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The multicomponent diffuse-interface model and
its application to water/air interfaces
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Fundamental properties of the multicomponent diffuse-interface model (DIM), such as
the maximum entropy principle and conservation laws, are used to explore the basic
interfacial dynamics and phase transitions in fluids. Flat interfaces with monotonically
changing densities of the components are proved to be stable. A liquid layer in contact
with oversaturated but stable vapour is shown to either fully evaporate or eternally expand
(depending on the initial perturbation), whereas a liquid in contact with saturated vapour
always evaporates. If vapour is bounded by a solid wall with a sufficiently large contact
angle, spontaneous condensation occurs in the vapour. The external parameters of the
multicomponent DIM – e.g. the Korteweg matrix describing the long-range intermolecular
forces – are determined for the water/air combination. The Soret and Dufour effects are
shown to be negligible in this case, and the interfacial flow, close to isothermal.

Key words: multiphase flow, condensation/evaporation

1. Introduction

The diffuse-interface model (DIM) was proposed by Korteweg (1901) as an attempt to
avoid the abrupt change of parameters in the models of liquid/vapour interfaces existing at
the time. It is based on the following two assumptions.

(i) The long-range attractive intermolecular force (the van der Waals force) can be
modelled by a pairwise potential, so that the force affecting a molecule is the
algebraic sum of those exerted on it by other molecules.

(ii) The characteristic distance over which the van der Waals force acts is much smaller
than the interfacial thickness.
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The resulting representation of the molecular interaction has been incorporated into
models of various phenomena, such as phase transitions in ferroelectric materials
(Ginzburg 1960), spinodal decomposition (Cahn 1961; Lowengrub & Truskinovsky 1998),
growth of, and oscillations in, crystals (Collins & Levine 1985; Tang, Carter & Cannon
2006; Heinonen et al. 2016; Philippe, Henry & Plapp 2020), solidification of alloys
(Stinner, Nestler & Garcke 2004; Nestler, Garcke & Stinner 2005), phase separation in
polymer blends (Thiele, Madruga & Frastia 2007; Madruga & Thiele 2009), electrowetting
(Lu et al. 2007), contact lines (Jacqmin 2000; Pismen & Pomeau 2000; Ding & Spelt 2007;
Yue, Zhou & Feng 2010; Yue & Feng 2011; Sibley et al. 2014; Ding et al. 2017; Borcia et al.
2019), contact lines in liquids with surfactants (Zhu et al. 2019, 2020), Faraday instability
(Borcia & Bestehorn 2014; Bestehorn et al. 2021), Rayleigh–Taylor instability (Zanella
et al. 2020, 2021), cavitation (Petitpas et al. 2009), nucleation and collapse of bubbles
(Magaletti, Marino & Casciola 2015; Magaletti et al. 2016; Gallo, Magaletti & Casciola
2018; Gallo et al. 2020), capillary condensation (Pomeau 1986; Benilov 2022a), liquid
films (Benilov 2020c, 2022a), tumor growth (Frigeri, Grasselli & Rocca 2015; Rocca &
Scala 2016; Dai et al. 2017), classification of high-dimensional data (Bertozzi & Flenner
2012, 2016), etc.

The present paper is mainly concerned with the application of the DIM to the
evaporation of drops and the condensation of vapour on a solid. These phenomena have
been examined using the single-component version of the DIM (Benilov 2022a,b), where
the fluid/gas interface is modelled by that between the liquid and vapour phases of the
same fluid. The evaporation in this case was shown to be due to a flow caused by a weak
imbalance of chemical potentials of the liquid and vapour phases.

It is unclear, however, how the results obtained via the single-component DIM are
modified by the effect of air, whose density (at, say, 25 ◦C) exceeds that of water
vapour by a factor of more than 50. Furthermore, there are three additional physical
effects in multicomponent fluids: diffusion (of water vapour in air), the Soret effect
(thermodiffusion) and the Dufour effect (heat flux due to a density gradient). Only one
of these, the diffusion, has been examined before (e.g. Deegan et al. 2000; Dunn et al.
2009; Eggers & Pismen 2010; Colinet & Rednikov 2011; Rednikov & Colinet 2013;
Morris 2014; Stauber et al. 2014, 2015; Janeček et al. 2015; Saxton et al. 2016, 2017;
Rednikov & Colinet 2019; Wray, Duffy & Wilson 2019), but the models employed in these
papers do not include the flow-induced evaporative flux discovered via the DIM. Thus,
the multicomponent DIM appears to be a tool describing all the mechanisms at work in
evaporation/condensation of liquids into/from air.

