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CHARACTERISATION OF THE
SUB-RIEMANNIAN ISOMETRY GROUPS OF H-TYPE GROUPS

KANG-HAI TAN AND XIAO-PING YANG

For a H-type group G, we first give explicit equations for its shortest sub-Riemannian
geodesies. We use properties of sub-Riemannian geodesies in G to characterise the
isometry group ISO(G) with respect to the Carnot-Caratheodory metric. It turns
out that ISO(G) coincides with the isometry group with respect to the standard
Riemannian metric of G.

1. INTRODUCTION

For a if-type group G, the aim of this paper is to study in detail some properties of
its shortest sub-Riemannian geodesies and to give a full characterisation of the isometry
group with respect to the Carnot-Caratheodory metric.

The Lie groups of H-type are first introduced by Kaplan in [11]. Let G be a Carnot

group (see [7]) of step 2. That is, G is a simply connected Lie group whose Lie al-
gebra Q admits a nilpotent stratification of step 2: Q — Vi © V2, and [Vi, V\] = V2,
whereas [Vi, V2] = 0. From the definition, the centre of G is exp(V2) where exp is the
exponential map which is a global diffeomorphism. We assume that a left-invariant
Riemannian metric (•,•) is given on G for which Vi,V2 are mutually orthogonal. We
denote by H-type groups the subbundle spanned by the system of left-invariant vec-
tor fields {Xi,... ,Xmi} such that {Xi,... ,Xmi} is an orthonormal basis of Vi where
mi = dim(Vi). From the stratification condition and the Chow connectivity theorem
([6]), the structure of [H-type groups, (•,•)) induces the so-called Carnot-Caratheodory
metric dc: for any p,q € G,

where the infimum is taken over all horizontal curves 7 connecting p to q, that is, all
absolutely continuous curves joining p and q whose derivatives are in H-type groups
almost everywhere. dc is left-invariant, that is, dc(pop,poq) — dc(p,q) for any po,p,q G G,
and is 1-homogeneous with respect to the natural dilations, that is dc(6sp, 6sq) = sdc(p, q)
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for any s > 0,p,q € G, where Ssp = exp(s£i + s2£2) for p = expfo + £>),& e Vt. A
horizontal curve is called a sub-Riemannian geodesic if it locally realises the Carnot-
Caratheodory distance. We call G is a H-type group if G is a Carnot group of step 2 and
moreover its Lie algebra Q satisfies the following statement: for every r\ 6 V2, such that
\q\ = 1, the map J{rj) : Vi -» Vi defined by

is orthogonal. The simplest H-type group is the Heisenberg group H" (see [23]) which
is, by definition, simply R2n+1, with the noncommutative group law

(1.2) PP' = (x,y,t)(x',y',t')= (x + x',y + y',t + t' + ±((x',y)-(x,

where we have let x,x',y,y' € Rn,t,tf € R. A simple computation shows that the left-
invariant vector fields

and T = — span the Lie algebra (R2n+1) of HI". Moreover \XhXn+k) = -T6jk,j,
k = 1 , . . . , n, and all other commutators are trivial. Note that for the Heisenberg group
H" which is endowed with a Riemannian metric (•, •) such that {Xi,... ,X2n+i,T} is an
orthonormal basis, the map J defined by (1.1) can be explicitly written:

3

J(T)Xn+i = Xi

for i = 1,. . . ,n.
H-type groups appear naturally in the Iwasawa decomposition of semisimple Lie

