CHARACTERISATION OF THE SUB-RIEMANNIAN ISOMETRY GROUPS OF H-TYPE GROUPS

KANG-HAI TAN AND XIAO-PING YANG

For a H-type group G, we first give explicit equations for its shortest sub-Riemannian geodesics. We use properties of sub-Riemannian geodesics in G to characterise the isometry group ISO(G) with respect to the Carnot-Carathéodory metric. It turns out that ISO(G) coincides with the isometry group with respect to the standard Riemannian metric of G.

1. Introduction

For a H-type group G, the aim of this paper is to study in detail some properties of its shortest sub-Riemannian geodesics and to give a full characterisation of the isometry group with respect to the Carnot-Carathéodory metric.

The Lie groups of H-type are first introduced by Kaplan in [11]. Let G be a Carnot group (see [7]) of step 2. That is, G is a simply connected Lie group whose Lie algebra G admits a nilpotent stratification of step 2: $G = V_1 \oplus V_2$, and $[V_1, V_1] = V_2$, whereas $[V_1, V_2] = 0$. From the definition, the centre of G is $\exp(V_2)$ where exp is the exponential map which is a global diffeomorphism. We assume that a left-invariant Riemannian metric $\langle \cdot, \cdot \rangle$ is given on G for which V_1, V_2 are mutually orthogonal. We denote by H-type groups the subbundle spanned by the system of left-invariant vector fields $\{X_1, \ldots, X_{m_1}\}$ such that $\{X_1, \ldots, X_{m_1}\}$ is an orthonormal basis of V_1 where $m_1 = \dim(V_1)$. From the stratification condition and the Chow connectivity theorem ([6]), the structure of H-type groups, $\langle \cdot, \cdot \rangle$ induces the so-called Carnot-Carathéodory metric d_c : for any $p, q \in G$,

$$d_c(p,q) = \inf_{\gamma} \left\{ \int_a^b |\dot{\gamma}(s)| ds \right\}$$

where the infimum is taken over all horizontal curves γ connecting p to q, that is, all absolutely continuous curves joining p and q whose derivatives are in H-type groups almost everywhere. d_c is left-invariant, that is, $d_c(p_0p, p_0q) = d_c(p, q)$ for any $p_0, p, q \in G$, and is 1-homogeneous with respect to the natural dilations, that is $d_c(\delta_s p, \delta_s q) = sd_c(p, q)$

Received 12th January, 2004

The authors thank the referee for useful comments and suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

for any $s > 0, p, q \in G$, where $\delta_s p = \exp(s\xi_1 + s^2\xi_2)$ for $p = \exp(\xi_1 + \xi_2), \xi_i \in V_i$. A horizontal curve is called a *sub-Riemannian geodesic* if it locally realises the Carnot-Carathéodory distance. We call G is a H-type group if G is a Carnot group of step 2 and moreover its Lie algebra G satisfies the following statement: for every $\eta \in V_2$, such that $|\eta| = 1$, the map $J(\eta): V_1 \to V_1$ defined by

$$(1.1) \qquad \langle J(\eta)\xi',\xi''\rangle = \langle [\xi',\xi''],\eta\rangle, \qquad \eta \in V_2,\xi',\xi'' \in V_1$$

is orthogonal. The simplest H-type group is the Heisenberg group \mathbb{H}^n (see [23]) which is, by definition, simply \mathbb{R}^{2n+1} , with the noncommutative group law

$$(1.2) pp' = (x, y, t)(x', y', t') = \left(x + x', y + y', t + t' + \frac{1}{2}(\langle x', y \rangle - \langle x, y' \rangle)\right)$$

where we have let $x, x', y, y' \in \mathbb{R}^n$, $t, t' \in \mathbb{R}$. A simple computation shows that the left-invariant vector fields

$$X_{j}(p) = \frac{\partial}{\partial x_{j}} + \frac{y_{j}}{2} \frac{\partial}{\partial t}, X_{n+j}(p) = \frac{\partial}{\partial y_{j}} - \frac{x_{j}}{2} \frac{\partial}{\partial t}, \quad j = 1, \dots, n,$$

and $T = \frac{\partial}{\partial t}$ span the Lie algebra (\mathbb{R}^{2n+1}) of \mathbb{H}^n . Moreover $[X_j, X_{n+k}] = -T\delta_{jk}, j$, $k = 1, \ldots, n$, and all other commutators are trivial. Note that for the Heisenberg group \mathbb{H}^n which is endowed with a Riemannian metric $\langle \cdot, \cdot \rangle$ such that $\{X_1, \ldots, X_{2n+1}, T\}$ is an orthonormal basis, the map J defined by (1.1) can be explicitly written:

(1.3)
$$J(T)X_{i} = -X_{n+i}, J(T)X_{n+i} = X_{i}$$

for $i=1,\ldots,n$.