The same can hopefully be said about the dynamics of contact lines, as most of the
existing models work for some fluids (including water) only if the so-called slip length
– effectively, the interfacial thickness – is set to be unrealistically small (Podgorski,
Flesselles & Limat 2001; Winkels et al. 2011; Puthenveettil, Senthilkumar & Hopfinger
2013; Limat 2014; Benilov & Benilov 2015).

Before using a new model, one generally needs to examine its basic properties, test it
on problems with well-understood physics (to ensure that the mathematics captures it)
and parameterise this model for the intended applications. These are the three aims of the
present work in the context of the multicomponent DIM.

The following results are reported.
(i) Multicomponent flat interfaces with monotonically changing densities of the species

(components) are all stable. This conclusion follows from the entropy principle and
conservation laws.

(ii) Several new physical effects are described, the most interesting of which is
evaporation of a flat liquid layer in contact with saturated vapour. This phenomenon
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appears to be similar to evaporation of drops surrounded by saturated vapour
(Deegan et al. 2000; Eggers & Pismen 2010; Benilov 2020d, 2021, 2022b), but
with one important difference: the drops evaporate because the curvature of their
boundary increases the effective saturation pressure (the so-called Kelvin effect),
making the saturated vapour effectively under saturated and, thus, encouraging
evaporation. This explanation is clearly inapplicable to layers with flat boundaries
– yet they evaporate anyway. The actual mechanism is based on the long-range
interaction of the liquid/vapour interface with the substrate, which implies that, for
macroscopic liquid films, this effect is weak. It should be important, however, for
nano-films whose thickness is comparable to the interfacial thickness.

(iii) The multicomponent DIM is parameterised for water/air interfaces at normal
conditions, which can be used in the future for modelling evaporation and
condensation of water in the Earth’s atmosphere or the dynamics of contact lines
of water drops.

The paper has the following structure. In § 2 the problem is formulated mathematically.
Section 3 examines the entropy principle and conservation laws. In § 4 the governing
equations are non-dimensionalised and the main non-dimensional parameters are
identified. Sections 5–7 examine basic solutions of the DIM, and in § 8 the DIM
is parameterised for water/air interfaces. Section 9 summarises the results obtained,
including the effects partly mentioned in item (ii) of the above list.

2. Formulation

2.1. Thermodynamics
When studying hydrodynamics of a compressible fluid, one has to deal with its
thermodynamic properties. In this section they are described briefly and in a self-contained
form (for the benefit of readers specializing is incompressible hydrodynamics).

Consider an N-component compressible non-ideal fluid, characterised by the
temperature T and partial mass densities ρi, where i = 1 . . .N. The fluid’s thermodynamic
properties are fully described by two functions: the internal energy e(ρ1 . . . ρN, T) and
entropy s(ρ1 . . . ρN, T), both specific, i.e. per unit mass. The dependence of the fluid
pressure p on (ρ1 . . . ρN, T), or the equation of state, is defined by

p = ρ
∑

i

ρi

(
∂e
∂ρi

− T
∂s
∂ρi

)
, (2.1)

(e.g. Giovangigli & Matuszewski 2013), where

ρ =
∑

i

ρi (2.2)

is the total density (here and hereinafter, the summation is implied to be from 1 to N unless
stated otherwise). The partial chemical potentials, in turn, are given by

Gi = ∂(ρe)
∂ρi

− T
∂(ρs)
∂ρi

. (2.3)

Note that e(ρ1 . . . ρN, T) and s(ρ1 . . . ρN, T) are not fully arbitrary, but should satisfy the
fundamental thermodynamic relation, or the Gibbs relation, which can be written in the
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form

∂e
∂T

= T
∂s
∂T
. (2.4)

The equivalence of this equality and the standard form of the Gibbs relation are shown in
Appendix A.

Using (2.1)–(2.4), one can derive the identities

∂p
∂T

=
∑

i

ρi
∂Gi

∂T
+ ρs, (2.5)

∂p
∂ρj

=
∑

i

ρi
∂Gi

∂ρj
, (2.6)

then rewrite (2.6) in the form

Gi = ∂

∂ρi

⎛
⎝∑

j

ρjGj − p

⎞
⎠ . (2.7)

In what follows, one also needs the specific heat capacity at constant volume,

c = ∂e
∂T
, (2.8)

where the traditional subscript V is omitted. In this paper c is assumed to be positive, which
is indeed the case for neutral fluids (Lynden-Bell 1999).

