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Abstract. The orbital evolution of a young binary star is strongly af-
fected by the circumstellar disks orbiting each of the stars, and/or the
circumbinary disk orbiting about the entire binary. Calculation of the
evolution requires the knowledge of disk structure (resonantly emitted
density and bending waves, disk gap sizes, possible secular nonaxisym-
metry), as well as of any gas streamers falling onto the binary. While the
diagnostic signatures of the binary-disk interaction are observable (and
have recently been observed), the orbital evolution cannot directly be
observed so far, because of long associated time scales. Hence, theory
is crucial for understanding the evolutionary stage and the future of the
observed systems. We briefly review the status of the theory of orbital
evolution and discuss several topics requiring further theoretical work.

1. Introduction

Observations reveal that the formation of stars (including binary stars, esp. close
binary stars and planets) is always closely associated with the presence of accre-
tion disks (e.g., McCaughrean & O'Dell 1996; Burrows et al. 1996; Stapelfeldt et
al. 1998). A clear decrease with time of the fraction of optically thick disks (at
<3 AU from the star) from rvl00% at the age rvO.3 Myr down to a few percent
at the age of rvl0 Myr has been demonstrated by Hillenbrand & Meyer (1999).
The mass flow through the disk, as evidenced by the signatures of accretion onto
the PMS star's surface, seems to be curtailed at (statistically speaking) the same
time, equal to 1-3 Myr for T Tauri and Herbig AeBe stars, as the optically thick
disks disappear. Probably the same mechanism (accretion, photoevaporation,
other?) depletes the circumstellar gas in disks.

T Tauri stars, once thought to be single, are in fact mostly double/multiple,
as are both the majority of young stellar objects and main-sequence stars (Math-
ieu, Ghez, Jensen et al. 2000). Circumbinary (CB) disks are now directly re-
solved (GG Tau: Dutrey, Guilloteau, & Simon 1994; Roddier et al. 1996). We
cannot observe the orbital evolution of these systems directly, due to long time
scales. On the other hand, short period binary systems surrounded by substan-
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tial disks, like AK Sco or RW Aur, are apparently stable (not evolving rapidly)
on timescales of at least 0.1 Myr, which amounts to millions of orbits, a fact to
which we draw attention in sect. 3 below. Wide PMS binaries, in contrast, are
dynamically less evolved (can make thousands of orbits before disk dispersal).
In each case, however, there is ample time to dynamically sculpt disk(s), and
potentially sufficient time for a large modification of the orbital elements of the
binary.

2. Binary -7 Disk Interaction

The basic picture of disk-binary interactions at the T-Tauri stage, which de-
scribes the conditions for disk gap opening and size, first emerged in the late
1970s (e.g., Lin & Papaloizou 1979) and was fully worked out in the 1980s, as
reviewed by Lin & Papaloizou (1993). It has received observational support,
among others, from the spectral energy distributions of the disks (Beckwith et
al. 1990). New developments in the 1990s have been summarized by Lubow &
Artymowicz (2000). The "new" picture differs from the "old" in several respects.

2.1. Eccentric Binaries and the Mass Transfer

Firstly, the knowledge that the typical eccentricity of a binary star (MS or
PMS) is considerable (e == 0.2 - 0.6; cf. Duquennoy & Mayor 1991, Mathieu
1994) rather than small or zero, as has often been assumed in previous theories,
has stimulated the development of the theory applicable to eccentric binaries
(theory of disk gap sizes of Artymowicz & Lubow 1994, and its applications, e.g.,
Jensen & Mathieu 1997). The nonzero eccentricity leads to a more complicated
dynamical interaction, since many more resonances are present.

Secondly, simulations showed that a circumbinary (CB) disk can trans-
fer mass onto the central binary (Artymowicz & Lubow 1996). This resupply
mechanism might explain the common presence of small circumstellar disks with
nominally short viscous lifetimes in binaries (Mathieu 1994). The flow can be
surprisingly efficient: for moderately warm and viscous accretion disks, the gas
flux can equal or exceed the "unperturbed flow" through a disk around the pri-
mary component (without the secondary). Simulations show that only a very
small gas mass resides in the CB gap, but the low density is accompanied by
a large average radial flow speed that results in a substantial mass flux. The
nonaxisymmetric structures (streamers) have been identified in some resolved
systems (GG Tau, Guilloteau & Dutrey, this meeting; UY Aur, Duvert et al.
1998, and Close et al. 1998). At earliest phases of formation (before the T Tauri
stage), an even more dramatic, dense, spiral shaped gas flow accompanies the
accretion from an infalling (collapsing) cloud onto a binary protostar (Bate &
Bonnell 1997, and this volume).