H-type groups appear naturally in the Iwasawa decomposition of semisimple Lie groups of real rank one. Since they were introduced in [11] by Kaplan, many authors have contributed to analysis and geometry on these groups, see [5, 12, 13, 14, 15, 16, 20]. In [12] Kaplan studied the Riemannian geodesics and characterised the isometry group with respect to the Riemannian metric $\langle \cdot, \cdot \rangle$. In [13, p. 33-p. 35] Korányi gave an explicit description of sub-Riemannian geodesics. What we are interested in is how to characterise shortest sub-Riemannian geodesics. In fact, in analysis on H-type groups the most useful information for sub-Riemannian geodesics is the explicit equations for shortest sub-Riemannian geodesics, see [2, 3, 20, 24] for applications in the Heisenberg group. In the case of the Heisenberg group, [20] listed without proof the explicit equations for the shortest sub-Riemannian geodesics, and [2, 3] independently gave proofs. But the proofs of [2, 3] are not trivial. In this paper, we present a direct and simpler proof even for H-type groups and explicitly give equations of shortest sub-Riemannian geodesics (see Theorem 2.3).

Next we shall use properties of sub-Riemannian geodesics to give a full characterisation of the isometry group of sub-Riemannian isometries. A sub-Riemannian isometry of G is a map $f: G \to G$ such that $d_c(f(p), f(q)) = d_c(p, q)$ for any $p, q \in G$. Note that in this case, since d_c is not smooth (see for example [9, 4, 2]), we cannot use the method in [12]. We shall prove that the sub-Riemannian isometry group coincides with the isometry group for the standard Riemannian metric $\langle \cdot, \cdot \rangle$ (see Theorem 3.4 and Theorem 3.5). Our proof essentially depends on two facts on shortest sub-Riemannian geodesics (see Corollary 2.5). One is that a geodesic is globally shortest if and only if it is a ray. The other is that there are infinitely many shortest geodesics connecting two given points p, q if and only if $p^{-1} \cdot q$ is in the centre of G.

NOTATIONS. The letter G will always represent a H-type group. We use p,q,p',q',p_0,q_0,\ldots to denote elements in G; adopt $\xi,\xi',\xi^0,W,W^0,\ldots$ to denote elements in G and ξ_1,ξ'_1,ξ^0_1 elements in V_1 while ξ_2,ξ'_2,ξ^0_2 in V_2 . We shall write $p=(\xi_1(p),\xi_2(p))$ or $p=(\xi_1,\xi_2)$ when no confusion will be caused. The unit element of G is denoted by 0. Let $G^*:=G\backslash\exp(V_2)$ be the set of all elements of the form $p=(\xi_1(p),0)$. If $p\in G^*$ we shall sometimes use sp to denote $\delta_s p$.

2. Properties of sub-Riemannian geodesics

This section is devoted to studying some properties of sub-Riemannian geodesics in H-type groups. The equations of sub-Riemannian geodesics can be easily deduced from the Maximum Principle of Optimal Control Theory. That is, every sub-Riemannian geodesic must satisfy a Hamiltonian equation determined by the horizontal bundle H-type groups. It is clear that every sub-Riemannian geodesic is smooth (see for example[19]). In [13] Korányi also found the equations of sub-Riemannian geodesics by minimising the arc length functional among the curve family of horizontal curves joining two given points. The two methods are equivalent. The existence of shortest sub-Riemannian geodesics can be easily inferred from [8, Theorem 1.10]. What we are concerned with is the uniqueness of shortest sub-Riemannian geodesics. For more on the theory of sub-Riemannian geodesics in general sub-Riemannian manifolds we refer to the book [21].

Our theorem is based on the following statement developed by Korányi in [13].

PROPOSITION 2.1. (Equations of sub-Riemannian geodesics.) Given a point $p_0 = (\xi_1^0, \xi_2^0)$ ($p_0 \neq 0$) in G, the equations of sub-Riemannian geodesics $\gamma(s) = (\xi_1(s), \xi_2(s)), s \in [0, 1]$ connecting 0 to p_0 are:

(1) If
$$\xi_2^0 = 0$$
, then

(2.1)
$$\xi_1(s) = s\xi_1^0, \quad \xi_2(s) = 0.$$

(2) If $\xi_2^0 \neq 0$, then, with the notation $T_0' = \xi_2^0/|\xi_2^0|$,

(2.2)
$$\xi_1(s) = (\cos(s\tau) - 1)W_0 + \sin(s\tau)(J(T_0')W_0),$$
$$\xi_2(s) = \frac{1}{2}(s\tau - \sin(s\tau))|W_0|^2 T_0'$$

where τ is a positive solution of

(2.3)
$$\frac{1 - \cos \tau}{\tau - \sin \tau} = \frac{|\xi_1^0|^2}{4|\xi_2^0|}.$$

and W_0 is determined in the case $\xi_1^0 \neq 0$ by

(2.4)
$$\xi_1^0 = (\cos \tau - 1)W_0 + \sin \tau (J(T_0')W_0)$$

while in the case $\xi_1^0 = 0$, W_0 is subject only to the condition

(2.5)
$$2|\xi_2^0| = (\tau - \sin \tau)|W_0|^2$$

and otherwise arbitrary. The length of the sub-Riemannian geodesics is

Let $\mu(\tau) = (1 - \cos \tau)/(\tau - \sin \tau)$. We consider the distribution of solutions in $[0, \infty)$ of the the equation

where $c \in [0, \infty)$. The following lemma is elementary but paramountly important for the proof of Theorem 2.3.

