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Magnus [4] proved the following theorem. Suppose that F is a free
group and that X is a basis of F. Let R be a normal subgroup of F and
write G = F/R. Then there is a monomorphism of F/R’ in which

; ) (x € X);

xR — (xR O)
here the ¢, are independent parameters permutable with all elements of G.
Later investigations [1, 3] have shown what elements can appear in the
south-west corner of these 2x 2 matrices, In this form the theorem sub-
sequently reappeared in proofs of the cup-product reduction theorem of
Eilenberg and MacLane (cf. [7,8]). In this note a direct group-theoretical
proof of the theorems will be given.

Let m be a non-negative integer distinct from 1. If T is a group, IT™
denotes the group generated by the m-th powers of the elements of T'; in
particular if m = 0, 7™ = 1. Let A = Z/mZ and denote by AT the group-
ring of T with coefficients in A. As above let F be a free group with basis X
and let R be a normal subgroup of F. Let G = F/R and let u be the epimor-
phism of AF onto AG induced by the natural epimorphism a — aR of F
onto I'/R. Let M be a free AG-module having a basis in (1,1) correspondence
x> t, with X. The Abelian group R/R'R™ can be regarded as a AG-module
by putting

(@aR'R™)*# = b~1gbR’'R™ (aeR,beF).

It is well-known that the augmentation ideal of AF is a free AF-module
with basis the set of all z—1 (z € X). The differential notation of Fox [1]
will be used, and we write

(1) a=as+ > (x—1) da

3 = (a € AF),
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where ¢ is the augmentation of AF onto A. From (1) it follows easily that

0(ab) — ob n 3ab
ox as)% ox

(2)

A mapping « of F into M is defined by
(3) ax = > t, ( )
zeX

Using (2) it is seen that forae F, be F,

(4) (ab)o = () (bpu)+ b

Hence the restriction of « to R is a homomorphism of the group R into the
additive group M. The kernel of the restriction of « to R contains R'R™
since M is an Abelian group of exponent m. Hence « induces a homomor-
phism & of R/R'R™ into M. In fact a is a AG-homomorphism, for if 2 € R
and be F,

{(@R'R™)*"& = (b-*ab)«

— s, (u%bl b+—b+%)

zeX
= (aa) (bu),

on account of (2). The above theorem of Magnus is a consequence of the
following.

THEOREM. If A is the augmentation ideal of AG and fi is the AG-homo-
morphism of M into A for which i G = xu—1,

0—>R/IRR" 5 M5 4 50

s an exact sequence of AG-modules.

For each g e G choose a fixed element s, € F such that s,u = g and
s, = 1. If we write

(5) Sgsh = syhrg,h (g € G' h € G)’

then 7, ,e R and 7, , =7, ,; = 1. For each g ¢ G a A-homomorphism 6,
of 4 into R/R'R™ is defined by putting

(6) (h—1)0, =7, ,R'R™ (heG).
It is readily verified that 6, = 0 and
(") uby = (10,)"(ug)0, (wed);

indeed it suffices to verify this when #-}-1 € G on account of linearity, and
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in this case it is an immediate consequence of the fact that », , R'"R™ is a
cocycle.

Now let NV be the set of ordered pairs (aR'R™, u) with ae R, ue A. We
give N the additive group structure of the direct sum of R/R'R™ and 4.
However N will be given a AG-structure different from that of the direct
sum. Namely, if g € &, we put

®) (@R'R™, u)g = ((@R'R™)7(u 0,), ug).

The relation (7) ensures that N becomes a AG-module with this definition.
It will next be shown that for a e F,

O 3 (eRRm @) () 6= (SRR 1))

reX o

(Note that this makes sense since s;;a € R and (a—1)u e 4). (9) will be
proved by induction on the length of a relative to the basis X. If this is 1,
we observe that (9) is clear for 2 € X; if a7 € X, the left-hand side of (9) is

— (534,84 R'R™, (a7 —1)u) (ap)

= (ar -1y auS alR R™ 1—alu)(au) by (5)
= ((ra lu,ap ;;aR Rm){(l'—aul/‘) ea,u}’ u:u_l) by (8)
= (sguaR'R™, ap—1), by (6)

which is the right-hand side. To complete the proof of (9) it suffices to de-
duce its validity for b from that for a and 4. We have

WEX(S;}“’R'R’", (@—1)u) (a(;;)) Iz
:mezx(s;;}xR'Rm» (x—1)u) {(g—;) e (bp) + (Z—i) u} by (2)

