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ANOTHER APPROACH TO EXTENSIONS
OF CONTINUOUS MAPPINGS

SHU-HAO SUN

First, we give a more general extension theorem about continuous mappings. It is shown
that the Taimanov-Eilenberg-Steenrod extension theorem and the Engelking extension
theorem are special cases and that this theorem implies the Dugunji extension theorem.
The localic version of this theorem also generalises Joyal's extension theorem for locales.
Then, using the same technique, we obtain another more interesting extension theorem
and its applications. In particular, we sharpen a well-known result due to Wallman.

Throughout this paper, all notation is standard. Undefined notions may be found
in [3] and [7] (topological notions in [3] and lattice-theoretic notions in [7]).

To determine a continuous extension, a standard method is to use the convergence
of a filter or a net. All the proofs in 1, 2, 3, 4, 6 depend on this method. However, we
provide another technique here, which seems to be new, to construct an extension of
a continuous mapping. This technique can be used in cases where the image space is
not the Hausdorff. Our second main result (Theorem 4) will illustrate the point. As an
interesting application of the theorem, we shall construct well-compactincations for any
TQ-spaces such that this well-compactification has a weaker universal property similar
to that possessed by Stone-Cech compactifications. In particular, we shall sharpen a
well-known result due to Wallman.

The following theorem is our first main result.

THEOREM 1. Let A be a, dense subspa.ce of a topological space X, and f a
continuous mapping of A to a T$-space Y . The mapping f has a continuous extension
over X if and only if for every open cover {Va: a € A} of Y, there exists an open
cover {Ui'. i £ 1} of X such that the open cover {Ui D A: i £ 1} of the subspace A is
a refinement of {f~i{Va): a £ A} .

PROOF: The necessity is obvious. To show the converse, first note that the assumed
condition is equivalent to the condition that {Exf~ (^a): <* € A} is an open cover of
X, where ExD = X \ (A \ D). Now let lattices of the open sets of Z be denoted by
0(Z). Since / is continuous, we have a frame mapping f~l: O(Y) —> O(A), that is
f~l preserves finite meets and arbitrary joins. Now note that 0(^4) is isomorphic to
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2 S-H. Sun [2]

the set {ExU: U G O(A)} as a meet-sublattice of O(X), that is Ex: O(A) -* O(X) is
injective and preserves finite meets. Thus we define a mapping g*: 0(Y) —» 0(X) as
follows:

g*(V) = (JfExf-1 ( V ) : V C V}, for each y £ 0 ( y ) .

Clearly, we have g*(%) = 0 and g*(Y) = X by the regularity.

Now we want to show that g* preserves finite meets and arbitrary joins. Let

Vlt V2 e O ( F ) , t h e n

1 (V)-.r c y,})n ( U ^ r 1 (y"f):F" c y2})

= |J{Exf-1 (V)n Exf1 (V): v' c y,, y" c y2}

: ^ c y, n y2} = ,*(y, n y2).

So g* preserves finite meets since V' C Vx and F " C y2 imply V D V" C l ^ n V j .

To show g*( \J Vaj = |J f{Va), we consider the union |J Va in O(Y);
\«6A / or€A a€A

by regularity, we also have U K , = Ur> where T = {Wi E O(Y):Wi C
a€A

yQt. for some tti£A}. Thus we have Exf"1 (Wi) C <7*(Vai.) for each W ^ T .

If F' C (J K, = \JT, that is, ( r \ y ' ) U ( U ^ ) = Y, then, by the as-
0.6A V '

sumed condition, we have \}{&yLi~l (W): W € TJ-ljfExf-1 (Y \v'X\ = X, hence

Exf-^y') C U{Exf"1 (W): W G T}\J (Exf"1 (Y \ V^ . Since Exf-^y'JD

Exf- f^\ F') ^ 0, so we have Exf" (V) C ^ E x f " 1 ^ ) : W e T} C [) g*(Va),
V ' cr£A

therefore

f ) ( V ' ) : F l ^ U^}C \Jg*(Va).
\a€A / a£A a€A

But the reverse inequality is trivial since g* is order-preserving.
Now we can define g,: 0(X) —» 0(Y) as follows:

9.{U) = \J{V G O(y): </*(y) C CA} for each U G O(X).