2.2. Time-Dependent Streaming through the Gap

The time variability in the flow forced by the binary's eccentricity e can be
pronounced. It depends on the mass ratio and e, which provides a way to char-
acterize unresolved or long-period binaries (e.g., DQ Tau observed by Mathieu
et al. 1997; Basri et al. 1998). The dynamical and changing nature of the flow is
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Figure 1. A movie of a circumbinary disk's grayscale-coded gas den-
sity. The central binary system has mass parameter J.l = 0.44, and
eccentricity e == 0.5 (cf. Artymowicz and Lubow 1996). The movie
covers its 400th orbital period, starting from the top row and ending
in the bottom right corner. The disk is shown in polar coordinates:
in each snapshot the horizontal axis shows the full extent (360°) of
the azimuthal angle, while the vertical axis covers the distances from
the center of mass from 1 to 4 times the semi-major axis. White dots
are the saddle points (Lagrange points) of the effective potential ~21

directing the flow of gas from the disk to the binary (cf. text). From
unpubl. work by Artymowicz and Kley, using the Monotonic Transport
code (cf. Kley 1999).
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not fully studied yet, but may be rather important for the orbital evolution. The
application of grid-based codes, as are now being applied to planet formation
problems, would be desirable.

In Fig. 1 we show the preliminary results of Artymowicz & Kley (unpubl.).
The sequence of panels presents a "movie" covering a single (400th) simulated
orbital period of the binary with nearly equal masses and eccentricity e = 0.5,
studied earlier by Artymowicz & Lubow (1996). The disk is standard (viscos-
ity coef£. a = 4 x 10-3 , scale-height 0.05 times the radius). Two streams of
gas constantly pass through the theoretically predicted locations (white points
denoting saddle points of the effective (m, I) = (2,1) potential harmonic <-P2l,

turning around the binary"). The corresponding SPH model (stopped after
fewer binary orbits) was illustrated in Fig. 4 of Lubow & Artymowicz (2000).
Comparing the SPH and grid-based code results, we conclude that the latter
will be better suited for resolving the very low-density flows through the gap.
However, in the future grid methods need to be developed to handle adequately
the region between the stars (where the current use of polar coordinates is a
problem).

On a secular time scale, recent simulations suggest the development of an
elliptical disk/gap. Notice, for instance, how the initially circular CB disk be-
came eccentric after 400 periods of the binary in Fig. 1 (cf. the sinusoidal outline
of the dense CB disk rim). The ellipticity arises initially in response to the direct
binary forcing by the "slow" harmonics of the gravitational potential, followed
by the establishment of a slow J-armed mode in the disk (cf. Lubow & Artymow-
icz 2000). The precession of the disk with respect to the binary can modulate
any short-period variability due to the waves and/or streamers; the variations in
the flow patterns have a long period equal to 103 - 104 times the orbital period.

2.3. Non-Coplanar and 3-D Disks

The dynamics of disks that are non-coplanar with the binary orbit have been
studied. Inclined circumstellar disks can precess like rigid bodies (Papaloizou
& Terquem 1995; Larwood et al. 1996). Tidally truncated disks evolve towards
coplanarity with the binary, as a consequence of tidal dissipation (Lubow &
Ogilvie 2000). Observations of the degree of disk alignment in various young
binaries potentially provides information about binary formation mechanisms,
as well as the physics of disk dissipation. The timescale for achieving coplanarity
is not well established. A linear, viscous disk model suggests the timescale is of
order the disk viscous timescale. However, an inclined disk may be subject to
a parametric instability (Gammie, Goodman, & Ogilvie 2000). The instability
is a consequence an orbiting disk fluid element being subject to a time-periodic
shear, resulting from the binary tidal field acting along an inclined orbit. It
is plausible that this instability results in nonlinear dissipation (shocks), which
may lead to a near coplanarity (within the disk thickness or about 5% to 10%) on
a timescale as short as the disk precessional timescale, or about 20 binary orbits
(Bate et al. 2000). Observations of noncoplanar disks may help resolve these
issues (e.g., Stapelfeldt et al. 1998; Koresko 1998). Observations of misaligned

1 Plots are made in the inertial systems of reference. Thus, Lagrange points and the streams
rotate to the right with respect to the binary at 1/2 the mean binary speed.
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and precessing jets within binary systems also provide relevant information. Also
desired are three dimensional simulations of inclined, warped disks that resolve
well the internal structure of the disk.