Define also

ai = − ∂e
∂ρi
, (2.9)

which will be referred to as the generalized van der Waals parameter (of the ith species),
and

B = −p − ρ
∑

i

ρiai. (2.10)

Here B is not one of the standard thermodynamic functions, but is convenient to use
when thermodynamics is coupled to hydrodynamics; as seen later, B characterises the
release (consumption) of heat due to the fluid’s mechanical compression (expansion).
Using equation of state (2.1) and definition (2.9) of the van der Waals parameter, one
can rearrange expression (2.10) in the form

B = ρT
∑

i

ρi
∂s
∂ρi
. (2.11)

954 A41-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1032


The multicomponent diffuse-interface model

2.2. Examples: the Enskog–Vlasov and van der Waals fluids
In the low-density limit, the specific internal energy and entropy of any fluid should tend
to those of an ideal gas, i.e.

e ∼ T
ρ

∑
i

ciρi, s ∼ ln T
ρ

∑
i

ciρi − 1
ρ

∑
i

Riρi ln ρi as ρi → 0, (2.12a,b)

where ci is the specific partial heat capacity and Ri = kB/mi is the specific gas constant,
with mi the molecular mass of the ith species and

kB = 1.380649 × 10−23 m2 s−2kg K−1 (2.13)

the Boltzmann constant. Note also that one can replace ln T → ln T/T̄ and ln ρ → ln ρ/ρ̄,
where T̄ and ρ̄ are suitable dimensional scales. This would make the arguments of the
logarithms non-dimensional (with none of physically measurable parameters depending
on T̄ and ρ̄).

A simple description of non-ideal fluids is delivered by the Enskog–Vlasov (EV) model,
according to which

e = T
ρ

∑
i

ciρi − 1
ρ

∑
ij

aijρiρj, (2.14)

s = ln T
ρ

∑
i

ciρi − 1
ρ

∑
i

Riρi ln ρi −Θ(ρ1 . . . ρN), (2.15)

where Θ(ρ1 . . . ρN) is an arbitrary analytic function and aij characterises the long-range
attraction between molecules of the ith and jth species (with the implication that aij = aji).
For a pure fluid, a11 coincides with the generalized van der Waals parameter defined by
(2.9) – hence, the notation.

One can readily verify that expressions (2.14) and (2.15) satisfy the Gibbs relation (2.4).
They can be viewed as two-term expansions in small T , under an extra assumption that the
heat capacity c and the generalized van der Waals parameter ai are independent of T and
are zeroth-degree homogeneous functions of ρi (for a pure fluid, c and a1 do not depend
on ρ1 at all).

The EV fluid model originates from the EV kinetic theory (de Sobrino 1967; Grmela
1971) and, as such, is naturally suited for use with the DIM that can be viewed as
a hydrodynamic approximation of the EV kinetic equation (Giovangigli 2020, 2021).
Equations (2.14) and (2.15) work very well for inert gases (Benilov & Benilov 2019), they
will be shown to work reasonably well for water, nitrogen and oxygen (see § 8 of this
paper).

The EV involves too many parameters to be used as an illustration of general results –
so, in such cases, the simpler van der Waals model will be employed. It is a particular case
of (2.14) and (2.15) with

Θ = − 1
ρ

∑
i

Riρi ln

⎛
⎝1 −

∑
j

bjρj

⎞
⎠ , (2.16)

where bi is the reciprocal of the maximum density of the ith species. Physically, 1/bi can
be interpreted as density of the closest packing.
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Given expressions (2.14)–(2.16), definition (2.1) of the pressure and definition (2.3) of
the chemical potential yield

p = T

1 −
∑

j

bjρj

∑
i

Riρi −
∑

ij

aijρiρj, (2.17)

Gi = TRi ln
ρi

1 −
∑

j

bjρj
+

Tbi
∑

j

Rjρj

1 −
∑

j

bjρj
− 2

∑
j

aijρj + T(Ri + ci − ci ln T). (2.18)

For a pure fluid (N = 1), (2.17) reduces to the classical van der Waals equation of state
(van der Waals 1893).

2.3. Hydrodynamics
Consider a fluid flow characterised by the species densities ρi(r, t), mass-averaged velocity
v(r, t) and temperature T(r, t), where r = [x, y, z] is the position vector and t the time. Let
the species be affected by forces F i (which will be later identified with the van der Waals
forces), and the fluid as a whole, affected by viscosity. The shear viscosity μs and bulk
viscosity μb depend generally on ρi and T .