Since g* preserves arbitrary joins, we have, for each pair U G 0(X), V G O(Y),

(*) V Qg,(U) if and only if g*(V) C U.

Now we claim that for each x G X, gm (x \ Jx}) = Y \ {y} for some y G Y.(**). If

g. {X \ Jxfj = Y for some x G X , by (•), y*(y) a \ { I } , but g*(Y) = X, so we

have a contradiction.
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If g*\X \ {x}j = Y \ F, for some x £ X, where F is not a single point set,

let yi, 2/2 6 F yi ^ y2 • Then we have Vlt V2 G O(Y) such that Vj n V2 = 0,

and Xi G V{, i = 1,2, hence V, n V2 C gjx \{x})g*{V1 n V2) C X \ {x}, by finite

meet-preservation </*(Vi) ny*(V2) C X \ {x}, so we have some i £ {1, 2 } , such that

9*(Vi) Q X\ {^}, V< C g.(x \ {V}) = Y\F. But xi £ ViHF, so again we have

a contradiction. Thus formula (**) is established. By (**), we can define a mapping

g: X —> Y as follows:

for each x G X, g(x) = y if and only if gm (X \ {x}) = Y \ {y}.

We claim that g is a continuous extension of / .

To show that g is continuous, it suffices to show g~1 = g* . For each V g 0(5^), we

have g~\V) = {x € X: g(x) G V} = {x: V £Y\{g(x)}} = {x: V £g.(x \Jx})} =

{x:g*(V) g X \ {7}} = {x: x £ g'(V)} = g'(V) G O(X).

To show that g is an extension of / , we first show g~1(V) n A = / - 1 ( ^ ) for

each V G0(7). In fact, j - 1 ( V ) n A = j ' ( V ) f i A = (u{Exf-J (V): V C V } ) f l i =

U{Exr1(T^')n^: F ' C y} = U{/-1(y() : V' C V} = / - 1 ( F ) . Now we can show that

j is as required. If a £ A, /(a) ̂  ff(«)i there exists a V £ O(F) such that /(a) £ V

and g(a) ̂  V, but a £ f~1(V) = y~1(V) 0 A implies ^(a) £ V. It is a contradiction.

This also completes the proof. H

COROLLARY 1. (Eilenberg-Steenrod-Taimanov [2, p.280]). Let A be a. dense sub-

space of a topological space and f a continuous mapping of A to a compact Hausdorff

space Y. Then the mapping f has a continuous extension over X if and only if for

each open cover {Vi}J!_1 of Y there is an open cover {Ui}^L1 of X such that the open

cover {Ui D A}^ of A is a refinement of {/"

COROLLARY 2. (Englking-Vulih [4]). Let A be a dense subspace of a topological

space X and f a continuous mapping of A to a real compact space Y . Then the map-

ping f has a continuous extension over X if and only if for every sequence F\, F2, . . .
of closed subsets of Y such thai ft Fi = 0 , we have ft

t=i t=i

PROOF: By Theorem 1, it is clear if Y is a Lindelof space. Then by virtue of the
lemma ([3, p.176]), the proof is complete (note that a space is real compact if and only
if it is homeomorphic to a closed subspace of a cartesian product of copies of the real
line). |

COROLLARY 3. (Dugundji). Let D be a dense subspace of X . Y a regular space
and f: D —> Y continuous. Then f has a continuous extension F: X —* Y if and only
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if the filterbase f(D n U(x)) converges for each x £ X , wAere U(x) is the neighbour-
hood system of x . (see [1, p.216])

PROOF: Let V be open cover of Y such that \J{Ex{ (V): V £ V} ^ X.
Then there is an x £ X such that x £ (JiExi"1 (V): V £ V}, that is, for each
U £ U{x),V £ V, U g E x f - ^ y ) , UnD g / ^ ( V ) , hence f(UnD) g y . But
/(Z? nW(«)) converges to some t/ £ 7 ; so there is a Vo G V such that y £ Vo. Hence
there exists an Uo £ U{x) such that /(UQ O D) C VO . Thus we have a contradiction. |

