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Abstract

We construct an integrated probabilistic model to capture interactions between atoms
of a nanocomponent. We then use this model to assess reliabilities of nanocomponents
with different structures. Several properties of our proposed model are also described
under a sparseness condition. The model is an extension of our previous model based on
Markovian random field theory. The proposed integrated model is flexible in that pairwise
relationship information among atoms as well as features of individual atoms can be easily
incorporated. An important feature that distinguishes the integrated probabilistic model
from our previous model is that the integrated approach uses all available sources of
information with different weights for different types of interaction. In this paper we
consider the nanocomponent at a fixed moment of time, say the present moment, and we
assume that the present state of the nanocomponent depends only on the present states of
its atoms.
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1. Introduction

Over the past several years, nanoscience and nanotechnology have become two of the most
important fields at the forefront of physics, chemistry, engineering, mathematical science, and
biology. Nanoscience lies at the intersection of traditional science and engineering, quantum
mechanics, and the most basic processes of life itself. Nanotechnology, on the other hand,
encompasses how we harness our knowledge of nanoscience to fabricate nanocomponents and
nanosystems. The Greek word ‘nano’ meaning dwarf, refers to a reduction of size or time by
102, which is one thousand times smaller than a micron. Equivalent to ten angstroms, one
nanometer (nm) is one billionth of a meter.

In both fields, much attention has been given to the dual problem of designing nano-
components with novel physical properties and how they can be fabricated. Receiving less
attention has been the question of the nanocomponent reliability. Reliability measures the
ability of a nanocomponent to perform its intended function. Today, high reliability is necessary
to guarantee the advancement and utilization of nanocomponents due to the fact that they
account for a high proportion of costs of newly designed nanosystems and multiscale systems.
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Ebrahimi (2008), (2010) developed a Markov random field (MRF) model for capturing atom-
atom interaction. He then used this model to assess reliabilities of one-dimensional and two-
dimensional nanocomponents. One major problem with this model is that it ignores different
types of interaction that might exist between the atoms as well as features of individual atoms.
Note that we refer to a ‘nanocomponent’ as the component which is made of atoms.

In this paper we extend the MRF-based method to create an integrated approach that can
easily incorporate different types of interaction. We then use the proposed model to assess
the reliability of a nanocomponent. Throughout the paper, the reliability of a nanocomponent
is defined as the probability of surviving up to a known mission time or the present moment,
say 1.

The paper is organized as follows. In Section 2 we describe the integrated MRF model. In
Section 3 we study several properties of the model under a sparseness condition. In Section 4 we
apply the model to predict the limiting reliability of a nanocomponent using a variety of different
information as well as different structures for a nanocomponent under our sparseness condition.
We obtain bounds for reliabilities of nanocomponents under different structures in Section 4.
In this section we also provide the Gibbs sampler method to approximate the reliability of
a nanocomponent under different structures and implement it using the R package. Finally,
concluding remarks are given in Section 5.

2. Integrated MRF model

Consider a nanocomponent consisting of N atoms A = {1,2, ..., N}. Assume that there
are available a set of spatial locations {s;, i = 1, ..., N}, where s; = (u;, v;, w;) denotes the
location of atom i in space.

To indicate the state of each atom, define the nonnegative continuous random variable 7 (s; ),
where T (s;) represents the time that the atom atlocation s;, i = 1, ..., N,isdisplaced. Usually,
displacement of an atom occurs by switching or breaking a bond. There are many reasons for
breaking bonds between atoms. For example, microwave energy can break bonds. Generally
speaking, atoms form bonds to become more stable and be able to release energy. However,
breaking bonds requires energy. In this paper, the survival of the atom located at s; is defined

as the survival up to a known mission time or the present moment fg, i =1, ..., N.
We capture this by defining the binary random variables in terms of 7'(s1), ..., T (sy) and
to by
1, T(si) <1, .
X (si) = (51) < fo i=1,...,N.
0, T(s;) > to,

In the following X (s;) will be the random variable and x (s;) will be its observed value. Let p; be

the probability that the atom i is displaced before #g, i.e. p; = P(X(s;) = 1) = P(T'(s;) < 19),

i =1,..., N. Here, for simplicity, we assume that p; = p» = --- = py = p. The strength

of the bonds define p. If p is small then bonds are strong. If p is large then bonds are weak.
Without considering the interaction between atoms,

P(X(si) = x(s:). i =1,....N) = (%) 1-p",

where x = ZlN:l x(s;).