groups of real rank one. Since they were introduced in [11] by Kaplan, many authors
have contributed to analysis and geometry on these groups, see [5, 12, 13, 14, 15, 16,
20]. In [12] Kaplan studied the Riemannian geodesies and characterised the isometry
group with respect to the Riemannian metric (•, •). In [13, p. 33-p. 35] Koranyi gave
an explicit description of sub-Riemannian geodesies. What we are interested in is how
to characterise shortest sub-Riemannian geodesies. In fact, in analysis on H-type groups
the most useful information for sub-Riemannian geodesies is the explicit equations for
shortest sub-Riemannian geodesies, see [2, 3, 20, 24] for applications in the Heisenberg
group. In the case of the Heisenberg group, [20] listed without proof the explicit equations
for the shortest sub-Riemannian geodesies, and [2, 3] independently gave proofs. But the
proofs of [2, 3] are not trivial. In this paper, we present a direct and simpler proof even
for H-type groups and explicitly give equations of shortest sub-Riemannian geodesies
(see Theorem 2.3).
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Next we shall use properties of sub-Riemannian geodesies to give a full characterisa-
tion of the isometry group of sub-Riemannian isometries. A sub-Riemannian isometry of
G is a map f : G -t G such that dc(f(p), f(q)) = dc(p, q) for any p,q € G. Note that in
this case, since dc is not smooth (see for example [9, 4 , 2]), we cannot use the method in
[12]. We shall prove that the sub-Riemannian isometry group coincides with the isome-
try group for the standard Riemannian metric (•, •) (see Theorem 3.4 and Theorem 3.5).
Our proof essentially depends on two facts on shortest sub-Riemannian geodesies (see
Corollary 2.5). One is that a geodesic is globally shortest if and only if it is a ray. The
other is that there are infinitely many shortest geodesies connecting two given points p , q
if and only if p ~ l • q is in the centre of G.

NOTATIONS. The letter G will always represent a H-type group. We use p,q,p',q',Po,
(?o,..- to denote elements in G; adopt £,£',£°,W, W0,... to denote elements in Q and
fi,f{,£? elements in Vx while &,&>$! i n vi- W e s h a 1 1 w r i t e P = ( f i (p) ,6(p)) or
p — (£1,62) when no confusion will be caused. The unit element of G is denoted by
0. Let G* := G\exp(V2) be the set of all elements of the form p = (6(p) ,0) . If p € G*
we shall sometimes use sp to denote S3p.

2. P R O P E R T I E S O F SUB-RIEMANNIAN GEODESICS

This section is devoted to studying some properties of sub-Riemannian geodesics
in / /- type groups. The equations of sub-Riemannian geodesics can be easily deduced
from the Maximum Principle of Optimal Control Theory. That is, every sub-Riemannian
geodesic must satisfy a Hamiltonian equation determined by the horizontal bundle H-type
groups. It is clear that every sub-Riemannian geodesic is smooth (see for example[19]).
In [13] Koranyi also found the equations of sub-Riemannian geodesics by minimising
the arc length functional among the curve family of horizontal curves joining two given
points. The two methods are equivalent. The existence of shortest sub-Riemannian
geodesics can be easily inferred from [8, Theorem 1.10]. What we are concerned with
is the uniqueness of shortest sub-Riemannian geodesics. For more on the theory of sub-
Riemannian geodesics in general sub-Riemannian manifolds we refer to the book [21].

Our theorem is based on the following statement developed by Koranyi in [13].

PROPOSITION 2 . 1 . (Equations of sub-Riemannian geodesics.) Given a point

Po — (^11^2) (Po 7̂  0) in G, the equations of sub-Riemannian geodesics y(s)

- (6(s)>&{s)),s € [0,1] connecting 0 to p0 are:

(1) IfQ = 0, tien

(2.1) 6(s) = stf, 6(s) = 0.

(2) If $ ^ 0, tiien, with the notation T^ = $ / | $ | ,
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6(s) = (cos(sr) -

(2.2) t2(s) = \(ST-sm

(2.3)

where T is a positive solution of

1-cosr

r-sinr 4|#|

and Wo is determined in the case £° ̂  0 by

(2.4) e? = (cos r - 1)Wo + sin r(J(TQ)WQ)

while in the case f ° = 0, Wg is subject only to the condition

(2.5) 2|f2°| = (T-sin7-)|Wo|2

and otherwise arbitrary. Tie length of the sub-Riemannian geodesies is

(2.6) T|WO|.

Let H(T) — (1 - cos T)/(T — sin r). We consider the distribution of solutions in [0, oo)

of the the equation

(2.7) ,I(T) = c

where c G [0, oo). The following lemma is elementary but paramountly important for the
proof of Theorem 2.3.

LEMMA 2 . 2 . For 0 ^ c < oo, we have

(1) ifc = 0, tie solutions of (2.7) are r = 2kn, k - 1,2,... .