Mimicking the proof of Theorem 1, we have

THEOREM 2. Let A be a dense subspace of a topological space X and F be
a continuous mapping of A to a locally compact space y. The mapping F has a
continuous extension over X if and only if there is an open cover {Va: a £ A} of
Y in which each element has a compact closure such that {Exf""1 (Va): a £ A} is an
open cover of X and for every finite family {i7^ : i £ k} of compact subsets of Y with

k k

p| Fi = 0 we have f]

The localic version of Theorem 1 is the following

THEOREM 3. Let Aj be a dense sublocale of a locale A, B a regular locale, then
continuous map f: Aj —* B has a unique extension to a continuous map g: A —>• B if
f satisfies that for each family {ba: a £ A} with \/{ba : a £ A} = 1, (Aere exists a
family {a;: i £ / } such that V{at : * G /} = 1 and {j(ai): i £ 1} is a refinement of
{/*(&„): a G A}.

COROLLARY. (A. Joyal) Let Aj be a flat sublocale of a locale A, B a compact
regular locale; then every continuous map f: Aj —» B has a unique extension to a
continuous map g: A —̂  B. (see [7, p.91])

Remark. Note that our proof was inspired to some extent by Joyal's proof.
Before we discuss further non-separated spaces, we need to introduce a property,

which arises very naturally in algebraic geometry and in the spectral theory of rings
and lattices and which partially makes up for the loss of separation. Firstly, a closed
subset A of a space X is called irreducible, if it is not the union of two closed proper
subsets. Now we say a space is sober if each nonvoid closed irreducible subset has a
unique dense point. It is clear that every Hausdorff space is sober and every sober space
is To.

For open sets U, V of a space X we write V <C U if for each open covering U.
of U there is some finite part of U which covers V. Thus V <C U implies V C U
and U <C U implies that U is quasi-compact. Following [5], we say a space X is
core-compact if for each x £ X and U £ O(X) with x £ U, there is some V £ O(X)
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with x G V -C U • The relation <C is known as the way below relation and is one of the
fundamental attributes of a continuous lattice. A full discussion of core-compactness
can be found in [5]; in particular, it is noted there that a space X is core-compact
exactly when O(X) is a continuous lattice and that a sober space X is core-compact
exactly when it is locally quasicompact.

Finally let us say a space X is stable if for each open sets U\, U2, Vj, V2 of
X, Vt < Ui together with V2 < U2 implies Vi D V2 < f/i D U2 • Following [9], we say
a space X is well-compacted if

(i) X is quasi-compact sober;
(ii) X is core-compact, (equivalently, locally quasicompact);

(iii) X is stable.

Clearly, every compact Hausdorff space is well-compacted.

Recall that a space is spectral if it is quasicompact sober and has a base of quasi-

compact open sets which is closed under finite intersections. Spectral spaces are exactly

the spaces occurring as spectra of distributive lattices with 0 and 1, or of commutative

rings with 1. In [9], it is shown that a space is well-compacted if and only if it is a

retract of a spectral space; in particular, every spectral space is well-compacted.

Now we turn to the second main result in this paper. In the sequel, all space are

assumed only to have T0-separation unless otherwise specified.

To show the following theorem, we need another property. We say a dense subset

A of a space X is flat if there is a lattice homomorpliism s: O(A) —> O(X) such that

s(U) HA = U for each U £ O{A).

Example. Every I \ space is a flat subset of its Wallman compactification; in partic-
ular, each discrete (normal) space is a flat subset of its Ston-Cech compactification.

THEOREM 4. Let A be a flat subset of a space X and / a continuous mapping

of A to Y, where Y is well-compacted; then f has a continuous extension over X .