Suppose now that there are interactions among atoms. For a fixed site s, define a neigh-
borhood N*(s). Also, define a clique ¢ as any set of sites such that if s;,s; € ¢ then
s; is in the neighborhood of s;,s; € N*(s;), and, of course, s; is in the neighborhood of
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sj,8; € N*(s;). The MRF model provides a probabilistic framework for obtaining the joint
distribution of X (s1), ..., X(sn), p(x(s1),...,x(spn)) = P(X(s;) = x(s;), i = 1,...,N),
via a neighborhood system. Here the state of any random variable, say X (s;), is assumed to be
independent of all other random variables given those of immediate neighbors. More formally,

P(X(si) =x; | X(s;) =xjfori # j)=P(X(s;) =x; | X(s) =x5fors € N*(s7)).

The Hammersley—Clifford theorem asserts that the joint distribution p(x(s1), ..., x(s,)) is the
Gibbs distribution and factorizes over the cliques. That is,
1
px(st), ..., x(sy) = —expy— D He(x) ()
4 ceC

where Z is the normalizing constant, C is the set of all cliques, H, is the potential function
associated with clique ¢, and x. is the assignment of states to the members of ¢. For more
details, we refer the reader to Besag (1974). Since it is common to assign O potentials to all
cliques of size greater than 2, (1) reduces to

N
p(x(s1), ..., x(sy)) = %eXp{— 2} Hy(x(s;)) — Z Hy (x(s:), X(Sj))}~ 2
i= i,j

For our setup, let E be the set of all pairwise interactions among atoms. Clearly, there are
three classes of interactions in E: 1 < 1 interactions where both atoms are displaced, 1 <> 0
interactions where only one of the two interacting atoms has been displaced, and 0 < 0
interactions where neither atom is displaced. Let M, M>, and M3 be the total number of pair-
wise interactions for the above classes in E. One natural model for Z(i, e pH2(x(s;), x(s))
is —p1M1 — BaM, — B3 M3, where B1, B2, and B3 are the weights of the three classes of
interactions. It is clear that

Y Hax(si), x(s)) = —piMy — paMa — B3[|E| — My — M)
(i,j)eE

= (B3 — BUM + (B3 — B2) M2 — B3] E|,

where | E| is the number of elements in E. Thus, (2) reduces to

1 N
p(x(s1),....(sy)) = 7 exp{a Zx(s,') + (B — B3IM1 + (B2 — ,33)M2}7 3)
i=1

where o = log(p/q), Z; is a normalizing constant, and ¢ = 1 — p. A modified version of (3)
was considered in Deng et al. (2004) for the functional prediction of proteins.
Note that (3) can be written as

p(s1), ..., x(sn)) = (M((B1 — B3). (Ba — ) ' prg" ™
x exp((B1 — B3)M1 + (B2 — B3) M>), (4)
where x = ZlNzl x(s;) and M ((B1 — B3), (B2 — B3)) is the joint moment generating function of

Yi(N) = Z(i,j)eE X (si)X (sj) and Y2(N) = (Z(i,j)eE X(si)(1—X(s5)) +Z(i,j)eE X(sj) x
(1 — X (s;))) evaluated at §; — B3 and B — B3, and computed under the assumption that the
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X (s;)s are independent and identically distributed Bernoulli variables. It should be noted that
in (4) if 81 — B3 = 0 and By — B3 = 0, which implies that 8; = B> = B3 = 0, then we get
independence. Now, based on the general model (4), we have
P(X(s)=1]|X(sj), j=1,...,Nand j #i)
_expla+ (1 — BILY + (B2 — B3)LY)
1+ expla+ (B — BOLY + (B2 — LY}
_ pexp{(Bi — BOLY + (B2 — 3L
pexpl(Bi — BILY + (B2 — BLY} + g

&)

where L( " is the number of neighbors of atom i that are displaced and L(l) is the number of
nelghbors of atom i that are not displaced. That is,

L =#{j e N*(si): X(s;)) =1} and LY =#{j € N*(si): X(s;) = 0}.

Suppose that the weights of the three classes are such that 81 > > and 3 > B>. Then, from
(5), it is clear that if the number of neighboring atoms that are in state 1 increases, i.e. L
increases, then L decreases and, thus, the chance that atom i is in state 1 increases.