(2) if c > 0, then (2.7) has finitely many solutions and all of them are in
(0, +oo). Moreover, (2.7) has only one solution in (0,2n) if and only
if /(2(TT -9)) < 0 where 0 = arctan(-(l/c)) and / (T) = sin(r + 6)
— TCOSO — sin 8. Finally, if f(2(n - 6)) ^ 0, then the least solution must
satisfy TX 6 [n - 6, (3/2)TT - 0).

PROOF: (1) and the first part of (2) are trivial. Since

. , , _ 4sin(r/2)cos(r/2)((r/2) - tan(r/2))
HT)~ ( r - s inr )2

fi(r) is decreasing on (0,2n). From lim /i(r) = +oo, n{2ir) = 0 we deduce that the

equation (2.7) has exactly one solution in [0,27r].
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Let c > 0 and 8 — a r c t a n ( - ( l / c ) ) e (-(7r/2) ,0) , then (2.7) can be rewritten as

sin(# + T) = T cos 8 + sin 8

Let / ( T ) = sin(r + 0) - TCOS0 - sin#. We note that /(2TT) = -2TTCOS0 < 0 and
/ ( r ) = COS(T + 0) - cosfl > 0 whenever r in (2TT, 2(TT - 8)). Thus by Rolle's Theorem
(2.7) has exactly one solution in (0, 2TT) if and only if /(2(?r - 0)) < 0.

If / (2(TT - 0)) = -2((7r - 0)cos0 + sin0) ^ 0 then /(TT - 0) = - ( (TT - 0)cos6>
+ sin 6>) ^ 0. Let g{0) = /((3/2)7r - 0) = - 1 - ((3/2)7r - 0) cosfl - sin0. Since g(8)

= ((3/2)TT - 6>) sinf? < 0 whenever 0 € ( - ( T T / 2 ) , 0 ) , g(6) < g(-{ir/2)) = -2n < 0. We
get Ti£[w- 0, (3/2)TT - 0] again by Rolle's Theorem. D

Now we can prove one of the main results in this paper.

THEOREM 2 . 3 . (Equations of shortest sub-Riemannian geodesies.) Let po
= (£?,£2)(^ 0) b e a P°int in G with the same notation TQ, as in Proposition 2.1 and

let j(s) = (£i(s),£2(5)), s e [0,1] be a shortest sub-Riemannian geodesic connecting 0 to

Po, then

(1) if £2 = 0) the shortest sub-Riemannian geodesic is unique and its equation
is (2.1). Its length is p = |£°|.

(2) if ^° ¥" 0 aad £? ¥" 0) the shortest sub-Riemannian geodesic is also unique
and its equation is

6(s) = (cos(arx) - 1)WO

where T\ G (0, 2TT) is the least solution in (0, +00) of equation (2.3) and

is determined by (2.4) and (2.5) where r is replaced by T\. Its length is

(2.9)
T\ — S in 7"i

(3) if ^° 7̂  0 and ^° = 0, there are inBnitely many shortest sub-Riemannian
geodesies and their equations are

fi(s) = (COS(2TTS) - 1)WO + sin(27rs)(,/(T(5)Wo),
( 2 1 0 ) & (« )= i(27rS-sin(27

where Wo is only subject to

(2.11) |€5| =

The length is
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(2.12)

P R O O F : Since every pair of points in G can be joined by a shortest sub-Riemannian
geodesic, (2.3) follows from Proposition 2.1.

If £° jz 0, from (2.5) we deduce that the length of a sub-Riemannian geodesic can
be rewritten as

(2.13)
r - sin r

Thus if £° — 0, it is obvious that r corresponding to the shortest sub-Riemannian
geodesic is T\ — 2n. Since there are infinitely many solutions to equation (2.11), (2.3)
follows.

