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Abstract

Ritt introduced the concepts of prime and composite polynomials and proved three fundamental theorems
on factorizations (in the sense of compositions) of polynomials in 1922. In this paper, we shall give a
density estimate on the set of composite polynomials.
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1. Introduction and preliminaries

Let p be a nonlinear polynomial in one complex variable. We say that p is prime if and
only if there do not exist two complex polynomials g; and g, both with degree greater
than one such that p(z) = q1(g2(z)). Otherwise, p is called composite or decomposable.

Clearly, for a given polynomial p, one can always factorize it as a composition
of prime polynomials only and this factorization will be called a prime factorization.
In 1922, Ritt [13] proved three fundamental results on the factorizations of complex
polynomials.  Since then many people have tried to give different proofs or
generalizations of Ritt’s theorems to certain classes of rational functions (see, for
example, [2, 5, 6, 811, 16]).

It is worth pointing out that the factorizations of entire or meromorphic functions
have also been considered by many people. For a detailed discussion of this topic, we
refer the reader to [3, 4, 7]. One can also find a discussion on factorizations of infinite
Blaschke products in [15].

The set of critical values of a polynomial plays an important role in determining if
the polynomial is prime or not (see, for example, Theorem A below). By considering
the number of distinct critical values of a polynomial, Beardon [1] showed that for
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each fixed positive integer n, the set of degree n composite polynomials lies in some
hypersurface in C"*! which implies that the set of composite polynomials is of measure
zero and hence almost all polynomials are prime. In this paper, we shall give a
density estimate on how small the set of degree n composite polynomials is. This
kind of density estimation was first used by Smale in his work on the efficiency of
Newton’s method [14]. In fact, Smale found a density estimate on a set V,, of ‘bad’
polynomials of degree n which fail to arrive at an approximate zero when applying
Newton’s method a certain fixed number of times. Here, a point z; is called an
approximate zero of p if zg — 7%, p(z*) =0 and |p(z,)/p(z.—1)| < 1/2 for all n e N,
where 2,41 = 2, — (P(z0)/P'(zn)). See Remark 2.2 in Section 2 for the details of Smale’s
density estimate on V,, ,,.

2. The main result

Without loss of generality, we may assume that p is a normalized polynomial of
degree n > 2, that is, p(z) = 2" + a,_12"~' + - - - + a;z. Now w is a critical value of p if
and only if p’(z) = 0 and p(z) — w = 0 have a common root if and only if the resultant
Res(p — w, p’) = 0. Denote Res(p — w, p’) by ®(w). Clearly, ®(w) is a polynomial in
w of degree n — 1 and p has n — 1 critical values (which may not be distinct). Now we
state the theorem proved by Beardon [1].

TueorEM A [1, Theorem 3.2]. If a polynomial p of degree n > 2 has more than |n/2]
distinct critical values (here | x] is the integer part of a real number x), then it is prime.
In particular, if p has n — 1 distinct critical values, then it is prime.

If p is composite, then p has at most n — 2 distinct critical values by Theorem A,
and this is equivalent to saying that ®(w) = 0 has a repeated root or equivalently,

Y(ay,...,a,-1):=Res(®, ®")=0.

Let W,={(ai,...,a,-1)€C" ' :¥(ay,...,a,_1)=0}. Then the set C, :={(ai,
e ) €C i v a, 17 + - - + ayz is composite) is contained in W,,.

Now we are going to obtain a density estimate on C,,.. Let P, be the set of normalized
polynomials of degree n, that is, P, ={p:p(z)=7"+ p127V + - +ajz,a; € C).
Thus P, can be identified with C"! ={(a;,...,a,—1):a;€C}. Let P(R) be the
polycylinder defined by {a = (a;,...,a,-1) € P, :lal <R,i=1,...,n— 1}. To obtain
the volume of P(R), we consider the standard volume on C*~! =R?*"2 for P,. Let
aj=x;+iy;and D;(R) ={(x;,y;) € R?: x? +y; < R?}. Then

Vol(P(R)) = f da = f e f day - - - da,_,
P(R) lan-11<R la|<R
:(f dal)(f dan—l)
lai|<R |an_11<R
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= (f dx dyl) e (f dxp_ dyn—l)
Di(R) Dy-1(R)

= (xR*)"".
Let S be any subset of ‘W, let p be any positive real number, and define

Up(S) = ) U,

foeS

where U, (fo) = {f € P, :1f'(0) = f5(O)l < p, [ (2) = f;/(2) for all z}. Clearly, U,(C,) C
U,(‘W,). Now we can state our main result.