The followmg result provides useful bounds on the joint survival function and the joint
cumulative distribution function of X (s1), ..., X(sy).

Lemma 1. If 1 > B> and B3 > Ba, then
(@ P(X(sp) < x(s), i =1,....,N) > T/L, P(X(si) < x(si),
(b) P(X(s)) = x(si), i = 1, ..., N) = [T, P(X(s1) = x(50))

Proof. From (5), itis clear that X (s1), ..., X (sy) are conditionally increasing in sequence.
It follows immediately from Theorem 4.7 of Barlow and Proschan (1981) that they are associated
and, hence, the results follow.

3. Limiting results under the sparseness condition

For many nanocomponents, the number of atoms N is very large and it is very unlikely that
an atom will be displaced, i.e. p approaches 0. In this section we give limiting results for our
proposed model (4) when N — oo and the random variables X (s;) which equal 1 are, in a
sense made clear below, sparse.

The sparseness condition which we impose is

Np> = A (6)

for some A > 0 when N — o00. A similar condition was used in Ebrahimi (2008) to establish
his limiting results. Intuitively speaking, condition (6) simply says that Np? remains fixed at
A > 0 or Np? approaches A > 0 if the number of atoms is large and the bonds between atoms
are very strong.

From (6), it is clear that p ~ VA / \/N and, thus,

Np(l—p)%N%O—%):ka—)\—)oo as N — oo.
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Now we have the following theorem. It should be noted that the sparseness condition
provided in (6) is a sufficient condition for obtaining Theorem 1 below and subsequently the
limiting reliability in Section 4.1. There might be other sparseness conditions different from
(6), where Theorem 1 is still valid.

Theorem 1. Suppose that 1 = B = B3 =0, p —> 0, N — 00, and that condition (6) holds.
Then,

@ YI(N) = X jrer X6)X(s)) 5 Y1,
®) V2(N) = Y jyer[X () (1 = X (/) + X (s)(1 = X ()] 5 Y,

where Y1 is a Poisson random variable with expected value La, (Y» — E(Y2))/+/var(Y») is the
standard normal, and Y| and Y, are independent. Here a = #{j € N*(s;)}, i = 1,..., N,
E(Y2) =2aNpgq, var(Y2) = aNpqgl[(1 —4pg)(a+ N) +4pq], and L denotes convergence
in distribution.

Proof. If B1 = B> = B3 = 0 then the variables X (s;) are independent and identically
distributed Bernoulli random variables having success parameter p. Now part (a) follows by
using Theorem 1 of Saunders et al. (1979). To prove part (b), it is clear that

E(X(si)(1 — X (s7)) + X(s;)(1 = X(s7))) = 2pq,

var(X (s)(1 — X (s;)) + X (s;)(1 — X (s5;))) = 2pq — 4p*q?,

cov(X (s)(1 = X (s;)) + X (s;)(1 = X(s5:)), X (s:)(1 = X(s5,7)) + X(s;,)(1 = X(s:)))
= pq’ + p’q — 4p’°q’
=pqg —4p*q*.  j.j € N*(sp).

and

cov(X (s)(1 = X (/) + X (s))(1 = X(s1)), X (s)(1 = X(57)) + X (5)(1 = X (5,)))

=pq—4p°q>,  j € N*(si) and N*(s;).

It follows that
E(Y2(N)) =2aNpg (7N

and
var(Y2(N)) = aNpq[(1 —4pg)(a + N) +4pq]. ¥

The result follows from Bloemena (1964), and (7) and (8).
Also, the result Y] and Y, are independent comes from the fact that

P(X(s)X (s;) = 0, X(s:)(1 — X (5)) + X (s))(1 — X (5;)) = 0)
=P(X(s;) = 0)P(X(s;) = 0)
ey q2
~ (1 - p*)(1 —2pq)
=P(X(5)X(sj) = 0) P(X (s:)(1 — X (5)) + X (s,))(1 — X (5;)) = 0).