Let the flow be governed by following equations:

∂ρi

∂t
+ ∇·(ρiv + J i) = 0, (2.19)

∂(ρv)

∂t
+ ∇·(ρvv) = ∇·Π +

∑
i

ρiF i − ∇p, (2.20)

∂

∂t

(
ρe + 1

2
ρ|v|2

)
+ ∇·

[(
ρe + 1

2
ρ|v|2 + p

)
v − Π·v + Q

]
=
∑

i

F i·(ρiv + J i). (2.21)

Here, the viscous stress tensor is

Π = μs[∇v + (∇v)tr − 2
3 I(∇·v)] + μbI(∇·v), (2.22)

where the dotless product of two vectors (e.g. ∇v) produces a second-order tensor and the
superscript tr denotes transposition. The diffusion fluxes J i and the heat flux Q are related
to the forces F i, temperature T and chemical potentials Gi by

J i =
∑

j

Dij

[
F j − T∇

(
Gj

T

)]
− ζi

T
∇T, (2.23)

Q =
∑

j

ζj

[
F j − T∇

(
Gj

T

)]
− κ

T
∇T, (2.24)

where Dij, ζi and κ are the transport coefficients (all three depend generally on ρi and T).
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To understand the physical meaning of expressions (2.23) and (2.24), we rewrite them
in the form

J i =
∑

j

DijF j −
∑

j

D′
ij∇ρj

︸ ︷︷ ︸
diffusion

− ζ ′
i ρ∇T︸ ︷︷ ︸

Soret effect

, (2.25)

Q =
∑

j

ζjF j −
∑

j

ζj
∑

k

∂Gj

∂ρk
∇ρk

︸ ︷︷ ︸
Dufour effect

− κ ′∇T︸ ︷︷ ︸
heat conduction

, (2.26)

where

D′
ik =

∑
j

Dij
∂Gj

∂ρk
, ζ ′

i = ζi

Tρ
+
∑

j

Dij

ρ

(
∂Gj

∂T
− Gj

T

)
, (2.27a,b)

κ ′ = κ

T
+
∑

j

ζj

(
∂Gj

∂T
− Gj

T

)
(2.28)

are the standard diffusivities, thermodiffusivities and thermal conductivity, respectively.
The second term in expression (2.25) corresponds to the classical Fick law (the fluxes
depend linearly on the density gradients), and the last term in expression (2.26)
characterises heat conduction described by the Fourier law. The last term in (2.25)
describes the Soret effect (∇T gives rise to diffusion) and the second term in (2.26), the
Dufour effect (∇ρj gives rise to heat conduction).

The same four effects – diffusion, heat conduction, the Soret and Dufour effects – are
described, obviously, by the original expressions (2.23) and (2.24), albeit in a form where
the terms cannot be matched to a single effect each.

One might think that representing the fluxes in terms of ∇ρj would be more natural than
using ∇(Gj/T). Observe, however, that the coefficient of (∇T)/T in expression (2.23)
coincides with the coefficient of [F j − T∇(Gj/T)] in (2.24). This symmetry reflects the
so-called Onsager reciprocal relations (Ferziger & Kaper 1972), which also imply that

Dij = Dji, (2.29)

i.e. the diffusion of an ith species in a jth species occurs the same way as that of the jth
species in the ith species.

It should also be assumed that the extended transport matrix,

D(ext)
ij =

⎡
⎢⎢⎣

ζ1

Dij
...

ζN
ζ1 . . . ζN κ

⎤
⎥⎥⎦ , (2.30)

is positive semidefinite (D(ext)
ij � 0), i.e.

N+1∑
i=1

N+1∑
j=1

di D(ext)
ji dj ≥ 0 (2.31)

for all (N + 1)-dimensional arrays di. As seen later, this property is essential for the
entropy principle to hold.
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Furthermore, the transport coefficients should be such that∑
i

Dij = 0,
∑

i

ζi = 0. (2.32a,b)

As a result, the density (2.19) and expressions (2.23) for the diffusion fluxes imply that
∂ρ

∂t
+ ∇·(ρv) = 0, (2.33)

where ρ is the total density given by (2.2). Observe that, for a pure fluid, restrictions
(2.32a,b) can be satisfied only if D11 = 0 and ζ1 = 0, which means that pure fluids neither
diffuse nor thermodiffuse.

Equations (2.19)–(2.24) have been first derived from the thermodynamics of irreversible
processes (Meixner 1941). They were also derived from statistical mechanics (Bearman
& Kirkwood 1958; Mori 1958) and non-equilibrium statistical thermodynamics (Keizer
1987); see (Giovangigli 1999) for more references. A derivation of the small-density
version of (2.19)–(2.24) from the Boltzmann kinetic equation can be found in any textbook
on kinetic theory (e.g. Ferziger & Kaper 1972).

In all these cases, the derived expressions for the transport coefficients automatically
satisfy the Onsager relations and the rest of the properties listed above.

Note also that a reduction of the above equations for a binary fluid with no Soret and
Dufour effects (N = 2, ζi = 0) was used by Liu, Amberg & Do-Quang (2016) to show that
such a model is able to describe the phase equilibrium for a real binary mixture of CO2
and ethanol.