If £° ^ 0 and £2 ¥" 0, we first note that for fixed r (2.4) has only one solution in V2- So
in order to prove (2.3) it suffices to prove that the length of the sub-Riemannian geodesic
corresponding to r € (2TT, +OO) (if such r exists) is strictly larger than the length of the
sub-Riemannian geodesic corresponding to TX € (0, 2TT). When (2.3) has only one solution
Ti 6 (0, 2TT), it is obvious. If (2.3) has another solution T2 except T\, then by Lemma 2.2
n e [w - 9, (3/2)7r - 9] C ((3/2)7r, 2TT) and hence sinrx < 0. Let p2 be the length of
geodesic corresponding to r2 determined by (2.13). In the case r2 € (27r, 2(TT - 8)], since
sin r2 > 0 and sin rx < 0 we have

2 _ O|foi 72n(T2 - 7j) + T\ sin T2 - r | sin n

( T 2 _ s i n r 2 ) ( r i _ s i n r i )

In the case r2 G (2(7r - 6), +oo), since

T2 - Ti > 2(7T - 0) - (^7T -

- ! - • > • •

we have
(r2 - 7j) + rf sin T2 - T\ sin n2 2 _ o 1 r o 1

P2 P l - 2 ^ 1 ( T 2 _ s i n 7 . 2 ) ( T l _ s i n T l )

> oiroi 7-2ri(r2 - n) - T:
2 - T | sin n

Ti(r2-Ti) -
2l(r2-sinT2)(ri -sinri)

Thus we have finished the proof. D

For the Heisenberg group HI™, since the map J can be explicitly written as in (1.3),

the following corollary follows immediately from Theorem 2.3.
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COROLLARY 2 . 4 . Let 50 = (xo, yo, to) ^ 0 be a point in W. We have

(1) ifxl+yl ^ 0, then there exists a unique shortest sub-Riemannian geodesic

connecting 0 to g0.

(2) otherwise, there exist infinitely many shortest sub-Riemannian geodesies

connecting 0 to g0.

Moreover, let j(s) = [x(s),y(s),t(s))(0 ^ s ^ 1) be any shortest sub-Riemannian

geodesic connecting 0 to g0, we have

Ai(cos(s(j>p) — 1) + BiSin(s(j)p)

t(s) =

Bi(cos(s(j>p) — 1) — Ai sir

s<j>p — sin(s<j)p)

where r = <j>p £ [—2n, 2TT] is the unique solution in [—2n, 2n] of the equation

1 - c o s r |xo|2 + |j/o|2
(2.14)

with

T — sin r

T = 0
| = 2TT i/>0|2 +

r€(0,27r) ifto>O,

T € (—2TT,0) otherwise;

p = dc(Q,g0) is the arc length of 7 determined by

if t0 - 0,

(T — sin T)
?-^, if to 9*0,

P = > tf *o = 0;

if \xo\
2 + \yo\

2 / 0, {Ax, ...,An,Blt..., Bn} is subject to

(2.15)
Ai(cos{<t>p) -

. i = l , . . . , n ,

7

if |xo|2 + |t/0|
2 = 0, then {Au ..., An, Bx,..., Bn} is only subject to

t = i
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The following corollary, which follows immediately from Theorem 2.3 and the left-
invariance of the Carnot-Caratheodory metric dc, will be used in Section 3.

COROLLARY 2 . 5 . 7 is a sub-Riemannian geodesic connecting p to q if and only
i fp - 17 is a sub-Riemannian geodesic joining 0 andp~lq. Moreover

(1) Let 7(s)(s € [0, +00)) be a smooth arc-length parameterised curve emit-

ting from 0. Then 7 is a globally shortest geodesic (that is, s2 — Si
— dc(7(s2),7(si)) for any s2 > Si in [0, +00)^ if and only if 7 ia a ray,

that is, there exists an element p0 = (£°,0) € G* such that |£j| = 1 and

7(s) = spo (s 6 [0, +00)) where we abuse the notation sg — 5sg when

p€G*.

(2) Given two different points p\,P2 G G, then there are infinitely many short-
est geodesies connecting them if and only if pf V2 € e x p ^ ) , that is

3. CHARACTERISATION OF THE SUB-RIEMANNIAN ISOMETRY GROUP

In this section we give a full characterisation of the sub-Riemannian isometry group
of a //-type group. Note that we shall not impose any smoothness conditions on an
isometry.

We shall use ISO(G) to denote the set of all sub-Riemannian isometries. Note that
if / is an sub-Riemannian isometry, then g — /(0)""1/ is an sub-Riemannian isometry
preserving the unit.

L E M M A 3 . 1 .