This completes the proof.
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Using Theorem 1, we can replace M ((81 — B3), (B2 — B3)) in (4) by

M((B1 — B3), (B2 — B3)) = exp{—ha + raexp{fi — f3}}
x exp{(B2 — B3) E(Y2) + 3 (B2 — B3)* var(Y2)} 9)
if condition (6) holds. In (9), E(Y>) and var(Y>) are given by (7) and (8), respectively.
We note that, for our proposed model (4), when the sparseness condition holds,
P(X(@)=1|X(s;), j=1,....,N, j#i)
Viexpl(Bi = BILY + (B2 — B LY}
Vrexp{(B1 — BILY + (B2 — BILG} + VN — Vi

=0. (10)

~

4. Assessing the reliability of a nanocomponent

In this section we focus on two types of nanocomponent. Both describe the relationship
between the reliability of a nanocomponent and its atoms at #y. Recall that the reliability is
defined as the probability of survival up to the known time 7.

Type I. We assume that the nanocomponent survives if none of the atoms are displaced.

Type II. We assume that the nanocomponent survives if at least k¥ atoms out of N atoms are
not displaced or at least one of the neighbors to each of these k atoms is not displaced. For the
special case that k = N, the nanocomponent survives if any atom or some of its neighbors are
not displaced. For k = 1, the nanocomponent survives if there exists at least one atom such
that either this atom or some of its neighbors are not displaced.

It should be noted that both Type I and Type II nanocomponents can be one-dimensional,
two-dimensional, or three-dimensional. For definitions of one-dimensional, two-dimensional,
and three-dimensional nanocomponents, see Ebrahimi (2010).

As an example, consider a molecular bridge. Suppose that there are N atoms holding the
bridge. Clearly, if certain numbers of these atoms disassociate from the bridge then the bridge
will fail.

For the Type I nanocomponent, under our proposed model (4), the reliability is

Ri(N, p, Bi, B2, B3) =P(T(s;) > 19, i =1,..., N)
=P(X(s;)=0,i=1,...,N)
=gV MBI - B3, B2 — Ba).

For the Type Il nanocomponent, let V; be the event that the atom located at s; and its neighbor

are both displaced by time 7y, and let Vl.’ be the complement of V;, i = 1,..., N. Also, let
Q(k, N) be the set of locations s;, ...,s;, suchthat 1 <i; <ip <--- <ix < N. Itisclear
that the reliability is
Rz(N,P,k,ﬁl,ﬁz,/%):P( U (vi’lmvi;m.--mv,.p). (1)
Qk,N)
Note that we do not need to include the remaining N — k in (11) since they are represented by
terms of the form --- N (Vi , UV )N -
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If we define Y;* = X (s;) HjeN*(s,-) X(sj),i=1,...,Nand Wy = N — Z —, Y. Then,
we can easily show that (11) is equivalent to

N
RZ(Nv p7k7 ﬂlv ﬁ27 ﬂ?ﬂ) :P(WN Ek) =P<ZY1* < N_k>

4.1. Assessing limiting reliabilities of Type I and Type II nanocomponents under the
sparseness condition

In this section we provide limiting reliabilities when the number of atoms is very large
(N — 00) and displacement of an atom is very rare.

The following result gives reliabilities of Type I and Type II nanocomponents under the
sparseness condition.

Theorem 2. If N — 0o, p — 0, and Np> — A, then

@ Ri(N, p,B1, B2, B3) = q" [exp{—Lra + raexp{pi — B3}}

x [exp{Ba — B3} E(Ya) + (B2 — B3) > var(¥)]]
(b) Ry(N, p,k, B1, B2 B3) =1.

Here E(Y>) and var(Y;) are given by (7) and (8), respectively.

Proof. Part(a)follows from Theorem 1. For part (b), first take k = N and assume sparseness:

Ry(N, p, N, Bi, B2, B3) =P (max X6 J] X(s,>—0>

JEN*(s)
_P(X(si) I1 X(sj)=0>
JEN*(s)
=1—P<X(si) ]_[ X(sj)=1>
JEN*(s1)

=1-P(X(s))=1] X(sj) =1, j € N*(5:))
xP(X(s;) =1, j € N*(s;))
=1.

The last equality comes from (10).
The last equality above implies that Ry (N, p, N, B1, B2, B3) = 1, which in turn implies that

RZ(N9 p, k7 181’ :329 133) > R2(Nv p, N7 ,319 ,829 ,33) = 11
and this completes the proof.

