Note however (by the Lutz-Nagell theorem) that E(py(Q) contains a point of order
2 ifand only if B=k(k2+1), k€ Z.

2. BOUNDS ON THE SIZE OF THE ORDER OF THE TATE-SHAFAREVICH GROUP

In this section we shall establish estimates for the orders of IH(E( B)) as B varies
(Theorem 2.4.1).

2.1. BOUNDS ON THE REAL PERIOD. Let 7o (E) denote the real period of E.
LEMMA 2.2.1. We have 7o, (E(Ao,B), ) >< B~%.

PRroOOF: Note that

Too (E(An, B)y,) = dg/ >0 (E(Ao, B)).

https://doi.org/10.1017/50004972700022322 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700022322

(5] Arithmetic of elliptic curves 323

Now

e Sy oy Y o

/°° dz <</°° dz <</°° dz < B-1/6
1 Vr3+ Az + B 1 VZ3+B 1 (z+ 31/3)3/2 ’
1 1
dz / dz —1/2
—_— <K — « B~Y2,
/_1 VIZ¥ Aoz + B 1 VB
-1 ~-B/3 -1
—d:z— — / +/ —dx— <& B~Y/6.
—o0 \/1:3 + Apz+ B —o00 -Bl1/3 \/.’123 + Agz + B

The above proves the “<«” part. For the “>>” part see [6, p.159]. 0

2.2. BOUNDS ON THE CONDUCTOR. Let
E(Ao,B)y, : ¥*=2°+djAo+d3B.

We have
A = —2%(4d5 A} + 27d§B?) <« B2.
Hence Ng = NE(AOxB)dD <« B2,
Now assume Agdg # 0.
. LEMMA 2.2.1. For infinitely many integers B we have Ng > B2.

PRroOF: Indeed, by Iwaniec’s work [4] we know that the polynomial 27z2 + a
(a fixed odd integer) takes infinitely many values of the form pyp,, (p;,p2 different
rational primes). The assertion follows. 0

2.3. AN UPPER BOUND FOR []7,.
LEMMA 2.3.1. We have

H mp = O(B*).

rINB

PROOF: Take a rational prime p | Ng. We obtain, using Tate’s algorithm [13],
that the corresponding Kodaira symbol is never of type I, (v > 0). Hence =, < 4,
and the assertion follows. a0

2.4. ESTIMATES ON THE ORDER OF III.
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THEOREM 2.4.1. Fix integers Ao, dy (Aodg # 0). Assume the Birch and
Swinnerton—-Dyer conjecture holds for all Egy = E(A,, B)d0~ Then

(a) Rp - MU(E(B)) > N;/lZ—e‘

(b) Assume additionally the generalised Lindel6f conjecture [3] for the family
E(Ao, B)y, - Then there exist infinitely many B such that

Rp -{LI(E ) < Nyt

PROOF:

(a) Using the above bounds and the Birch and Swinnerton-Dyer conjecture
for all E(Ayp, B)d0 , we have

Rp - {II(E)) > BYS~¢ » N3/~

(b) The generalised Lindelf hypothesis for L(E,s) implies L (E, 1) =
O(Ng) (see [3, p.154]). On the other hand ﬂ'oo(E(Ao,B)do) < B~s,
Also we have §E (Ao, B) 4, (Q);0rs < 16 by [9], and |11:’[ cp > 1.
pINg
The above estimates and the Birch and Swinnerton-Dyer conjecture for all the
E(Ag, B) 4, imply Rp - {III(Ep)) <« B/¢+c. By Iwaniec’s result we have Np > B?

for infinitely many B. The assertion follows. g

2.5. REMARK. Assuming additionally the Lang conjecture Rg > N, one can state
the result in the form:

Né/lZ—s <<ﬂU_I(E(B)) <<Né/12+e
for infinitely many B.

2.6. EXaMPLE. Consider the family E(B) : y?> = 2% + 12z + 16B, (B € Z). Here
A = 2833 (1 + B 2) , and one checks that the reduction is split multiplicative at all primes
p # 2,3. On the other hand, it is classical that every odd prime divisor of 1+ B? is of
the type 4k + 1. Hence, using [11, Propositions 1 and 3] we conclude that for infinitely
many B’s the root number e(E(B)) depends only on the local root numbers at 2 and
3. As a consequence we obtain that, at least conjecturally, the rank is even (maybe
zero) for infinitely many B'’s.