(1) Let pi, p2 be two different points in G and f be a sub-Riemannian isometry.
Then 7 is a shortest geodesic connecting pi to p2 if and only if 7(7) is
a shortest geodesic connecting f(p\) to /(p2). In particular, if f is an
isometry Gxing the unit, then 7 is a ray emitting from 0 if and only if f(y)
is a ray from 0.

(2) Ifp € exp(Vr
2) and f is an isometry preserving the unit, then f(p) is also

in exp(F2).

PROOF: Without restriction we assume that all shortest sub-Riemannian geodesies
are parameterised by arc length. Let j(s)(s G [0,dc(pi,p2)]J be a shortest sub-
Riemannian geodesic joining pi to p2. By definition

(3.1) aa-a, =

for any s2 > Si in [0, dc(pi,P2)]- So it follows from Pansu's Theorem on differentiability
of Lipschitz functions denned on Carnot groups ([22]) that f(j) is horizontal. Thus (3.1)
means that f(j) is a shortest geodesic connecting /(pi) to /(p2)- If / is an isometry
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preserving the unit and 7 is a ray starting from 0, then /(•y) is a globally shortest
geodesic. By Corollary 2.5, f(-y) is a ray from 0. Since the inverse of an isometry is also
an isometry, we proved (3.1).

Because of p € exp(V2) there are infinitely many geodesies connecting 0 to p by
Corollary 2.5. Let 7 be any such geodesic. By (3.1), /(•y) is a shortest geodesic connecting
0 to f(p). Thus there are infinitely many shortest geodesies joining 0 and / (p ) . So f(p)

is in exp(V2) again by Corollary 2.5. D

PROPOSITION 3 . 2 . Any sub-Riemannian isometry with / (0) = 0 can be writ-
ten as

forp= (6(P)»6(P))» w^ere /1 € O{V1),f2 G O(V2) and O{Vi) is the orthogonal group
ofVt,i= 1,2.

PROOF: Let / be a sub-Riemannian isometry with /(0) = 0. By Lemma 3.1, f{p)
6 G* for p € G* and f(p') € exp(V2) for p' € exp(V2). Now let p be any point in G and
p' be any point in G*. Let j(s) = p.sp' be a ray joining p and p'. Since f(~f{s)) is a ray
joining f(p) G G and f(p') £ G*, there exist p £ G and p7 such that f(j{s)) = p • sjf.
We deduce that

(3.2) f(pp')=f(p)f(p') foranypeG.p 'GG' .

For / we define two functions /1 and /2 on Vx and V2 respectively:

Then by (3.2), for any p' = (£,&) we have

Thus for p = (£i(p),&(p)), we can write

(3-3)

Let p = (6)0) De a point in G*. On one hand by (2.3) in Theorem 2.3, we have
|6l = de((&,0),0) =dc(p,0) = dc(/(p),0) =dc((/ i(6),0),0) = | / , (^ ) | . One the other
hand by (3.2), f\ is a linear map from Vi to V\. Thus /1 is an orthogonal transformation
in Vx.
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Let pi — (0,£2), i = 1,2 be two points in exp(V2). By (2.3) in Theorem 2.3 we have

dc(f(Pi),f(P2)) =

and

dc(pi,p2) =dc(0,Pi1 -p2)

Since de(/(pi),/(p2)) = dc(pi,P2), we get |/2(£2
2) - f2(e2)\ = l&2 - #l- T h u s A is an

isometry in V2- By [10, Section 2.3], f2 is an orthogonal transformation. D

PROPOSITION 3 . 3 . Any isometry with /(0) = 0 satisfies that

f(6sp) = Ssf(p) and f(pp') = f(p)f(p')

for any s > 0 and p,p' € G.

PROOF: In fact by (3.2), (3.3) and Proposition 3.2, we have

f(SsP) = f{(sti,s%)) = (/,(*f,)1/J(«26)) = (5/i(6),s2/2(6)) = SJ(p).

and

f(pp') =

for any p = (^, f2),p' = (f{,^2) in G and any s > 0. D

Now we can prove another of the main results in this paper.