TueorEM 2.1. Forany R > p > 0,

Vol(U,(C,) N P(R)) - Vol(Up(‘W,) N P(R)) < n(n — 2)p?

2.1
Vol(P(R)) - Vol(P(R)) - R? .
REmARK 2.2. One should compare Theorem 2.1 with
Smare’s Density Estivate [14, Theorem 5.(1)]. For any R > L
Vol(V,, N P(R
Vou 0 P(R)) < 150(n + 2)*3p*3, (2.2)

Vol(P(R))
where V,, , is mentioned in Section 1.

By considering the exponents of p in (2.1) and (2.2), for a fixed positive integer n, the
upper bound in the estimate in Theorem 2.1 is much smaller than the one in Smale’s
estimate for sufficiently small p > 0.

RemArK 2.3. We shall see in Section 3 that the constant n(n — 2)/R? in the estimate

Vol(Up(C) N P(R)) _ n(n —2)p?
Vol(P(R)) - R?

is far from being sharp because C, is in general a small subset of ‘W,,.
To prove Theorem 2.1, we need the following lemma.

Lemwma 2.4. The subset ‘W, C P, is a complex algebraic hypersurface defined by the
polynomial equation Y(ay, . . ., a,—1) =0, where ¥ is a polynomial of degree n(n — 2)
ina.

Proor oF LEmma 2.4. Let us recall the definition of the resultant. For any two
polynomials u(z) = upz™ + 12" + - - - + ug and v(z) = v,2" + - - - + v, the resultant
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(4]

Res(u(z), v(z)) of u and v is defined to be the determinant of the following (m + n) X
(m + n) matrix:

(U Upp—1 Uy Uy 0 07
0 Uy, uy uy U 0
0 0 Up  Up-1 Up-2 Uo
Vi Vet Vo 0 0
0 Vi Vi Vo 0
L O 0 Vi Vael  Vpoa Vo
As
_.n n—1
p)-w=7"+a,17" "+ -+az—w
and

P@=n"""+ - Da 122+ +2az+ay,

we can see that ®(w):=Res(p —w, p’) is the determinant of the following
(2n—1) x (2n — 1) matrix:

r1 a1 a a —w 0 0 7

0 1 as a ai —w 0

0 0 1 a1 a,_» a,_3 -w

n (n—1a,_ 2a; a 0 e 0 (2.3)
0 n 3a; 2a, a 0 0

0 0 n (n—Day a 0

L0 0 0 n (n—Da,_q e

Clearly, ®(w) is a polynomial in w of degree n — 1 whose leading coefficient is
(=1)""'n", that is,

n—-1
Ow)= )" Fila, ..., a1)w',
i=0

where F,_i(aj, ..., an_1) = (=1)""'n".
To find the coefficient of af in Fy, we consider the determinant of the matrix in (2.3).
By subtracting the (n — 1 + i)th row from the ith row for the determinant of the matrix
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in(23)(@=1,...,n—1), we can see that ®(w) is the determinant of the following

2n - 1) x (2n — 1) matrix:

l—n 2-na,,

0 1-n

0 0

n (I’l— l)anfl

0 n

0 0
L0 0

It is easily seen that

—a

—26!3

1-n
2612

3613

0

—ay

(2 —m)ay-
ap
2612

(- D,
n

-w

0

G=mans (4 —n)ays
0 o

ag

(n - 1.).an—l

0

-w

0

ay 0
ap

n—1
Folar ay, ... ap) = (-1 = 7'ai + Y Gilan, . ap)dy, (2.4)
i=0

where G; is a polynomial in the variables ay, . . ., ;1.
Now we show that for i=1,...,n — 2, each term of F; must involve some a; for
j=2,...,n—1.To prove this, consider

Doy g, =0(W)
1-n 0 0 0O —-w O 0
0 1-n 0 0 0 -w 0
0 0 1-n 0 O 0 —-w
= n 0 0 al 0 O
0 n 0 0 a 0 0
0 0 n o - aj 0
0 0 0 n 0 a1l on_1yx@n-1
_ (1 - n)In—l _WJn—l 1yl (1 - n)ln—l _WIn—l
R I A ail,- DT nl,_ aJl 1

where the last equality holds by expanding the last row of the above determinant
and where I, and J,, denote the m X m identity matrix and the m X m Jordan block
with eigenvalues O respectively. Using the fact that det[2 5] = det(AD — ACA™'B) if
A, B, C, D € C™™ and A is invertible,

Dlg=...=q, ,=0(W)
=a det[al(l - n)ln—l + Wn‘]n—l] + (_l)n_ln det[al(l - I’l)J’Z‘,] + Wn[n_l]

=1 -n)""'d +(=D)""'w" ",
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In particular,
Fia;,0,...,00=0 forj=1,...n-2.