LEMMA 2.2. For $0 \le c < \infty$, we have

- (1) if c = 0, the solutions of (2.7) are $\tau = 2k\pi, k = 1, 2, \ldots$
- (2) if c > 0, then (2.7) has finitely many solutions and all of them are in $(0, +\infty)$. Moreover, (2.7) has only one solution in $(0, 2\pi)$ if and only if $f(2(\pi \theta)) < 0$ where $\theta = \arctan(-(1/c))$ and $f(\tau) = \sin(\tau + \theta) \tau \cos \theta \sin \theta$. Finally, if $f(2(\pi \theta)) \ge 0$, then the least solution must satisfy $\tau_1 \in [\pi \theta, (3/2)\pi \theta]$.

PROOF: (1) and the first part of (2) are trivial. Since

$$\dot{\mu}(\tau) = \frac{4\sin(\tau/2)\cos(\tau/2)((\tau/2) - \tan(\tau/2))}{(\tau - \sin\tau)^2}$$

 $\mu(\tau)$ is decreasing on $(0, 2\pi)$. From $\lim_{\tau \to 0+} \mu(\tau) = +\infty$, $\mu(2\pi) = 0$ we deduce that the equation (2.7) has exactly one solution in $[0, 2\pi]$.

Let c > 0 and $\theta = \arctan(-(1/c)) \in (-(\pi/2), 0)$, then (2.7) can be rewritten as

$$\sin(\theta + \tau) = \tau \cos \theta + \sin \theta$$

Let $f(\tau) = \sin(\tau + \theta) - \tau \cos \theta - \sin \theta$. We note that $f(2\pi) = -2\pi \cos \theta < 0$ and $\dot{f}(\tau) = \cos(\tau + \theta) - \cos \theta > 0$ whenever τ in $(2\pi, 2(\pi - \theta))$. Thus by Rolle's Theorem (2.7) has exactly one solution in $(0, 2\pi)$ if and only if $f(2(\pi - \theta)) < 0$.

If $f(2(\pi - \theta)) = -2((\pi - \theta)\cos\theta + \sin\theta) \ge 0$ then $f(\pi - \theta) = -((\pi - \theta)\cos\theta + \sin\theta) \ge 0$. Let $g(\theta) = f((3/2)\pi - \theta) = -1 - ((3/2)\pi - \theta)\cos\theta - \sin\theta$. Since $\dot{g}(\theta) = ((3/2)\pi - \theta)\sin\theta < 0$ whenever $\theta \in (-(\pi/2), 0)$, $g(\theta) < g(-(\pi/2)) = -2\pi < 0$. We get $\tau_1 \in [\pi - \theta, (3/2)\pi - \theta]$ again by Rolle's Theorem.

Now we can prove one of the main results in this paper.

THEOREM 2.3. (Equations of shortest sub-Riemannian geodesics.) Let $p_0 = (\xi_1^0, \xi_2^0) (\neq 0)$ be a point in G with the same notation T_0' , as in Proposition 2.1 and let $\gamma(s) = (\xi_1(s), \xi_2(s)), s \in [0, 1]$ be a shortest sub-Riemannian geodesic connecting 0 to p_0 , then

- (1) if $\xi_2^0 = 0$, the shortest sub-Riemannian geodesic is unique and its equation is (2.1). Its length is $\rho = |\xi_1^0|$.
- (2) if $\xi_2^0 \neq 0$ and $\xi_1^0 \neq 0$, the shortest sub-Riemannian geodesic is also unique and its equation is

(2.8)
$$\xi_1(s) = (\cos(s\tau_1) - 1)W_0 + \sin(s\tau_1)(J(T_0')W_0),$$

$$\xi_2(s) = \frac{1}{2}(s\tau_1 - \sin(s\tau_1))|W_0|^2 T_0'$$

where $\tau_1 \in (0, 2\pi)$ is the least solution in $(0, +\infty)$ of equation (2.3) and W_0 is determined by (2.4) and (2.5) where τ is replaced by τ_1 . Its length is

(2.9)
$$\rho = \sqrt{\frac{2|\xi_2^0|\tau_1^2}{\tau_1 - \sin \tau_1}}.$$

(3) if $\xi_2^0 \neq 0$ and $\xi_1^0 = 0$, there are infinitely many shortest sub-Riemannian geodesics and their equations are

(2.10)
$$\xi_1(s) = (\cos(2\pi s) - 1)W_0 + \sin(2\pi s)(J(T_0')W_0),$$

$$\xi_2(s) = \frac{1}{2}(2\pi s - \sin(2\pi s))|W_0|^2 T_0'$$

where W_0 is only subject to

$$|\xi_2^0| = \pi |W_0|^2.$$

The length is

(2.12)
$$\rho = 2\sqrt{2\pi|\xi_2^0|}.$$

PROOF: Since every pair of points in G can be joined by a shortest sub-Riemannian geodesic, (2.3) follows from Proposition 2.1.

If $\xi_2^0 \neq 0$, from (2.5) we deduce that the length of a sub-Riemannian geodesic can be rewritten as

$$\rho = \sqrt{\frac{2|\xi_2^0|\tau^2}{\tau - \sin \tau}}.$$

Thus if $\xi_1^0 = 0$, it is obvious that τ corresponding to the shortest sub-Riemannian geodesic is $\tau_1 = 2\pi$. Since there are infinitely many solutions to equation (2.11), (2.3) follows.