THEOREM 3 . 4 . Let f be a map from G to G with /(0) = 0. Tien / is an
isometry if and only if

(3.4) /(p) = (A(6), / 2(6)) , A € O(Vi),/2 e

and

(3-5)

for any p = ( 6 . 6 ) € G.
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P R O O F : Let's first show that for / satisfying (3.4) with /(0) = 0, (3.5) is equivalent
to the fact that / is a group homomorphism. To this aim, let p — (6,^2),p' = (^1.̂ 2)
and let / be satisfying (3.4) for / j e O{V{) and f2 € O(V2). By the Baker-Hausdorff-
Campbell formula

we have

HPP1) =
and

Thus / is a group homomorphism if and only if

(3-6) [/i(6),/i(£)]

If/ satisfies (3.5), recalling (1.1) we obtain

(=4) (/2(6), [/i(6),
(3=5) ( / ( J (6)«) ) / ( f l ) ) (3=4)

So (3.6) holds. The proof of the converse can be done similarly.

If / is a sub-Riemannian isometry, then by Proposition 3.2 and Proposition 3.3 and

the last statement, (3.4) and (3.5) hold.

If (3.4) and (3.5) hold, then the fact that / is a group homomorphism implies that

/ transforms horizontal curves into horizontal curves and (3.4) implies that it preserves

their length. Of course, this implies that / is an isometry. D

Kaplan in [12] proved that a map / fixing the unit is an isometry with respect to
the standard Riemannian metric (•, •) if and only if (3.4) and (3.5) hold. The set of all
maps satisfying (3.4) and (3.5) is denoted by A(G), also called the automorphism group
of G.

THEOREM 3 . 5 . Tie sub-Riemannian isometry group ISO(G) coincides with the

isometry group with respect to the standard Riemannian metric (•, •). That is, ISO(G)

is the semidirect product A(G) x G (with G acting by left translation).

In the Heisenberg group HP, the set A(G) can be more explicitly described due to
the fact that Vi ~ R2n can be endowed with a symplectic structure and V2 is of one
dimension and so the map J can be explicitly written out (see (1.3)).

COROLLARY 3 . 6 .
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(3.7)

(1) In H", the unit component Ao(Mn) of the automorphism group A(Mn)

can be identified with the Unitary group U{n) in the following sense: let

f e A0(M
n), then

r u o
0 1

/ —

where U € U{n) and 0 G R2n.

(2) Another component

matrix
of A(Mn) is the product of AQ(Mn) by the

E 0 0
(3.8) 0 -E 0

0 0 - 1

where E is the unit matrix ofnxn.

PROOF: From the group law (1.2) we easily deduce that

(3.9)

for z = (x, y),z' — (x1, y') in R2n. In (3.9), ui(z, z') denotes the standard symplectic form
in E2 n .

Let / € A{W). Then by (3.4), / can be written as f(p) = (fi{z),f2(t)) for
p = (z,t) = (x,y,t),z = (x,y) where /i 6 O(R2n) and f2(t) = t or f2(t) = -t for
any t e l . By (3.5), (3.6) and (3.9) we have if f2(t) - t for any teR, then

(3.10) u(f1(z),f1(z'))=uj(z,z')

and if /2( t) = -t for any t € R, then

(3.11) w( / iW, / i (« ' ) ) = -w(«,z ') .

Note that (3.10) means that / i is a symplectic transformation and (3.11) means that / i

can be seen as the composition of a symplectic transformation with a map determined

by the matrix (3.8). We use Sp(n, R) to denote the symplectic group in R2n.

It is easy to verify that if / G A0(M
n) (or / € A^W1)), then f2(t) = t (or -t) for

any t e R.

Thus we infer that for / € A0{Mn), f((z,t)) = (h(z),t) where/i € O(R2n) f|«5p(n,R

— U(n)(see for example [1]). This completes the proof of (1). (2) follows from (1) and

the above argument. D

R E M A R K . The full characterisation of the sub-Riemannian isometry group of the Heisen-

berg group may be useful in finding out the exact isoperimetric set in the Heisenberg

https://doi.org/10.1017/S000497270003584X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003584X


[13] Sub-Riemannian isometry groups 99

group ([17]). In Euclidean case, one can use symmetrisation techniques to prove the
isoperimetric set is spherical. This is due to the fact that the isometry group of Rn is
large enough to give information of any direction when one tries to deform a set using
an isometry. But in the case of the Heisenberg group it is still an open problem whether
there are similar symmetrisation result. For this topic we refer to [17, 18].
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