2.4. Alternative forms of the momentum and energy equations
Since the transport fluxes (2.23) and (2.24) are expressed in terms of Gi and T (not ρi and
T), it is convenient to do the same for the pressure gradient in the momentum equation
(2.20). Recalling identities (2.6)–(2.5) which imply that

∇p =
∑

i

ρi∇Gi + ρs∇T, (2.34)

and using (2.33) to simply the left-hand side of the momentum equation (2.20), one
reduces it to

ρ

[
∂v

∂t
+ (v·∇)v

]
= ∇·Π +

∑
i

ρi(F i − ∇Gi)− ρs∇T. (2.35)

The energy equation, in turn, can be conveniently rewritten in terms of the temperature
(which is a measurable quantity, unlike the internal energy e). Replacing, thus, in (2.21),

∂e
∂t

=
∑

i

∂e
∂ρi

∂ρi

∂t
+ ∂e
∂T
∂T
∂t
, (2.36)

one should use the density equation to eliminate ∂ρi/∂t. Then using (2.19) and (2.35), and
recalling identities (2.8), (2.9) and (2.11), one obtains

ρc
(
∂T
∂t

+ v·∇T
)

+ ∇·Q = Π : (∇v)+ B∇·v +
∑

i

(F i − ρai∇)·J i, (2.37)

where the symbol ‘:’ denotes the double scalar product of two tensors.
The first term on the right-hand side of (2.37) describes heat production by viscosity

and the second term that by fluid compression or expansion.
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2.5. The van der Waals force
Assume that a molecule of a jth species exerts on a molecule of an ith species an isotropic
force with a potential Φij(r), where r = (x2 + y2 + z2)1/2. Assuming for simplicity that
the fluid is unbounded, one can write the mass-averaged force affecting the ith species in
the hydrodynamic equations (2.20) and (2.21) in the form

F i(r, t) = ∇
∑

j

∫
ρj(r′, t)

mimj
Φij(|r′ − r|) d3r′, (2.38)

where mi is the molecular mass and the integration is implied to be over the whole space.
To guarantee the convergence of the integral in (2.38) and those arising later, the potential
Φij(r) is assumed to decay exponentially as r → ∞.

Next, let the spatial scale of ρ(r, t) be much larger than that of Φij(r), in which case
expression (2.38) can be simplified asymptotically. To do so, change in it r′ → r′ + r and
then expand ρj(r′ + r, t) about r′, which yields

F i(r, t) = ∇
∑

j

∫ [
ρj(r, t)+ r′·∇ρj(r, t)+ 1

2
r′r′ : ∇∇ρj(r, t)+ · · ·

]
Φij(r′)
mimj

d3r′.

(2.39)

Given the isotropy ofΦij(r′), the second integral in the above expansion vanishes, and one
obtains

F i =
∑

j

Wij∇ρj +
∑

j

Kij∇∇2ρj + · · · , (2.40)

where

Wij =
∫
Φij(r′)
mimj

d3r′, Kij =
∫

r′2

2
Φij(r′)
mimj

d3r′. (2.41a,b)

Since Newton’s third law implies that Φij = Φji, the matrices Wij and Kij are symmetric.
Once expansion (2.40) is substituted into the hydrodynamic equations (2.20) and (2.21),

its first term can be absorbed into the internal energy, i.e. eliminated by the change

e → e + 1
2ρ

∑
ij

Wijρiρj, Gi → Gi +
∑

j

Wijρj. (2.42a,b)

This does not come as a surprise, as the energy associated with potential interactions of
molecules can be viewed as a kind of internal energy; in fact, the second term of expansion
(2.40) could also be (and sometimes is) absorbed into e. This is not done in this paper,
however, as it would make e a functional (instead of a function), with the implication that
all the thermodynamic definitions and identities in § 2.1 would need to be rewritten in
terms of functional derivatives.

Thus, without loss of generality, one can set in expression (2.40), Wij = 0. Omitting also
the small terms hidden in ‘. . .’, one obtains

F i =
∑

j

Kij∇∇2ρj, (2.43)

which is the multicomponent extension of the standard DIM formula for the van der Waals
force (e.g. Pismen & Pomeau 2000). The matrix Kij is the extension of the so-called

954 A41-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1032


E.S. Benilov

Korteweg parameter for pure fluids, and it will be referred to as the Korteweg matrix.
It should be positive definite, Kij 
 0, as the van der Waals force should be attractive, not
repulsive.

Since the original representation (2.38) was a phenomenological model and, thus, the
pairwise potential Φij cannot be measured, the Korteweg matrix should be viewed as a
set of adjustable parameters. As seen later, they can be deduced from the measurements
of the equation of state and surface tension. One should keep in mind, however, that the
Korteweg matrix should not depend on the temperature. Such a dependence would be
physically unjustified, as the intermolecular attraction (characterised by Kij) should not
depend on the molecules’ velocities (characterised by T).