If $\xi_1^0 \neq 0$ and $\xi_2^0 \neq 0$, we first note that for fixed τ (2.4) has only one solution in V_2 . So in order to prove (2.3) it suffices to prove that the length of the sub-Riemannian geodesic corresponding to $\tau \in (2\pi, +\infty)$ (if such τ exists) is strictly larger than the length of the sub-Riemannian geodesic corresponding to $\tau_1 \in (0, 2\pi)$. When (2.3) has only one solution $\tau_1 \in (0, 2\pi)$, it is obvious. If (2.3) has another solution τ_2 except τ_1 , then by Lemma 2.2 $\tau_1 \in [\pi - \theta, (3/2)\pi - \theta] \subset ((3/2)\pi, 2\pi)$ and hence $\sin \tau_1 < 0$. Let ρ_2 be the length of geodesic corresponding to τ_2 determined by (2.13). In the case $\tau_2 \in (2\pi, 2(\pi - \theta)]$, since $\sin \tau_2 > 0$ and $\sin \tau_1 < 0$ we have

$$\rho_2^2 - \rho_1^2 = 2|\xi_2^0| \frac{\tau_2 \tau_1 (\tau_2 - \tau_1) + \tau_1^2 \sin \tau_2 - \tau_2^2 \sin \tau_1}{(\tau_2 - \sin \tau_2)(\tau_1 - \sin \tau_1)}$$

In the case $\tau_2 \in (2(\pi - \theta), +\infty)$, since

$$\tau_2 - \tau_1 > 2(\pi - \theta) - \left(\frac{3}{2}\pi - \theta\right)$$
$$= \frac{\pi}{2} - \theta > 1,$$

we have

$$\rho_2^2 - \rho_1^2 = 2|\xi_2^0| \frac{\tau_2 \tau_1 (\tau_2 - \tau_1) + \tau_1^2 \sin \tau_2 - \tau_2^2 \sin \tau_1}{(\tau_2 - \sin \tau_2)(\tau_1 - \sin \tau_1)}$$

$$\geqslant 2|\xi_2^0| \frac{\tau_2 \tau_1 (\tau_2 - \tau_1) - \tau_1^2 - \tau_2^2 \sin \tau_1}{(\tau_2 - \sin \tau_2)(\tau_1 - \sin \tau_1)}$$

$$> 2|\xi_2^0| \frac{\tau_1 (\tau_2 - \tau_1) - \tau_2^2 \sin \tau_1}{(\tau_2 - \sin \tau_2)(\tau_1 - \sin \tau_1)}$$

$$> 0.$$

Thus we have finished the proof.

For the Heisenberg group \mathbb{H}^n , since the map J can be explicitly written as in (1.3), the following corollary follows immediately from Theorem 2.3.

COROLLARY 2.4. Let $g_0 = (x_0, y_0, t_0) \neq 0$ be a point in \mathbb{H}^n . We have

- (1) if $x_0^2 + y_0^2 \neq 0$, then there exists a unique shortest sub-Riemannian geodesic connecting 0 to g_0 .
- (2) otherwise, there exist infinitely many shortest sub-Riemannian geodesics connecting 0 to q_0 .

Moreover, let $\gamma(s) = (x(s), y(s), t(s))(0 \le s \le 1)$ be any shortest sub-Riemannian geodesic connecting 0 to g_0 , we have

$$\begin{cases} x_i(s) &= \frac{A_i(\cos(s\phi\rho) - 1) + B_i\sin(s\phi\rho)}{\phi}, & i = 1, \dots, n, \\ y_i(s) &= \frac{B_i(\cos(s\phi\rho) - 1) - A_i\sin(s\phi\rho)}{\phi}, & i = 1, \dots, n, \\ t(s) &= \frac{s\phi\rho - \sin(s\phi\rho)}{2\phi^2}, \end{cases}$$

where $\tau = \phi \rho \in [-2\pi, 2\pi]$ is the unique solution in $[-2\pi, 2\pi]$ of the equation

(2.14)
$$\frac{1 - \cos \tau}{\tau - \sin \tau} = \frac{|x_0|^2 + |y_0|^2}{4t_0}$$

with

$$\begin{cases} \tau = 0 & \text{if } t_0 = 0, \\ |\tau| = 2\pi & \text{if } |x_0|^2 + |y_0|^2 = 0, \\ \tau \in (0, 2\pi) & \text{if } t_0 > 0, \\ \tau \in (-2\pi, 0) & \text{otherwise;} \end{cases}$$

 $\rho = d_c(0, g_0)$ is the arc length of γ determined by

$$\rho = \sqrt{2 \frac{\tau^2 t_0}{(\tau - \sin \tau)}}, \quad \text{if } t_0 \neq 0,$$

$$\rho = \sqrt{|x_0|^2 + |y_0|^2}, \quad \text{if } t_0 = 0;$$

if $|x_0|^2 + |y_0|^2 \neq 0$, $\{A_1, \ldots, A_n, B_1, \ldots, B_n\}$ is subject to

(2.15)
$$\begin{cases} \sum_{i=1}^{n} (A_i^2 + B_i^2) = 1, \\ x_{0i} = \frac{A_i(\cos(\phi\rho) - 1) + B_i\sin(\phi\rho)}{\phi}, & i = 1, \dots, n, \\ y_{0i} = \frac{B_i(\cos(\phi\rho) - 1) - A_i\sin(\phi\rho)}{\phi}, & i = 1, \dots, n; \end{cases}$$

if $|x_0|^2 + |y_0|^2 = 0$, then $\{A_1, ..., A_n, B_1, ..., B_n\}$ is only subject to

$$\sum_{i=1}^{n} (A_i^2 + B_i^2) = 1.$$

The following corollary, which follows immediately from Theorem 2.3 and the left-invariance of the Carnot-Carathéodory metric d_c , will be used in Section 3.