PROOF: AS the proof of Theorem 1, we define g* : O(Y) -> O(X) as follows:

for each V £ O(Y), g*{V) = \J{3(f-
1{lntQ)) : Q C V, Q quasicompact}

where s is the lattice homomorpliism. We can show that g* preserves finite meets and

arbitrary joins. In particular, we have g*(Y) = X and <7*(0) = 0.

Now we define gt: O(X) -> O(Y) as follows:

for each U € OX, g.{U) = \J{V e OY: g*{V) C 17}.

Thus we also have, for each U € O(X), V 6 O{Y), V C g,(U) if and only if g'(V) C
U.
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Hence we can claim that for each x £ X, g,(x \{x}j — Y \ {y} for some y £ Y. It

suffices to observes that the set Y \g, Ix \ {x}) is an irreducible closed set and that Y

is sober. On the other hand, for each x £ X , the point y with gm (X \ {x}) = Y \ {y}

is unique since Y is sober.

So we can define a mapping g: X —> Y as follows:

for each x £ X, g(x) — y if and only if g, (x \ {x}j =Y\ Jy}.

Mimicing the proof of Theorem 1, we can show that g is as required. |

Remark. The localic version of this theorem was essentially obtained by Johnstone
[7]. But our notion of flatness is more general than the one of the spatial version of
localic flatness. In fact, it suffices to note that O{A) is a flat sublocale of 0(X) if and
only if Ex: O(A) -> O(X) is lattice homomorpliism, where Ex(V) = X\A\V, and
the following lemma.

LEMMA. The following conditions are equivalent for any space X ;

(i) A is a Hat subset of X such that for each x £ X with x £ F, where

F is a closed subset of A, there is an U € O(A) with x £ s(U) and

(ii) the mapping Ex: O(A) —» O(X) preserves finite unions;

(iii) for each pair F\ , F2 of closed subsets of A, we have Fif) F2 — Fi f~l F2 •

PROOF: (ii) •& (iii) and (ii) => (i) are clear. Now we show (i) => (iii). Suppose
that x £ Fi n F2 \ Fi l~l F2 , where Ft and F2 are closed sets of A; then there is some
U G OA with x G s<D(U) and s(U) nF1r\F2 = <D by assumption, hence U n FiF2 = 0
and U = {A\Ft)U{A\ F2). So we have s{U) = s(A\Fy)U s(A \ F2) and either
x £ s(A \Fi) or x G s(A \F2), which contracts with the assumption x £ Fi PI F2 . R

The following example shows that the additional condition in the above Lemma (i)
cannot be omitted.

Example. Let X be the right half of the real line [0, 00) and the topology $ —

{[0, x) \ A: A countable whenever x < 1 and A finite whenever x ^ 1} then (X, 9) is
Tj . Now let Y be the space obtained from X by adding a new point p such that X

is open and the neighbourhoods system B(p) of the point p is {{p} U [0, 1) \ B: B C
X is finite} . Thus X is an open dense subset of Y and y is also T\. Now we show that
Ex: O(X) —» O(Y) does not preserve binary unions: Let Ai, A2 be two disjoint infinite
countable subsets of [0, 1); then the sets ([0, 1) \ A^) and ([0, 1) \ A2) are open in Y,

morever, Ex([0, 1) \ A{) = [0, 1) \ Ait i = 1, 2. But Ex(([0, 1) \ At) U ([0, 1) \ A2)) =

Ex[0, l) = [0, l ) u { p } ^ [ 0 , 1).
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On the other hand, we can define a lattice homomorphism s: O(X) —» O(Y) such

that s{U) O X = U for each tf £ O(JC), that is, X is a flat subset of Y. In fact, s is

denned by s{U) = U is infinite, and a(l/) = U U {p} if X \ U is finite. It is easy to

check that s is as required.

R e m a r k . No such space is regular since the assumption that A is a flat subset of X

implies the one that each pair Fi, F2 of disjoint closed sets of A have disjoint closure

in X which is equivalent to the one that Ex: O(A) —* O(X) is a lattice homomorphism

in the realm of regular spaces.

In the sequel, we shall give some applications of Theorem 4.

The next theorem will generalise the following known result due to Wallman. 'Every

continuous mapping from a T\ space to a compact T2 space has a unique continuous

extension over its Wallman coinpactification'.