2.6. Boundary conditions at a solid wall
Let the fluid occupy a domain D, bounded by a smooth surface ∂D. For simplicity, the
so-called Navier slip is disallowed in this work, so that the boundary condition for the
velocity is

v = 0 at r ∈ ∂D. (2.44)

To ensure mass conservation, one should require

n·J i = 0 at r ∈ ∂D, (2.45)

where n is the outward-pointing unit normal to ∂D.
The boundary condition for the temperature, in turn, depends on the problem at

hand. Since this paper is concerned, inter alia, with the entropy principle and energy
conservation, it will be assumed that no heat escapes through the boundary,

n·Q = 0 at r ∈ ∂D. (2.46)

Boundary conditions (2.44)–(2.46) would be sufficient for the standard compressible
multicomponent hydrodynamics, but the DIM requires an extra condition (due to the
presence of higher-order derivatives of the density field in expression (2.43)).

The most common version of such a condition – prescribing a linear combination of the
boundary value of the density and its normal gradient – ascends to the paper by Cahn &
Hilliard (1958). In application to pure fluids, the Neumann reduction of this condition was
proposed by Seppecher (1996) and the Dirichlet reduction by Pismen & Pomeau (2000).
As shown by Benilov (2020b), the latter follows from the assumptions under which the
whole DIM is derived (pairwise intermolecular interactions, slowly varying density field),
and so it is used in the present paper. Thus, we require that

ρi = ρ0,i at r ∈ ∂D, (2.47)

where the constant ρ0,i is specific to the fluid/solid combination under consideration. The
general version of the boundary condition for ρi is discussed briefly in Appendix B.

To clarify the physical meaning of condition (2.47), consider the van der Waals forces
acting on a fluid molecule located infinitesimally close to the wall: the solid attracts it
towards the wall, while the other fluid molecules pull it away. The former force is fixed,
whereas the latter grows with the near-wall density – so that the balance is achieved when
the density assumes a certain value – namely, the parameter ρ0,i in condition (2.47).
This argument suggests that a smaller value of ρ0,i corresponds to a hydrophobic wall
(characterised by a large contact angle) and larger ρ0,i to a hydrophilic one.

According to its physical meaning, ρ0,i does not depend on the temperature. As shown
later, its value can be deduced from a measurement of the contact angle.
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The multicomponent diffuse-interface model

3. The entropy principle

3.1. Conservation laws and the H-theorem
It can be verified that the governing equations and boundary conditions introduced above
conserve the mass of each species

Mi =
∫
D
ρi d3r, (3.1)

and the total energy

E =
∫
D+

⎡
⎣ρe + 1

2
ρ|v|2 + 1

2

∑
ij

Kij(∇ρi)·(∇ρj)

⎤
⎦ d3r. (3.2)

The three terms in expression (3.2) represent the internal, kinetic and van der Waals
energies.

The governing equations and boundary conditions also satisfy an H-theorem, reflecting
the fact that the net entropy of a fluid in a thermally insulated container cannot decrease.
To prove this, consider the following combination of the governing equations:

(2.37) + Tρ
∑

i

∂s
∂ρi

× (2.19) + Ts × (2.26). (3.3)

After straightforward algebra involving the use of the thermodynamic identities presented
in § 2.1 and expressions (2.23) and (2.24) for the fluxes, one obtains

∂(ρs)
∂t

+ ∇·
(
ρsv −

∑
i

Gi

T
J i + Q

T

)
= Π : (∇v)

T

+
⎧⎨
⎩∑

ij

Dij

∣∣∣∣F j − T∇
(

Gj

T

)∣∣∣∣2 + 2
∑

i

ζi

[
F i − T∇

(
Gi

T

)]
·
(

−∇T
T

)

+ κT
∣∣∣∣−∇T

T

∣∣∣∣2
⎫⎬
⎭ . (3.4)

The first term on the right-hand side of this equation is non-negative due to the (easily
verifiable) identity

Π : (∇v) = 1
2μs|(∇v)+ (∇v)tr − 2

3 I∇·v|2 + μb(∇·v)2, (3.5)

whereas the expression in curly brackets is non-negative because the extended transport
matrix is positive semidefinite (see § 2.3). Thus, integrating (3.4) over D, and using
boundary conditions (2.44)–(2.46), one obtains

dS
dt

≥ 0, (3.6)

where

S =
∫
D
ρs d3r. (3.7)

Inequality (3.6) is the desired H-theorem.
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It follows from (3.4) and (3.5) that the exact equality in (3.6) can only hold if the velocity
field is spatially uniform; together with the no-flow boundary conditions, this requirement
amounts to v = 0 (i.e. the fluid is static).