COROLLARY 2.5. γ is a sub-Riemannian geodesic connecting p to q if and only if $p^{-1}\gamma$ is a sub-Riemannian geodesic joining 0 and $p^{-1}q$. Moreover

- (1) Let $\gamma(s) (s \in [0, +\infty))$ be a smooth arc-length parameterised curve emitting from 0. Then γ is a globally shortest geodesic (that is, $s_2 s_1 = d_c(\gamma(s_2), \gamma(s_1))$ for any $s_2 > s_1$ in $[0, +\infty)$) if and only if γ is a ray, that is, there exists an element $p_0 = (\xi_1^0, 0) \in G^*$ such that $|\xi_1^0| = 1$ and $\gamma(s) = sp_0$ $(s \in [0, +\infty))$ where we abuse the notation $sg = \delta_s g$ when $p \in G^*$.
- (2) Given two different points $p_1, p_2 \in G$, then there are infinitely many shortest geodesics connecting them if and only if $p_1^{-1}p_2 \in \exp(V_2)$, that is $\xi_1(p_1^{-1} \cdot p_2) = 0$.

3. CHARACTERISATION OF THE SUB-RIEMANNIAN ISOMETRY GROUP

In this section we give a full characterisation of the sub-Riemannian isometry group of a *H*-type group. Note that we shall not impose any smoothness conditions on an isometry.

We shall use ISO(G) to denote the set of all sub-Riemannian isometries. Note that if f is an sub-Riemannian isometry, then $g = f(0)^{-1}f$ is an sub-Riemannian isometry preserving the unit.

LEMMA 3.1.

- (1) Let p_1, p_2 be two different points in G and f be a sub-Riemannian isometry. Then γ is a shortest geodesic connecting p_1 to p_2 if and only if $f(\gamma)$ is a shortest geodesic connecting $f(p_1)$ to $f(p_2)$. In particular, if f is an isometry fixing the unit, then γ is a ray emitting from 0 if and only if $f(\gamma)$ is a ray from 0.
- (2) If $p \in \exp(V_2)$ and f is an isometry preserving the unit, then f(p) is also in $\exp(V_2)$.

PROOF: Without restriction we assume that all shortest sub-Riemannian geodesics are parameterised by arc length. Let $\gamma(s) (s \in [0, d_c(p_1, p_2)])$ be a shortest sub-Riemannian geodesic joining p_1 to p_2 . By definition

$$(3.1) s_2 - s_1 = d_c(\gamma(s_1), \gamma(s_2)) = d_c(f(\gamma(s_1)), f(\gamma(s_2)))$$

for any $s_2 > s_1$ in $[0, d_c(p_1, p_2)]$. So it follows from Pansu's Theorem on differentiability of Lipschitz functions defined on Carnot groups ([22]) that $f(\gamma)$ is horizontal. Thus (3.1) means that $f(\gamma)$ is a shortest geodesic connecting $f(p_1)$ to $f(p_2)$. If f is an isometry

preserving the unit and γ is a ray starting from 0, then $f(\gamma)$ is a globally shortest geodesic. By Corollary 2.5, $f(\gamma)$ is a ray from 0. Since the inverse of an isometry is also an isometry, we proved (3.1).

Because of $p \in \exp(V_2)$ there are infinitely many geodesics connecting 0 to p by Corollary 2.5. Let γ be any such geodesic. By (3.1), $f(\gamma)$ is a shortest geodesic connecting 0 to f(p). Thus there are infinitely many shortest geodesics joining 0 and f(p). So f(p) is in $\exp(V_2)$ again by Corollary 2.5.

PROPOSITION 3.2. Any sub-Riemannian isometry with f(0) = 0 can be written as

$$f(p) = \left(f_1(\xi_1(p)), f_2(\xi_2(p))\right)$$

for $p = (\xi_1(p), \xi_2(p))$, where $f_1 \in \mathcal{O}(V_1)$, $f_2 \in \mathcal{O}(V_2)$ and $\mathcal{O}(V_i)$ is the orthogonal group of V_i , i = 1, 2.

PROOF: Let f be a sub-Riemannian isometry with f(0) = 0. By Lemma 3.1, $f(p) \in G^*$ for $p \in G^*$ and $f(p') \in \exp(V_2)$ for $p' \in \exp(V_2)$. Now let p be any point in G and p' be any point in G^* . Let $\gamma(s) = p.sp'$ be a ray joining p and p'. Since $f(\gamma(s))$ is a ray joining $f(p) \in G$ and $f(p') \in G^*$, there exist $\tilde{p} \in G$ and \tilde{p}' such that $f(\gamma(s)) = \tilde{p} \cdot s\tilde{p}'$. We deduce that

$$(3.2) f(pp') = f(p)f(p') for any p \in G, p' \in G^*.$$

For f we define two functions f_1 and f_2 on V_1 and V_2 respectively:

$$f_1(\xi_1) := \xi_1\Big(f\Big((\xi_1,0)\Big)\Big), \quad f_2(\xi_2) := \xi_2\Big(f\Big((0,\xi_2)\Big)\Big).$$