Therefore, for j=1,...,n -2,

(6]

Fiaia,...,ap)= > HL_, (a)ey---ar, 2.5)

Sp+etSpo1 =1

where H {,'2,__“8,”_1 is a polynomial in the variable a;.
As
Ddw) = Fo W™+ + Fy

and
D' (w)=(n— DF, w2+ (n—2)F, oW + -+ Fy,

it follows that W(ay, . . ., a,-1) is the determinant of the following (2n — 3) X (2n — 3)

matrix
Fo Fp F F Fo 0 0
0 Fot F3 F, F, Fo 0
0 0 e Fay Fua Fos Foa Fy
n=-DF,y m=-2)F,» --- 2F, Fy 0 0
0 (n-DF,_, . 3F; 2F, F 0 0
0 oo (n=DF,y (n=2)F, Fp 0
0 n-DF,1 (n=2)F,» Fy
Therefore,
Yar,...,a,.1) = (n—1"""FIFp?
> P (Fo, Fa )] - Fi, (26)
ri+etr,>1
where P,, ., _, is a polynomial in the variables Fy, F,,_;. By (2.4) and (2.5), the first

term in (2.6) is

n(n-2)—-1
(n— l)n—lF::}Fg—Z _ (_l)n—l(n _ 1)(n—1)2nn(n—1)arll(n—2) n Z e
i=0

and the second term in (2.6) is

D P (Fo, FuDF) - Fid= 3" 0, (ads -

ritetr, 221 ty+etty 1 21
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where 7 is a polynomial in the variables a, . . ., a,-1 and Q,, . , is a polynomial in
a; only. Then

nn-2)-1

War, ..., an)= (D" = DO DD N Tyay, a0
i=0 2.7)
+ Z Qtz ..... Ih—1 (al )at22 e ai;ill .
t+-+ty—1 =1

In particular, we can see that ¥ has degree at least n(n — 2) in a;.
On the other hand, by expressing ¥ in terms of the zeros wy, . . ., w,_; of ®(w), that
is,
Yay,...,a,1)=F"* H(Wi -w)?,
1<j
we can show that ¥ has degree at most n(n — 2) in a;. This suffices to show that for
any fixed ay, . . ., ap-1,

Yoo, (@) =Pay, . .., a, 1) < O(ar "™ ?).

To prove this, we need to use a theorem which gives an upper bound for the zeros of a
polynomial in terms of the coefficients of the polynomial. To state this result, we need
the following definition.

DeriniTioN 2.5 [12, Definition 8.1.2]. Let f(z) = co + c12 + - - - + ¢,Z" be a polynomial
of degree n>1. Then the Cauchy bound of f, denoted by p[f], is defined as the
unique positive root of the equation |co| + |c1|x + - - - + |c,—1 ]! = |c,|x" when f is not
a monomial, and as zero otherwise (the uniqueness of the root was proved in [12,
Lemma 8.1.1]).

Theorem B [12, Corollary 8.1.8]. If f(z) =co + c1z2+ -+ - + c,2", where ¢, # 0, then

C

1/(n-v)
Ch ) '

plf]1< max (n

0<v<n-1

RemARrKk 2.6. Notice that all the zeros of the nonconstant polynomial f lie in the closed
disk with centre at the origin and radius p[ f] (see [12, Theorem 8.1.3]).

Letr; i=1,...,n—1) be the zeros (which may not be distinct) of p’. Applying
Theorem B to f(z) = p’'(2) =n"' + (n — Da,_12" 2 + - - - + 2az + a; for any fixed
a, . ..,da,, then

D -1 1(n=1)-v)
((V+ )(f’l )l ) SO(lalll/(n_l))'

lril <plp’]1 < max Ayi1l
0 n

<y<n-2

Note that p(r;) is a critical value of p and therefore ®(w) = 0 if and only if w = p(r;).
Hence

War, ... an) = Fyt [ ot = per)? = 2 [ ot = pry).

i<j i<j
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As
(p(ri) = p(r))* < O(a, "/01)
and there are exactly (n — 1)(n — 2)/2 distinct pairs of p(r;) — p(r;) for i < j,