As an application of Theorem 2, suppose that §; = 3 = 1, f = 0.9, N = 1000, a = 5,
and p = 1073, Then, from (7) and (8), E(Y>) ~ 0.1 and var(Y>) ~ 50. Now, from Theorem 2,

Ri(N, p, B1, B2, B3) =~ exp{—0.01}[exp{—0.01 + 0.25)17 ' = exp{—0.25} = 0.78.

This means that a Type I nanocomponent with this specification has a reliability of 0.78. Here
a Type II nanocomponent has a reliability of 1.
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4.2. Bounds for reliabilities

It is clear that in general it is possible to assess the nanocomponent reliability provided
that we can specify all the parameters in (4). However, such information may sometimes be
unavailable or difficult to obtain. Thus, in many practical situations it is desirable or necessary
to check whether or not the reliability of the nanocomponent meets a given specification when
some of the parameters are known. If a lower bound in the foregoing already meets or exceeds
the reliability, then we know for sure that the system meets the specification. As mentioned,
such conclusions are gratifying, particularly when evaluations of R{(N, p, B1, B2, f3) and
R>(N, p, k, B1, B2, B3) are not feasible.

The following theorem gives bounds for Ry (N, p, k, B1, B2, B3) and R2(N, p, B1, B2, B3).

Theorem 3. If 81 > By and B3 > B, then

(@ Ri(N,p, B, B2 B3) > q",
k

b) Ry(N, p,k, B1, B2, Bz, k) >
(b) R2(N, p,k, B1, B2, B3, k) QH(}(%}IP\(])JH

(1 __PPexplBr - Br)aliy)) )
g + pexp{(B1 — Ba(ij})’

where a(i) is the number of atoms neighboring the atom located at s(i ;).

Proof. Part (a) follows from Lemma 1. To prove part (b), following Barlow and Proschan
(1981, pp. 29-31), from (11) and the fact that Y7", .. ., Y;(, are associated, we obtain

k
* * *
Ro(N, pok, fr. P2, f3) = max P(Y =0,....¥j = 0) = max ,HIP(Y” =0). (12)

Now, for any i,

P(Y=0)=1-P¥ =1

=1—P<X(s,-) ]_[ X(sj)=1>

JEN*(si)
—1- P(X(si) —1 ) [T x6p= 1) P< [T x6p= 1)
JEN*(si) JEN*(si)

__rexp{(B1 — pa)a@)}
g + pexp{(B1 — B2)a(i)}

_PPexp{(Bi — B2)a(i)
q + pexp{(B1 — f2)a(d)}’
The result follows by replacing P(Y = 0) in (12) with (13). Note that the third equality in

(13) comes from (5). !

P(X(sj) =1, j € N*(s:))

(13)

In Theorem 3, ifa(i) = a, i =1, ..., N, then the second part of Theorem 3 reduces to

p?exp{(B1 — B2)a} )k
g+ pexp{(B1 — B2)a} )
For example, if 81 =2,8, =1, p=0.1,a =2,and k = 5, then

Ry(N, p,k, B1, B2, B3) > <1 -

Ra(N, p. k., B1, Bo, B3) = (1 (00D N o ¢
2 7p7 ’ 1, 2 3 - 09+0162 ~ 0.
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This means that, for a Type II nanocomponent with this specification, the reliability is at
least 0.80.

4.3. Assessing reliability for the nonsparse case

In this section we use the Gibbs sampler to approximate the reliabilities of Type I and Type II
nanocomponents. See Casella and George (1992) for more details about the Gibbs sampler.
For this, we first generate observations from the joint distribution of X (s1), ..., X (sy) given
in (4). The algorithm and how to implement it are described below.

(a) Randomly set the value of X (s;) withP(X(s;) =1)=p,i=1,..., N.
(b) For a given atom, say atom i located at s;, update the value of X (s;) using (5).
(c) Repeat step (b) a specific number of times until all conditional probabilities are stabilized.

Now, to approximate R1(N, p, B1, B2, B3), repeat steps (a)—(c) several times, say n times,

to generate samples of size M from X (s1), ..., X(sy). Now, if M is the number of times
that X (s1) = --- = X (sy) = O then the approximate reliability of a Type I nanocomponent is
Mi/M.

Now to approximate the reliability of a Type II nanocomponent, suppose that M» is the
number of times that Wy is greater than or equal to k. Then, R2(N, p, k, B1, B2, B3) can be
approximated by M>/M.