Then by (3.2), for any $p' = (\xi'_1, \xi'_2)$ we have

$$f((\xi'_{1}, \xi'_{2})) = f((0, \xi'_{2})(\xi'_{1}, 0)) = f((0, \xi'_{2}))f((\xi'_{1}, 0))$$

$$= (0, \xi_{2}(f((0, \xi'_{2}))))(\xi_{1}(f((\xi'_{1}, 0))), 0)$$

$$= (\xi_{1}(f((\xi'_{1}, 0))), \xi_{2}(f((0, \xi'_{2}))))$$

$$= (f_{1}(\xi'_{1}), f_{2}(\xi'_{2})).$$

Thus for $p = (\xi_1(p), \xi_2(p))$, we can write

(3.3)
$$f(p) = (f_1(\xi_1(p)), f_2(\xi_2(p))).$$

Let $p = (\xi_1, 0)$ be a point in G^* . On one hand by (2.3) in Theorem 2.3, we have $|\xi_1| = d_c((\xi_1, 0), 0) = d_c(p, 0) = d_c(f(p), 0) = d_c((f_1(\xi_1), 0), 0) = |f_1(\xi_1)|$. One the other hand by (3.2), f_1 is a linear map from V_1 to V_1 . Thus f_1 is an orthogonal transformation in V_1 .

Let $p_i = (0, \xi_2^i)$, i = 1, 2 be two points in $\exp(V_2)$. By (2.3) in Theorem 2.3 we have

$$\begin{split} d_c\big(f(p_1),f(p_2)\big) &= d_c\Big(\big(0,f_2(\xi_2^1)\big),\big(0,f_2(\xi_2^2)\big)\Big) \\ &= d_c\Big(0,\big(0,f_2(\xi_2^1)\big)^{-1}\cdot\big(0,f_2(\xi_2^2)\big)\Big) \\ &= d_c\Big(0,\big(0,f_2(\xi_2^2)-f_2(\xi_2^1)\big)\Big) \\ &= 2\sqrt{2\pi \big|f_2(\xi_2^2)-f_2(\xi_2^1)\big|} \end{split}$$

and

$$egin{aligned} d_c(p_1,p_2) &= d_c(0,p_1^{-1}\cdot p_2) \ &= d_cig(0,(0,\xi_2^2-\xi_2^1)ig) \ &= 2\sqrt{2\pi|\xi_2^2-\xi_2^1|}. \end{aligned}$$

Since $d_c(f(p_1), f(p_2)) = d_c(p_1, p_2)$, we get $|f_2(\xi_2^2) - f_2(\xi_2^1)| = |\xi_2^2 - \xi_2^1|$. Thus f_2 is an isometry in V_2 . By [10, Section 2.3], f_2 is an orthogonal transformation.

PROPOSITION 3.3. Any isometry with f(0) = 0 satisfies that

$$f(\delta_s p) = \delta_s f(p)$$
 and $f(pp') = f(p) f(p')$

for any s > 0 and $p, p' \in G$.

PROOF: In fact by (3.2), (3.3) and Proposition 3.2, we have

$$f(\delta_s p) = f((s\xi_1, s^2 \xi_2)) = (f_1(s\xi_1), f_2(s^2 \xi_2)) = (sf_1(\xi_1), s^2 f_2(\xi_2)) = \delta_s f(p).$$

and

$$f(pp') = f((\xi_1, \xi_2)(\xi_1', \xi_2')) = f((\xi_1, \xi_2)(0, \xi_2')(\xi_1', 0))$$

$$= f((\xi_1, \xi_2 + \xi_2'))f((\xi_1', 0)) = (f_1(\xi_1), f_2(\xi_2 + \xi_2'))(f_1(\xi_1'), 0)$$

$$= (f_1(\xi_1), f_2(\xi_2) + f_2(\xi_2'))(f_1(\xi_1'), 0) = (f_1(\xi_1), f_2(\xi_2))(0, f_2(\xi_2'))(f_1(\xi_1'), 0)$$

$$= f(p)(f_1(\xi_1'), f_2(\xi_2')) = f(p)f(p')$$

for any $p = (\xi_1, \xi_2), p' = (\xi'_1, \xi'_2)$ in G and any s > 0.

Now we can prove another of the main results in this paper.

THEOREM 3.4. Let f be a map from G to G with f(0) = 0. Then f is an isometry if and only if

(3.4)
$$f(p) = (f_1(\xi_1), f_2(\xi_2)), f_1 \in \mathcal{O}(V_1), f_2 \in \mathcal{O}(V_2)$$

and

(3.5)
$$J(f_2(\xi_2))(f_1(\xi_1)) = f_1(J(\xi_2)(\xi_1))$$

for any $p = (\xi_1, \xi_2) \in G$.