Taz ..... an,l(al) = ‘P(Cl], cees an—l)
= [ (o) = p(ri))? < O™, @9

i<j
for any fixed ay, . . ., a,.
By (2.7) and (2.8), ¥ has degree n(n—2) in a;; more precisely, there exist
polynomials Ry, . . ., Ryu-2) € Clay, . . ., a,—1] such that

n(n-2)
Y(ai,...,a,1) = Z Ri(ay, ..., a,-1)a),
i=0
where Ryu-2) #0. Therefore, W, is the complex hypersurface defined by the
polynomial equation ¥ = 0, where W is of degree n(n — 2) in a;. This completes the
proof of Lemma 2.4. O

Now we are ready to prove Theorem 2.1.

Proor o THEOREM 2.1. Let y : C*~! — {0, 1} be the characteristic function of Up(W)).
By Lemma 2.4, we observe that for a generic (a, . . . , a,_1) € C"2, the intersection of
W, with the one-dimensional coordinate plane {(z, as, . . . , a,-1) : z € C} consists of at
most n(n — 2) points. Hence

f xay, az, ..., ap-1)day| < f xay, az, . .., a5-1) day
lai|<R laj|<eo
<n(n- 2)71p2.
By Fubini’s theorem,
Vol(Up(‘W,) N P(R)) 1
= T x(@)da
Vol(P(R)) TR Jpr)

v Ll
= —— xai,...,a,-1)da
TR Dot 1<k s 1<R "

X day - - - dan_l

1 f 2
< —— [n(n — 2)mp“1day - - - da,_
@R ot dar s 1<k p ? :
_ 1 2y e (= 2)p?
= W[H(Vl = 2)mp (nR7)"" = R

Since, U,(C,) C Uy(‘W)y),

Vol(U,(C) N P(R)) _ Vol(Up(W,) 0 P(R) _ n(n = 2)p”
Vol(P(R)) N Vol(P(R)) R
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3. Composite polynomials of small degrees

3.1. Degree four polynomials. By considering composite polynomials of degree
four, we shall see that the density estimate of C4 in Theorem 2.1 is not sharp. In
fact, by Theorem 2.1,

Vol(Up(Cs) N P(R) _ 80
Vol(P(R) R’

However, we actually have the following proposition which gives a better upper bound
for the density of Cy.

ProrosrTiON 3.1.

Vol(U,,(C4) N P(R))
Vol(P(R))

2
<L
SR

To see this, note that if p(z) =z*+ a3z’ + axz” + ayz is composite, then
Y(ay, az, a3) = 0. By using mathematical software such as Mathematica,

Y(ay, az, az) = —4096(a3 — daza; + 8a;)*
x (108a3 — 108asaza; + 27aza; + 32a3 — 9a3a3)°.

From the proof of Theorem 2.1, we know that the upper bound 8p?/R? comes from the
fact that W(ay, as, a3) is of degree eight in a;. We can get a much better bound p?/R?
by showing that p(z) is composite if and only if ag —4asay + 8a; = 0.

To prove this, suppose that p is composite, then there exist some A, B € C such that

Frasd v +aiz=E + A7)0 (P +B) =7+ 2B + (A + B + ABz

Comparing the coeflicients, we have a3 =2B,a, = A + B2, a; = AB. After elimination
of A and B, we have aj — 4aza, + 8a; =0.
Conversely, suppose that a3 — 4aza; + 8a; = 0. Then

2
a a a a

=+ i3 + wm +az
So p is composite. Hence Cy = {(ay, a2, a3) € C* : a3 — 4aza + 8a; = 0}.
Proor or ProposiTion 3.1. Note that ag — 4azay + 8a, is of degree one in a;, hence for
any (as, a3) € C2, the intersection of C4 with the one-dimensional coordinate plane
{(z, a2, a3) : z € C} consists of exactly one point. Hence

f x(ai, az, a3) da;
lai|<R

<

f x(ai, az, a3) da| = mp*.
laj|<oco
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It then follows from the proof of Theorem 2.1 that

Vol(U(C2) N P(R)) _ p*
Vol(P(R)) R

This proves Proposition 3.1. O
ReMARK 3.2. As C4 C Wy, aj —4azay + 8a; =0 implies that W(a;, a2, a3) =0. So
there should be a certain relation between ag — 4aza, + 8ay and V. In fact, recall that
Y(ai, ar, az) = —4096((1% — dazas + 8a1)?
x (10847 — 108asazra; + 27a5a; + 32a3 — 9a3a3)°.
It follows that ag — 4aza, + 8ay is a factor of ¥ with multiplicity two.