Our proposed algorithm was implemented using the R program. A description of this
algorithm, which is referred to as ‘nano’, is given next.

Algorithm 1. (nano(N, p, betal, beta2, beta3, neighbor, k, burnin, lag, n).)
Description. A function to compute the reliabilities of Type I and Type II nanocomponents.

Parameters. N: the number of atoms (an integer).
p: probability p in (5) (a numeric).
betal: parameter f; in (5) (a numeric).
beta2: parameter B, in (5) (a numeric).
beta3: parameter B3 in (5) (a numeric).
neighbor: the neighbors of each atom (a list of length N).
k: k in the computation of the Type II reliabilities (an integer).
burnin: burn-in period (an integer).
lag: lag period (an integer).
n: the number of iterations (an integer).

Return. OBS: the sample matrix with each row denoting one sample.
typel: the reliability for a Type I nanocomponent.
type2: the reliability for a Type II nanocomponent.

Subroutine.
1. Randomly set the values of X (s;) with P(X(s;) =1)=p,i=1,...,N.
2. For a given atom, say atom i located at s;, update the value of X (s;) using (5).

3. Repeat step 2n times.
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4. Select samples using the burn-in and lag periods, getting samples of size

. (n—burnin— 1)
M = integer| —— | + 1.
lag
(a) Compute M, the number of times that X (s;) = --- = X(sy) = 0; typel is then
Mi/M.

(b) In each sample, for each atom i, compute Y;, the product of the status of atom i
and the status of its neghbors, and further compute Wy = N — lev(Yi).

(c) Compute M», the number of times that Wy > k; type2 is then M/ M.

Code.
nano<—function(N,p,betal beta2,beta3,neighbor,k,burnin,lag,n)
{
if(N!=length(neighbor)) cat(“neighbor structure is wrong...")
else
{
cp<—function(prob,b1,b2,b3,11,10)
{x«—prob*exp((b1-b2)*11+(b2-b3)*10); y<—x+1-prob; x/y}
L<«rbinom(N,1,p); CP<«rep(p,N); M <«<—matrix(ncol=N,nrow=n);
for(j in 1:n) {for(i in 1:N) {L1<«—sum(L[neighbor[[i]]]); LO<-length(neighbor[[i]])-L1;
CP[i]<«—cp(p,betal,beta2,beta3,.1,L.0); L[i] «—rbinom(1,1,CP[i])} M[j,]«-L}
OBS <—M[c(burnin+1,burnin+1+(1:as.integer((n-burnin- 1)/lag))*1ag),];
row.sums <—apply(OBS, 1,sum); WN <«vector();
for(i in 1:nrow(OBS)) {V «vector();
for(j in 1:N) V[j]«—OBS[i,j]*prod(OBS[i,neighbor[[j]1]);
WN[i]<«-N-sum(V)}
return(list(OBS=0BS, type | =length(which(row.sums==0))/length(row.sums),
type2=length(which(WN >= k))/length(WN)))
1

As an application, we give the following example.

Example 1. Consider a nanocomponent consisting of six atoms, i.e. N = 6. For atoms
1,2,..., 6, suppose that their corresponding neighbors are {2, 3}, {1, 3,4}, {4, 5, 6}, {3, 4, 5},
{1,2,3,4}, and {1, 5}, respectively. Also, welet p = 0.8, 81 =2,8, =1, =3,k =3,
burnin = 100, lag = 10, and n = 5000. Run ‘nano’ as nano(6, 0.8, 2, 1, 3, neighbor, 3, 100, 10,
5000). The results are: typel = 0.4 (Type I nanocomponent reliability), type2 = 0.569 387 8
(Type 1I nanocomponent reliability). Here, M = 490. We can also compute the (1 — «)%
confidence intervals for the reliabilities of Type I and Type II structures using the equations

M, M1 — M /M)/M an M> My(1 — M/ M)/ M

— =+ d —&+
M Za/2 M M Za/2 M

respectively. In this example, the 95% confidence intervals are (0.38, 0.42) and (0.55, 0.59)
for the reliabilities of Type I and Type II, respectively.

’

5. Conclusions

In this paper we have proposed a model to capture interactions between atoms of a nano-
component which is an extension of the model in Ebrahimi (1998). We studied several properties
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of this model. We then used these properties to assess reliabilities of nanocomponents with two
different structures for a known mission time or the present moment #y.
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