3.2. Stability via the entropy principle
The most common way to examine the stability of a steady solution of a set of equations
consist in linearising these equations with respect to a small perturbation, assuming
the harmonic dependence of the perturbation on t, and solving the resulting eigenvalue
problem. In the problem at hand, however, it is much simpler to examine stability using
the entropy principle.

If, at a certain steady state, the total entropy S has a local maximum constrained by the
conditions of fixed energy E and mass Mi, this state is stable. The inverse is also true:
if S does not have a maximum, the corresponding state is unstable, because a perturbed
solution with a higher entropy cannot evolve ‘back’. Neutrally stable oscillations are also
prohibited by the entropy principle – hence, the system can only evolve further away,
towards a steady state where the entropy does have a maximum.

Let a fluid be enclosed in a container (which can be later assumed to be infinitely large,
if need be) and seek a maximum of S, constrained by the conditions of fixed Mi and E.
This problem amounts to finding the stationary points of the functional

H[ρ1 . . . ρN, T, v] = S +
∑

i

ηiMi + λE, (3.8)

where λ and μi are the Lagrange multipliers, and S, E and Mi are given by (3.7), (3.2)
and (3.1), respectively. Varying H with respect to v and equating the variation to zero, one
obtains

v = 0, (3.9)

i.e. a steady state must be (unsurprisingly) static. Next, varying H with respect to T , one
obtains

∂s
∂T

+ λ ∂e
∂T

= 0. (3.10)

Comparison of this equality with the Gibbs relation (2.4) yields

λ = − 1
T
. (3.11)

Since λ is a constant, (3.11) implies that T is spatially uniform, i.e. a steady state must be
isothermal.

Finally, varying H with respect to ρi, recalling expressions (3.9)–(3.11) for v and λ, and
keeping in mind definition (2.3) of the chemical potential Gi, one obtains

1
T

⎛
⎝Gi −

∑
j

Kij∇2ρj

⎞
⎠+ ηi = 0. (3.12)

This equation describes all steady states of the governing equations, and it will be
extensively used in the rest of this paper. The temperature T in (3.12) should be treated
as a known parameter, whereas the Lagrange multiplier ηi is to be deduced from the
boundary conditions. The latter will be illustrated for the case of an infinite domain,
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The multicomponent diffuse-interface model

plus an assumption that the fluid at infinity be spatially uniform and characterised by a
coordinate-independent chemical potential Gi = G∞,i. In this case, (3.12) yields

ηi = −G∞,i

T
, (3.13)

as required.
Note also that (3.12) can also be recovered by adapting the governing equations for

the state of equilibrium. To do so, one should set v = 0, T = const. and ∂ρi/∂t = 0 in
(2.19) and (2.20) and, recalling expression (2.23) for the diffusion fluxes, obtain (3.12), as
required.

To examine a solution of (3.12) for stability, one needs to calculate the second variation
of H. Omitting the algebra (involving the use of identities (2.3) and (2.4), definition (2.8)
of the heat capacity c and expression (3.11) for λ), one obtains

δ2H = 1
T

∫
D

⎧⎨
⎩∑

ij

[
−∂Gi

∂ρj
(δρi)(δρj)− Kij(∇δρi)·(∇δρj)

]
− ρc

T
(δT)2 − ρ|δv|2

⎫⎬
⎭ d3r.

(3.14)

Evidently, perturbations of the temperature and velocity are negative and can only lower
the total entropy – hence, the type of stationary point (maximum versus saddle) is fully
determined by the variation of the density. Thus, setting δT = 0 and δv = 0, one obtains

δ2H = 1
T

∫
D

∑
ij

[
−∂Gi

∂ρj
(δρi)(δρj)− Kij(∇δρi)·(∇δρj)

]
d3r. (3.15)

Expression (3.15) is the main tool used in this paper for studying the stability properties of
steady states described by (3.12).

4. Non-dimensionalisation and the governing parameters

Introduce a characteristic density scale 
, a pressure scale P, a temperature scale T0 and a
typical value R of the specific gas constant Ri introduced in § 2.2. These scales allow one
to non-dimensionalise all thermodynamics variables and functions introduced in § 2.1,

(ρi)nd = ρi



, ρnd = ρ



, Tnd = T

T0
, end = 


P
e, snd = s

R
,

pnd = p
P
, (Gi)nd = ρ

P
Gi, cnd = c

R
, and = 
2

P
a, Bnd = B

P
.