= (szpaR'R™, (a—1)u) (bu)+ (55, 6R'R™, (b—1)u) by assumption
= ((b71s5,abR'R™)((a—1)ub,,), (ab—b)u)

+ (s b,}bR R™, (b—1)u) by (8)
— (Fapoal5520) (0320 R'R™, (ab— 1)) by (6)
= (s (ub)ﬂabR R™, (ab—1)u), by (5)

as required.
A AG-homomorphism y of M into N is defined by putting

tyy = (S;uxR'R™, (x—1)u).
Thus (3) and (9) show that
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any = { 2t (2-2) M} y = (sauaR'R™, (a—1)u).

reX

Two special cases should be noted. Firstly, if a = s,, then au = g and we

obtain
(10) s,y = (1, g—1).
Secondly, if a € R, au = 1 and s,, = 1; hence

awy = (aR'R™, 0) (@ € R).

It follows at once that & is a monomorphism.
Next we define a A-homomorphism ¢ of 4 into M for which (g—1)p =
s,«. Then (10) gives

upy = (1, u) (weAd).
Hence forae R, ue A,

(11) (an+up)y = (aR'R™, u).
We now define a mapping § of N into M by putting
(aR'R™, u) = (aR'R™)a+up.

Thus (11) states that gy is the identity mapping.
Finally we prove that y§ is the identity mapping. Note that g is a
AG-homomorphism, for by (8)

{(GR'R™, u)g}f —{(@aR'R™, u)f)g = ub,at (ug)p— (4 9)g,

and the vanishing of the right-hand side is easily verified in the case when
u+1 € G by applying « to (5). Hence it suffices to prove that ¢,y = {,, and
this readily follows from the definitions of y, § and «.
g and y are therefore AG-isomorphisms and so it suffices to prove that
the sequence
0>RIRR*" 2 N% 450

is exact. But B is the mapping of N into A which carries (aR'R™, u) into
#; to see this write (@R'R™, u)y = and observe that y» = i since
t,yv = (#—1)u =t . On account of (11) &y carries aR’'R™ into (aR'R™, 0).
Hence the above sequence is exact and the theorem is proved.

The theorem has numerous consequences. For example Theorem 2.5 of
[5] can be deduced from it. We prove this in its local form; cf. [2].

CoROLLARY 1. Suppose that F is a non-cyclic free group and that R is a
non-trivial normal subgroup of F. Suppose that there exist a prime p, an in-
teger n =1 and an element s of F such that [a,s,-+-,s]€ R'R? for all a e R.

[NS——

Then the ovder of sR is a power of p. n
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Suppose that this is false. Let F be the group generated by s and R.
For each ¢ = 0 let S; be the subgroup generated by R'R? and all [a,s, - - -, s]
(@ € R). Thus —
R=5,=285,=--=8§5,=RR",

Since s centralizes S,_,/S;, F/R'R? is nilpotent. We define a subgroup F,
as follows. If sR is of finite order, let F,/R be a subgroup of the group
generated by sR of prime order not equal to p; thus F;/R’'R? is Abelian.
If sR is of infinite order let F, be the centralizer of R/R’R? in F. It is easy
to see that F, is of finite index in F, so that F; - R. In either case F,# R
and F,/R'R?is Abelian. On account of the hypotheses R is non-cyclic. Hence
a basis X, of I, contains more than one element. We apply the theorem to
the basis X, of F;. Thus if x and y are distinct elements of X;, [, y]x = 0.
If 2 = [z, y], then xy = yxz, so by (4),

(wa) (yu) +yo = (ya) {(@z)p}+ () (22) + 2.

Since za = ¢, yu = ¢, and za = 0, this reduces to

whence zx = 1 and # € R. Hence X, C R contrary to R+ F;.

The following consequence of the theorem was deduced from the
exact homology sequence by Roquette [6] in his proof of a theorem of
Golod and Safarevic.

COROLLARY 2. Suppose that G is a finite p-group and that (G : G'G?) = p°.
Suppose that F is a free group of rank d and that G is isomorphic to F|R.
Then the augmentation ideal of (Z|pZ)G is isomorphic to MK, where M is a
free (Z|pZ) G-module of rank d and K is a submodule generated by r elements,
where pT = |H,(G, Z/pZ)|.

Since (G :G'G?) = p* and 4 is the rank of F, R < I’F?. Hence
H,(G, Z|pZ) is isomorphic to R/[R, F]R?. Hence R/[R, F]R” is generated
by 7 elements, so R/R'R? is generated as a (Z/pZ)G-module by 7 elements.
The result then follows from the theorem at once.
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