The resonant interaction between a binary and a disk results in the genera-
tion of waves (Goldreich & Tremaine 1980). For disks that are vertically isother-
mal, these waves are adequately described by the conventional two-dimensional
disk theories. However, a disk that is accreting material and is optically thick
will likely possess a vertical temperature variation. For such a disk, it was ex-
pected that waves would refract to the surface on a radial scale of order the disk
thickness (e.g, Lin, Papaloizou, & Savonije 1990). This is because the sound
speed at midplane differs substantially from that at the surface, so the wave-
front would rapidly tilt. As a result, waves would undergo shock dissipation as
they propagate upwards into an ever-thinner disk atmosphere.

However, recent analytic, linear studies provide a different picture (Lubow
& Ogilvie 1998). In disks with large vertical temperature variations, the excited
waves act like incompressible surface gravity waves (more properly f modes) as
they propagate away from the resonance. In common with refraction, the process
known as "wave channeling" causes the f mode wave energy to be confined near
the disk surface. Refraction does not apply because the wave cannot be regarded
as propagating at its local sound speed at each height in the disk. Instead, the
wave is vertically evanescent and requires a global treatment vertically. The disk
acts like a waveguide. Unlike the prediction of refraction, wave/channeling (ver-
tical confinement) in a binary disk occurs on a radial length scale of order the
disk radius. For a planet-disk system, wave channeling acts on a radial scale of
order the disk thickness, as a consequence of the high azimuthal wave numbers
that are excited. The radial scale for channeling increases as the disk becomes
more isothermal or possess a deeper atmosphere (Ogilvie & Lubow 1998). With
wave channeling, the launched wave does not propagate upward through the disk
atmosphere. Instead, as the wave energy becomes concentrated near the upper
disk layers, it remains concentrated near the base of the atmosphere (i.e., re-
mains vertically evanescent). The wave acquires nonlinear behavior and possibly
shocks only as a consequence of the vertical constriction caused by the vertical
temperature variations. Nonlinearity ceases increasing once the wave energy is
concentrated at the base of the disk atmosphere. Nonlinear simulations would
be useful to test the predictions of wave channeling.

3. Disk -+ Binary Interaction

Gravity of the disturbed disk(s) transfers energy and exerts feedback torques
on the perturber (binary), thus causing a coupled orbital evolution of a and
e (as well as precession w) in accordance with the Lindblad resonance theory
(Goldreich & Tremaine 1980). Although some quantities, like the gravitational
torque from the CB disk, are fairly insensitive to the detailed properties of
the disk or the binary (except for the disk viscosity, with which the torque is in
balance), others are not. The mass accreted from the disk provides extra torques
and an energy transfer route, but these effects are model-dependent. Therefore,
the orbital evolution is, in general, a complex matter, with some of the effects
able to cancel one another.
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3.1. Orbital Migration

For example, consider the evolution of the semi-major axis a. Gravitation of the
circumstellar disks tends to unwind the orbit (increase a), while the CB disk has
an opposite effect of tightening it (see eq. 4 of Lubow & Artymowicz 2000). Mass
inflow generally opposes these trends. If the CB disk is able to transfer several
times the "unperturbed disk" flux of matter onto a binary/ (secondary compo-
nent, mostly), then the orbital separation might increase. We have seen such
effects in some SPH calculations of binaries, and the calculations of star-l-planet
systems with the outer/CB disk only (Lubow, Seibert, & Artymowicz 1999). A
stable equilibrium with a low-mass inner and a much more massive outer disk
might be established.

In the case of very unequal binary components, it is interesting to note
that the gas flow does not need to accrete onto the small secondary component
to produce a significant effect. For torque production, it suffices for the gas
to enter the Roche lobe of the secondary and leave at its opposite end (this
produces double the effect of entering and falling on a planet in the center of the
Roche lobe). A case where the gas is restricted to pass through the Roche lobe
rather than accrete has recently been simulated by Masset & Snellgrove (2000),
and outward migration was seen. Takeuchi & Tanaka (1999) on the other hand,
claimed that sufficiently massive planets automatically migrate outward.