3.2. Degree six polynomials. By considering composite polynomials of degree six,
we also see that the density estimate of Cg in Theorem 2.1 is not sharp. In fact, by
Theorem 2.1,

Vol(U,(Ce) N P(R)) _ 24p?
Vol(P(R)) TR

However, we actually have the following proposition which gives a better upper bound
for the density of Ce.

ProrosrTiON 3.3.

Vol(U,(Co) N PR)) _ 207
Vol(P(R) R

To see this, note that if p(z) = z° + asz> + asz* + a32° + a»z* + a1z is composite, then
Y(a,, ay, as, a4, as) = 0. By using mathematical software such as Mathematica, ¥ can
be factorized to the following form:

3 2
Y(ay, az, az, as, as) = Clq(ay, az, az, as, as)’[r(ay, az, az, as, as)]”,

for some constant C and some polynomials g, € Clay, a,, a3, as, as] such that g has
degree four in a; and r has degree six in a;. From the proof of Theorem 2.1, we know
that the upper bound 24p%/R* comes from the fact that ¥(a;, a, a3) is of degree 24 in
a;. We can get a much better bound 2p?/R?* by showing the following lemma.

LemMa 3.4. The polynomial p(z) = 2° + asz> + asz* + a32° + ax 7 + ayz is composite if

and only if
5(12 +27a3 — 18asas =0 3.1)
ag - 3a2a4 +27asa, — 8la; =0
or
ag - 8a2a4 + 8a§a3 + 16a5aﬁ —32a4a3 + 64a, =0 (3.2)
5a% - 24alay + 32asas + 1645 — 64a; = 0. '
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Proor oF LEMma 3.4. Suppose that p(z) = 2% + asz® + asz* + a3z’ + az* + a,z is com-
posite. Without loss of generality, we only need to consider the following two different
kinds of factorizations:

() 22+ as? +ad* + a3 + v + a1z= (2 + A2 + Bz) o (22 + C2);
Q) 22+as? +at + s + P +aiz= (2 +Az) o (2 + B + Cz).

For case 1,

L ras? +at + az + w +az
=72543C7 + (3C* + A + (C? + 2A0)7 + (AC* + B)> + BCz.

Comparing the coefficients,

a5:3C
as=3C*+A
as =C? +2AC
612=AC2+B
a; = BC.

After eliminations, we obtain two equations Sag + 27a3 — 18asa4 = 0 and ag - 3a2a4 +
27(15612 — 81(11 =0.
Conversely, suppose that Sag +27a3 — 18asas =0 and ag - 3aga4 +27asa, —

81a; = 0. Then
2 2 4
3 as) 2 ( as5d4 as) ) ( 2, G5 )
+ - 27+ - =24+ 2 + =
(Z (a4 32 a 9 27Z0Z 32
5 2asa al dlay  asa
6 5 4 5 5641 3 2 5 5 502
=7+ + +[-— + + = - =+ =
Z asz asz ( 77 3 )Z asz (81 77 3 )Z

=0+ as? +wd + 37 + w +az

So p is composite.
For case 2,

Z6 + ClSZS + a4z4 + Cl3Z3 + a212 + a1z
=725+ 2B7 + (2C + B)Z* + (A + 2BO)Z + (C* + AB)7> + ACz.

Comparing the coefficients,

as=2B
a;=2C+ B
as=A+2BC
a2=C2+AB
a; =AC.

After eliminations, we obtain two equations a3 — 8alay + 8a3az + 16asaj — 32asas +
64a; =0 and 5a‘5t - 24(1%@4 + 32asa; + 16(13 —64a, =0.
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Conversely, suppose that ag - 8a§a4 + 8a§a3 + 16a5aﬁ - 32a4a3 + 64a; =0 and

50‘5‘ - 24a§a4 + 32asa; + 16ai — 64a, = 0. Then

2 asay “2 3,05 5 (44 ag
@ (o= TR+ 52+ (5 -5 K

5614 3612614 (12 asa
6 5 4 3 5 5 4 5031 2
=2 +asz +a47 +azz +(—— )
64 8 4 2
5 3

2 2
+( as asaq asa, B asas a4g3)

- 4 - +
64 8 4 8 2
4 2
= z6 + a5z5 + a7 + (13Z3 +ax7” +az.
So p is composite. O

Let

Rﬁl)(al, a, as, a4, ds) = Sag + 27a3 — 18asay,

R(Z])(al, ap, as, ag, ds) = ag - 3aga4 +27asa; — 8lay,

R(12)(a1, a, az, dg, ds) = ag - 8aga4 + 8a§a3 + 16a5ai - 32a4a; + 64a,
R(zz)(al, a, as, a4, ds) = Sag1 - 24a§a4 + 32asasz + 16ai — 64a,.