PROOF: Let's first show that for f satisfying (3.4) with f(0) = 0, (3.5) is equivalent to the fact that f is a group homomorphism. To this aim, let $p = (\xi_1, \xi_2), p' = (\xi'_1, \xi'_2)$ and let f be satisfying (3.4) for $f_1 \in \mathcal{O}(V_1)$ and $f_2 \in \mathcal{O}(V_2)$. By the Baker-Hausdorff-Campbell formula

$$pp' = \left(\xi_1 + \xi_1', \xi_2 + \xi_2' + \frac{1}{2}[\xi_1, \xi_1']\right),$$

we have

$$f(pp') = \left(f_1(\xi_1) + f_1(\xi_1'), f_2(\xi_2) + f_2(\xi_2') + \frac{1}{2}f_2([\xi_1, \xi_1'])\right)$$

and

$$f(p)f(p') = \left(f_1(\xi_1) + f_1(\xi_1'), f_2(\xi_2) + f_2(\xi_2') + \frac{1}{2} \left[f_1(\xi_1), f_2(\xi_1')\right]\right).$$

Thus f is a group homomorphism if and only if

$$[f_1(\xi_1), f_1(\xi_1')] = f_2([\xi_1, \xi_1']).$$

If f satisfies (3.5), recalling (1.1) we obtain

$$\left\langle \xi_{2}, f_{2}^{-1} \left[f_{1}(\xi_{1}), f_{1}(\xi'_{1}) \right] \right\rangle \stackrel{(3.4)}{=} \left\langle f_{2}(\xi_{2}), \left[f_{1}(\xi_{1}), f_{1}(\xi'_{1}) \right] \right\rangle \stackrel{(1.1)}{=} \left\langle J \left(f_{2}(\xi_{2}) \left(f_{1}(\xi_{1}) \right) \right), f_{1}(\xi'_{1}) \right\rangle$$

$$\stackrel{(3.5)}{=} \left\langle f_{1} \left(J(\xi_{2})(\xi_{1}) \right), f_{1}(\xi'_{1}) \right\rangle \stackrel{(3.4)}{=} \left\langle J(\xi_{2})(\xi_{1}), \xi'_{1} \right\rangle$$

$$\stackrel{(1.1)}{=} \left\langle \xi_{2}, \left[\xi_{1}, \xi'_{1} \right] \right\rangle.$$

So (3.6) holds. The proof of the converse can be done similarly.

If f is a sub-Riemannian isometry, then by Proposition 3.2 and Proposition 3.3 and the last statement, (3.4) and (3.5) hold.

If (3.4) and (3.5) hold, then the fact that f is a group homomorphism implies that f transforms horizontal curves into horizontal curves and (3.4) implies that it preserves their length. Of course, this implies that f is an isometry.

Kaplan in [12] proved that a map f fixing the unit is an isometry with respect to the standard Riemannian metric $\langle \cdot, \cdot \rangle$ if and only if (3.4) and (3.5) hold. The set of all maps satisfying (3.4) and (3.5) is denoted by A(G), also called the automorphism group of G.

THEOREM 3.5. The sub-Riemannian isometry group ISO(G) coincides with the isometry group with respect to the standard Riemannian metric $\langle \cdot, \cdot \rangle$. That is, ISO(G) is the semidirect product $A(G) \times G$ (with G acting by left translation).

In the Heisenberg group \mathbb{H}^n , the set A(G) can be more explicitly described due to the fact that $V_1 \simeq \mathbb{R}^{2n}$ can be endowed with a symplectic structure and V_2 is of one dimension and so the map J can be explicitly written out (see (1.3)).

COROLLARY 3.6.

(1) In \mathbb{H}^n , the unit component $A_0(\mathbb{H}^n)$ of the automorphism group $A(\mathbb{H}^n)$ can be identified with the Unitary group U(n) in the following sense: let $f \in A_0(\mathbb{H}^n)$, then

$$(3.7) f = \begin{bmatrix} U & 0 \\ 0 & 1 \end{bmatrix}$$

where $U \in \mathcal{U}(n)$ and $0 \in \mathbb{R}^{2n}$.

(2) Another component $A_1(\mathbb{H}^n)$ of $A(\mathbb{H}^n)$ is the product of $A_0(\mathbb{H}^n)$ by the matrix

$$\begin{bmatrix}
E & 0 & 0 \\
0 & -E & 0 \\
0 & 0 & -1
\end{bmatrix}$$

where E is the unit matrix of $n \times n$.

PROOF: From the group law (1.2) we easily deduce that

(3.9)
$$[z, z'] = \frac{1}{2} \sum_{i=1}^{n} (x'_i y_i - x_i y'_i) = \frac{1}{2} \omega(z, z')$$

for z=(x,y), z'=(x',y') in \mathbb{R}^{2n} . In (3.9), $\omega(z,z')$ denotes the standard symplectic form in \mathbb{R}^{2n} .

Let $f \in A(\mathbb{H}^n)$. Then by (3.4), f can be written as $f(p) = (f_1(z), f_2(t))$ for p = (z, t) = (x, y, t), z = (x, y) where $f_1 \in \mathcal{O}(\mathbb{R}^{2n})$ and $f_2(t) = t$ or $f_2(t) = -t$ for any $t \in \mathbb{R}$. By (3.5), (3.6) and (3.9) we have if $f_2(t) = t$ for any $t \in \mathbb{R}$, then

(3.10)
$$\omega(f_1(z), f_1(z')) = \omega(z, z')$$

and if $f_2(t) = -t$ for any $t \in \mathbb{R}$, then

(3.11)
$$\omega(f_1(z), f_1(z')) = -\omega(z, z').$$

Note that (3.10) means that f_1 is a symplectic transformation and (3.11) means that f_1 can be seen as the composition of a symplectic transformation with a map determined by the matrix (3.8). We use $Sp(n,\mathbb{R})$ to denote the symplectic group in \mathbb{R}^{2n} .