One might have conjectured that the uniqueness would be dependent on the T2-

separation of the image space in the above result of Walhnan, as usual.

To show that the T2-separation can be omitted, let us note that, for each Ti-space

X, each continuous mapping / from its Wallman compactification wX to a compact

T2-space Y has the following property,

(*) for each pair V,, V2 £ OY, there is an open set U of X with / ^ ( V i ) C

To see this, it suffices to note that Vj < V2 => f'1^) < Z " 1 ^ ) and that {U*: U £
OX} forms a base closed under finite unions.

THEOREM 5. Let X be a I\ space and / : I - > F a continuous mapping, where
Y is well-compacted; then f has a unique continuous extension satisfying (*) over its
Wallman compactification wX.

PROOF: For each U £ O(X), let a(U) = U* ; then 3 is a lattice homomorphisin.

It follows from Theorem 4 that / has a continuous extension g over w l . Noting that,

for each V e O(Y), ^ ( V ) = g'{V) = (J{(/-1(Int(?))*: Q C V, Q quasicompact},

we have f~1{Vy)* C ^"'(Vj) whenever Vj <£L V2 . On the other hand, we clearly have

S'HVi) £ (/^(Vi))* . Thus we have shown that the extension g satisfies (•).

C hl

Now we prove the uniqueness. Let X —• UJX =1 Y such that /iji = h2i, where
both hi and h2 satisfy (*). If hi ^ h2, that is, hi(p) ^ h2(p) for some p € u l , we
can assume there are Vj, V2, U € O(Y) with hi(p) g Vx < V2 < U and h2(p) £ U by
Y being well-compacted. Furthermore, we find W1} W2 £ O(X), since both /ij and
h2 satisfy (*), such that p G ^ - ' (V i ) C W* C h-\V2) and h2\V2) C W; C h2\U),

in particular, p £ W* \ W2 and Wi \ W2 ^ 0. Thus we can choose some x £ X with
x £ W, \ W2 , hence x £ VFj* \ W2'; so hi(x) £ V2 and h2{x) $ V2 which contradicts
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ith

R e m a r k . This theorem generalises the above result of Wallman.

As another interesting application, we consider the well-compactifications of Tg-

spaces (it is just the second part of Stone representation theorem; it was also mentioned
in [9].

Let L be a distributive lattice with 0 and 1 and aL denote the prime spectra
of L (that is, the set of all prime ideals of L with the Stone-Zariski topology). Then
I is a spectral space. Now let X be a To-space and O(X) be the topology of X.

Then O(X) is a distributive lattice with 0 and 1. Let EX = crO(X) then EX is
well-compacted (indeed, a spectral space). It is easy to show that X is homeomorphic
to the subspace {Ix: x 6 X}, where Ix = {U £ O(X): x £ U}, of X, that is, the
mapping / : X —+ E X denned by:

for each x £ X, I(X) = Ix is continuous,

relatively open and I{X) is dense in EX.

Thus we have shown that EX is a well-compactification of X . Now we want to establish
some counterparts of Theorem 5. To do this, we define s: O(X) —* OEX as follows:

for each U £ O(X), s(U) = {p £ EX. U £ p}.

Then it is easy to check that s is a lattice homomorphism such that s(U) n X = U,
that is, X is a flat subset of X .

Following Simmons, we say a continuous map f: S —* T is well compacted if for
each open sets U, V of T, the implication

holds.

As another application of our Theorem 4, we give a new proof of the following
theorem essentially due to Simmons ([9]).

THEOREM 6. Let X be a To space and f:X—*Y a continuous mapping, where
Y is well compacted. Then f has a unique continuous well-compacted extension over

E X .

PROOF: By virtue of Theorem 4, we have a continuous extension g of / such
that g'^V) = g*(V) = U { a / - 1 ( I n t Q ) : Q C V, Q quasicompact}. Noting each s(U)

is quasicompact open, so we see that g is well-compacted. The proof of the uniqueness
is similar to that in Theorem 5. •
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