By Lemma 3.4,

Cs = {(a1, a2, a3, ag, as) € C° : RV =R’ =0 or R = RY = 0}
= {(a1, az, a3, ay, as) € C° : R(ll) = R(zl) =0}
Ul(ar, @, as, as, as) € C° : R = R = 0}
— M (2)
=Cy UG,
where C(61) ={(a, a», a3, as, as) € C° : R(ll) = R(zl) =0} and C(62) ={(a1, a», a3, a4, as) €
5. p2 _ p@ _
C:R” =Ry =0}
Now we look at some examples of composite polynomials of degree six.
(1) Let p(z) =z% +2z* + 2. Tt is easily seen that (0, 1,0, 2,0) € C’ satisfies both
(3.1) and (3.2). Hence (0,1,0,2,0) € Cél) N C(Gz) C Cg. Therefore, there are two
different kinds of factorizations for p:

L2+ 2= +22+ 0 =20 ( +2).

(2) Let p(z) = 2%+ z* + 22, It is easy to check that (0, 1, 0, 1, 0) € C° satisfies (3.1),
but not (3.2). Hence (0, 1,0, 1,0) € C(61) \ C(62) C Cg. Therefore,

4 2 2 2
L+ =C+P+2o0z

and z° + z* + z2 cannot be written in the form (z2 + Az) o (Z° + BZ> + C2).
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(3) Let p=8+2*+22 +72+z It is easy to verify that (1,1,1,2,0)eC>
satisfies (3.2), but not (3.1). Hence (1,1,1,2,0) € Céz) \ Cgl) C Cg. Therefore,
P2t + 2+ 4=+ Do +2)

3

and 20 +27* + 22 + 22 +z cannot be written in the form (2 + Az> + Bz) o

(2 + C2).
From the above examples, we have Cg = C(ﬁl) U C(ﬁz), where C(ﬁl) al C(ﬁz) +0, C(ﬁl) \C(62)
#0and C{'\ CY # 0.

Proor or ProprosiTion 3.3. It follows from (3.1) and (3.2) in Lemma 3.4 that for any
(a2, a3, as, as) € C*, there exists at most one a; € C such that

(@), az, a3, as, as) € CL,
and similarly there exists at most one a € C such that
2
(ay, a, a3, a4, as) € C¢.
Therefore, the intersection of Cg with the one-dimensional coordinate plane
{(z, a2, a3, a4, as) : 7€ C}

consists of at most two points. Hence

<

2
f x(ay, az, a3, as, as) da, f x(ai, az, a3, as, as) day| < 2np”.
lai|<R laj|<eo

It then follows from the proof of Theorem 2.1 that
Vol(U,(Cs) N P(R)) - 2_102
Vol(P(R)) T RY
This proves Proposition 3.3. O
REMARK 3.5. As Cs € W, R\” =R" =0 or R =R = 0 implies that ¥ =0. So

there should be a certain relation between R(ll), R(21), R(lz), R(22) and ¥. Now we discuss

such relation. Recall that ¥ can be factorized to the following form:

2
(a1, a, a3, as, as) = Clq(ar, a, as, as, as)V’[r(ay, az, as, as, as)I’,
for some constant C and some polynomials g, r € Clay, as, a3, as, as]. Let IV and
I? be the ideals (R(l), R(Zl)) and (R(z), R(22)> generated by R(ll), R(zl) and R(lz), R(22)
respectively. Using mathematical software such as Mathematica, we find a Groebner
basis G for IV and a Groebner basis G® for I®). When dividing r by G and G»
respectively, both the remainders are zero. Hence r € IV and r € I'¥ or equivalently,
r= KORD 4 DRI = DR L 0pe)

for some ril), r(zl), r(lz), r;z) € Clay, az, az, ay, as]. Therefore,

1 | 1 1)\2 2 2 2 2)\2
War, az. a3, az, as) = CGORY + KORDY = CEORD + /ORO),
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