It is easy to verify that if $f \in A_0(\mathbb{H}^n)$ (or $f \in A_1(\mathbb{H}^n)$), then $f_2(t) = t$ (or -t) for any $t \in \mathbb{R}$.

Thus we infer that for $f \in A_0(\mathbb{H}^n)$, $f((z,t)) = (f_1(z),t)$ where $f_1 \in O(\mathbb{R}^{2n}) \cap \mathcal{S}p(n,\mathbb{R})$ = $\mathcal{U}(n)$ (see for example [1]). This completes the proof of (1). (2) follows from (1) and the above argument.

REMARK. The full characterisation of the sub-Riemannian isometry group of the Heisenberg group may be useful in finding out the exact isoperimetric set in the Heisenberg

group ([17]). In Euclidean case, one can use symmetrisation techniques to prove the isoperimetric set is spherical. This is due to the fact that the isometry group of \mathbb{R}^n is large enough to give information of any direction when one tries to deform a set using an isometry. But in the case of the Heisenberg group it is still an open problem whether there are similar symmetrisation result. For this topic we refer to [17, 18].

REFERENCES

- B. Aebischer, M. Borer, M. Kälin, C. Leuenberger and H.M. Reimann, Symplectic geometry, Progress in Mathematics 124 (Birkhäuser, Basel, 1992).
- [2] L. Ambrosio and S. Rigot, 'Optimal mass transportation in the Heisenberg group', J. Funct. Anal. (to appear).
- [3] R. Beals, B. Gaveau and P.C. Greiner, 'Hamilton-Jacobi theory and heat kernel on Heisenberg groups', J. Math. Pures Appl. 79 (2000), 633-689.
- [4] A. Bellaíche, The tangent spaces in sub-Riemannian geometry, Progress in Mathematics 144 (Birkhäuser, Basel, 1996).
- [5] J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598 (Springer-Verlag, Berlin, Heidelberg, New York 1994).
- [6] W.L. Chow, 'über Systeme non linearen partiellen Differentialgleichungen erster Ordung', Math. Ann. 117 (1939), 98-105.
- [7] G.B. Folland and E.M. Stein, Hardy spaces on homogeneous groups (Princeton Univ. Press, Princeton, N.J., 1982).
- [8] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152 (Birkhäuser, Boston, 1999).
- [9] M. Gromov, Carnot-Carathéodory spaces seen from within, Progress in Mathematics 144 (Birkhäuser, Basel, 1996).
- [10] J.E. Hutchinson, 'Fractals and self similarity', Indiana. Univ. Math. J. 30 (1981), 713-747.
- [11] A. Kaplan, 'Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms', Trans. Amer. Math. Soc. 258 (1980), 147-153.
- [12] A. Kaplan, 'Riemannian nilmanifolds attached to Clifford modules', Geom. Dedicata, 11 (1981), 127-136.
- [13] A. Korányi, 'Geometric properties of Heisenberg-type groups', Adv. in Math. 56 (1985), 28-38.
- [14] A. Korányi and H.M. Reimann, 'Quasiconformal mappings on the Heisenberg group', Invent. Math. 80 (1985), 309-338.
- [15] A. Koranyi, Geometric aspects of analysis on the Heisenberg group, Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982), 209C258 (Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983).
- [16] A. Korányi and H.M. Reimann, 'Foundations for the theory of quasiconformal mappings on the Heisenberg group', Adv. Math. 111 (1995), 1-87.
- [17] G.P. Leonardi and S. Masnou, 'On the isoperimetric problems in the Heisenberg group \mathbb{H}^n ', (preprint 2002) available from http://cvgmt.sns.it.

- [18] G.P. Leonardi and S. Rigot, 'Isoperimetric sets on Carnot groups', *Houston J. Math.* 29 (2003), 609-637.
- [19] W.S. Liu and H. Sussman, 'Shortest paths for sub-Riemannian metrics on rank-two distributions', Mem. Amer. Math. Soc. 118 (1995).
- [20] R. Monti, 'Some properties of Carnot-Caratheodory balls in the Heisenberg group', Atti. Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Ren. Lincei (9) Mat. Appl. 11 (2000), 155-167.
- [21] R. Montgomery, A tour of sub-Riemannian geometry, their geodesics and applications, Mathematical Surveys and Monographs 91 (American Mathematical Society, Providence R.I., 2002).
- [22] P. Pansu, 'Métriques de CC et quasiisométries des espaces symétriques de rang un', Ann. of Math. 119 (1989), 1-60.
- [23] E.M. Stein, Harmonic analysis (Princeton University press, Princeton N.J., 1993).
- [24] K.H. Tan, 'Sobolev classes and horizontal energy minimizers between Carnot-Carathéodory spaces', Commun. Contemp. Math. 6 (2004), 1-33.

Department of Applied Mathematics
Science School
Nanjing University of Science and Technology
210094, Nanjing
Peoples Republic China
e-mail: tankanghai2000@yahoo.com.cn
yangxp@mail.njust.edu.cn