The orbital migration is, of course, one of the crucial processes not only in
the binary evolution but also in planet formation theories (Lln.tBodenheimer,
& Richardson 1996, Ward & Hahn 2000). It should be given high priority in the
future work. In both contexts, we would like to understand how close binaries
are produced (from wide binaries?), and once produced how they can be stable
for perhaps a large fraction of the disk lifetime, i.e., "'-/1 Myr. Though we have
suggested above that gas flow near/onto the secondary may sometimes reverse
the normal inward migration, especially in systems with short periods of 4-14
days, where the secondary might reside in a tidally or magnetically-induced disk
gap, this does not necessarily solve the problem. If the flow is efficient in the
protostellar and early PMS stage, but not toward the end of the inner disk
lifetime, there would still be a sufficient time period when gravitational torques
from the CB disk are dominating other effects and threaten the very existence
of the binary.

3.2. Eccentricity: Damped or Pumped up?

The eccentricity evolution is another important, not yet fully explored, effect
that requires much future work. From the discussion of gravitational interactions
in Lubow & Artymowicz (1996, 2000), it follows that the eccentricity driving in
most binary star systems obeys the relation ee ~ -(1/2)a/a, in good agreement
with the SPH results, except in nearly circular systems with e < 0.03, where
e "'-/ e. Eccentricity has a maximum growth rate at e = 0.03 (for the assumed
disk parameters), characteristic doubling timescale being only hundreds of orbit.

2This may seem impossible, at first, but in fact it is not. Notice that the unperturbed disk
around a single mass has very mild density gradients, while the edge of the CB disk has a steep
equilibrium slope of surface density vs. radius, generating a larger viscous flux.
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Various claims have been made in the past about not just the magnitude
but the sign of e in different situations, e.g. for one Jupiter-mass body in a
standard solar nebula (e.g., Artymowicz 1992, Lin & Papaloizou 1993). There
is little doubt that small, terrestrial-sized, protoplanets have their orbits rapidly
circularized, while brown dwarfs interacting with disks would have their eccen-
tricity pumped up (Artymowicz et al. 1991) to at least intermediate e values of
order 0.3 to 0.5, although adequate simulations of the upper limit of e are still
to be performed (Lubow & Artymowicz 2000).

To find the so-called crossover mass and its dependence on disk viscosity
will require refined, perhaps multigrid, numerical techniques (Artymowicz 1992
estimated it at 10 Jupiter masses in early SPH work; analytical arguments sup-
port this value for standard a rv 10-2 disks, and a smaller mass for less viscous
disks). One reason why the eccentricity damping is so important is that it bears
upon the origin of the observed wide distribution of e among the secondaries
in both PMS and MS systems, mentioned in the Introduction. Another is the
recently discovered need for some form of efficient e-damping mechanism during
the formation of giant planets in the outer Solar System (Levison, Lissauer, &
Duncan, 1998). Perhaps the past binary-disk interaction has indirectly protected
the Earth from the possible destabilization by eccentric/chaotic giant planets.

4. Conclusions

Perhaps the main conclusion from our brief review is that there is still much to
do about the binary-disk interaction, in particular about the binary evolution,
despite or maybe because of many recent developments in this field.

Observationally, it would be very interesting to look for some of the observ-
able diagnostic features of binary-disk interaction and to try to directly detect
the orbital evolution of at least the short-period systems.

Many of the orbital evolution effects are interconnected. For instance, it
would be difficult to make progress on the orbital migration issue without find-
ing out about eccentricity and mass flow features during migration. Multidi-
mensional hydrodynamics seems the method of choice. However, we do not yet
have numerical methods that allow us to study with adequate spatial resolution
the long-term evolution of systems. Such systems may interact with disks over
106 orbits or longer. Analytical understanding of what dominates the simulated
evolution of eccentricity is also fragmentary.

Finally, we should emphasize that for certain kinds of binaries, such as
wide binaries (periods >100 yr) or binaries in near contact, physical interactions
other than those discussed here could be dominant (for instance, stellar 3-body
encounters in young star clusters, magnetic and tidal star-star interaction).
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