2.7. REMARKS.

(i) Part (b) of the theorem is consistent with the following conjecture of Lang.
Write E : y? = z3 + az + b, with a,b € Z; let H(E) = max(|al3, |b]?).
Lang [6] conjectures that

Rg -HII(E) < H(E)Y2 NN (log N,
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with some universal constant ¢, and ¢(N) - 0 as N — co.

The case A = 0. Note that E(0;d) is not an elliptic curve. Hence the
family E(O0, B)do cannot be treated by our method. Such a family was
studied from an analytic point of view in [7]; consequences for the order
of I (in a case E(d) : z° + y® = d, d cubic-free) are as follows:

N}g/&)—‘ < HII(E(d)) < N;Jf(j)*e

for infinitely many d.
The family E(Ag;d) (d € Z) also has interesting properties. Take, say,
Ao =1, and denote E(d) = E(1;d). One can show that for all d € Z

N;/(;f-f < fII(E(d)) - Rega) < N;,/(g;re.

Consider the family E(p) : y? = z® + pr (p prime = 7,11(mod 16)).
Then rank E(p)(Q) = 0 [12, p.311], and one can show (assuming the
Birch and Swinnerton-Dyer conjecture) that
Ne < HI(EP) < Ny

for all such primes.

Denote by E; (d square-free integer) the quadratic twist of E. Mai and
Murty [8] proved, assuming the Birch and Swinnerton-Dyer conjecture for
all Eg4’s, that there exist infinitely many d such that E; has rank zero

and
1/4—¢
fII{ Eq) > NEd .

As for the upper bound, one can prove [2] (assuming additionally the
generalised Lindelof hypothesis) that for the same family Fy4 (of rank
zero) one has

HIII(Eq) < Nglt*e.

2.8. NUMERICAL OBSERVATION. Let E(d) : % = z3 — d%z (d > 1 an odd square-free
integer) denote the congruent number elliptic curve. Let

nz)=¢’/*[[1-¢), ©@=Y ¢,

n=1 n=-co
£(2) := n(82)n(162)0(22) = ) _ a(n)q™.
n=1
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For E(d)’s of rank zero (assuming the Birch and Swinnerton-Dyer conjecture) we have
(see [14]):
_ la(d)|

T(d) ’

HIIT(E(d))

where 7(d) denotes the number of divisors of d.
We have tabulated all odd square-free d’s (d < 20000) such that rankE(d) = 0
and #III(E(d)) = 1. The calculations led us to the following observation. Let

= {d € N: d odd square-free, rank E(d) =0, jII{E(d)) = 1},

A:
B:={n€N: n is asum of digits of a certain d € A}.

CONJECTURE. Let n be a positive integer. Then n € B if and only if 9t n.

3. EVIDENCE FOR MAZUR’'S CONJECTURE

In this section we check Mazur’s conjecture in a special case, which concerns the
variation of rank E(1;t)(Q) with ¢ € Q: either there are only finitely many ¢ € Q such
that the rank of E(1;t)(Q) is positive, or else the set of all such ¢ is dense in R.

First, it is plain that (z,y) = (-2, 5) is a point of infinite order on E(1;5/24) : y* =
23 —-27x—21. Also, (—2,5/24) is a point of infinite order on E : 54-32y% = 23 —-272+29.
Therefore, E(Q)NE(R)® is dense in E(R)", and hence E(Q) contains points of infinite
order of the form (g,k/l) with ¢ € Q, k,l € Z, (k,1) = 1. Since the curves E(1;t)
have no rational torsion points for a dense set of t € Q C R (use Section 1.2), we obtain
the following result.

THEOREM 3.1. The set of all rational t such that E(1,t)(Q) has positive rank
is dense in R.

QUESTION. It would be interesting to have any information concerning the behaviour
of rank E(Ao; d)(Q) as d € Z varies. One possible way is to study the variation of the
root number in such a family using ideas from [11].
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