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

It is also convenient to non-dimensionalise the coefficients that appear in the governing
equations. Using their respective scales, one obtains

(Kij)nd = Kij

K
, (μs)nd = μs

μ
, (μb)nd = μb

μ
,

(Ri)nd = Ri

R
, κnd = κ

κ
, (Dij)nd = Dij

D
, (ζi)nd = ζi

ζ
.

⎫⎪⎪⎬
⎪⎪⎭ (4.2)
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Finally, we introduce

rnd = r
l
, tnd = Vt

l
, vnd = v

V
,

Πnd = l
μV

Π, (F i)nd = l3

K

F i, (J i)nd = J i


V
, Qnd = Q

PV
,

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

where

l =
√

2K

P
(4.4)

is the characteristic interfacial thickness and

V = Pl
μ

(4.5)

is the velocity scale reflecting the three-way balance of the pressure gradient, viscous
stress and van der Waals force (Benilov 2020a). Note also that the characteristic interfacial
thickness l is on a nanoscale (Magaletti et al. 2016; Benilov 2020b; Gallo et al. 2020).

Rewriting (2.19), (2.35)–(2.37), (2.23), (2.24) and (2.43), and omitting the subscript nd,
one obtains

∂ρi

∂t
+ ∇·(ρiv + J i) = 0, (4.6)

α ρ

[
∂v

∂t
+ (v·∇)v

]
= ∇·Π +

∑
i

ρi(F i − ∇Gi)− ρs∇T, (4.7)

τ ρc
(
∂T
∂t

+ v·∇T
)

+ ∇·Q = Π : (∇v)− B∇·v +
∑

i

(F i + ρai∇)·J i, (4.8)

Π = μs

[
∇v + (∇v)tr − 2

3
(∇·v)I

]
+ μb(∇·v)I, (4.9)

δ J i =
∑

j

Dij

[
F j − T∇

(
Gj

T

)]
− νδ

β

ζi

T
∇T, (4.10)

β Q = ν
∑

j

ζj

[
F j − T∇

(
Gj

T

)]
− κ∇T, (4.11)

F i = ∇
∑

j

Kij∇2ρj, (4.12)

where the non-dimensional parameters

α = K
3

μ2 , τ = 
RT0

P
, β = KP
2

μκT0
, ν = ζP

κT0

, δ = K
4

DμP
, (4.13a–e)

are placed for better ‘visibility’ in boxes.
Since α appears in front of the material derivative in (4.6), it should be interpreted as

the microscopic Reynolds number (associated with the flow near the interface, not the
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The multicomponent diffuse-interface model

global flow). Here τ is the non-dimensional temperature; β is the isothermality parameter
(Benilov 2020a): if it is small, the temperature field is close to being spatially uniform
(isothermal). The Nusselt number ν characterises the importance of heat diffusion relative
to heat conduction; see expression (4.11) for the heat flux. Finally, the position of δ in
(4.10) suggests that this parameter characterises advection relative to diffusion (recall that
the flux J i was non-dimensionalised using the advection scale 
V).

One can also introduce the Prandtl and Schmidt numbers,

Pr = βτ

α
= μR

κ
, Sc = δ

α
= μ


DP
, (4.14a,b)

characterizing viscosity relative to heat conduction and diffusion, respectively.
The non-dimensional versions of the boundary conditions look exactly the same as

their dimensional counterparts, (2.44)–(2.47); as do the non-dimensional versions of
the thermodynamic identities of § 2.1 except definition (2.8) of the heat capacity, which
becomes

c = 1
τ

∂e
∂T
. (4.15)

This paper does not aim to present a comprehensive classification of asymptotic regimes
of the multicomponent DIM (for the pure-fluid DIM, see Benilov 2020a). Only the
simplest regime will be described and used later as a qualitative illustration of theoretically
predicted behaviours. It corresponds to the following assumptions:

α � 1, β � 1, ν � 1. (4.16a–c)
The smallness of α allows one to take advantage of the slow-flow approximation; whereas
the other two assumptions and (4.8) and (4.11) imply that

T = 1 + O(β), (4.17)
i.e. the fluid is almost isothermal. Thus, setting T = const. in expression (4.10) for the
diffusion flux and substituting it into the density equation (4.6), one obtains

∂ρi

∂t
+ ∇·

⎡
⎣ρiv +

∑
j

Dij∇
(∑

n

Kjn∇2ρn − Gj

)⎤⎦ = 0, (4.18)

where it was assumed, without loss of generality, that δ = 1. Similarly, simplifying (4.7)
and substituting into it expression (4.12) for F i, one obtains

∇·Π +
∑

i

ρi∇
⎛
⎝∑

j

Kij∇2ρj − Gi

⎞
⎠ = 0. (4.19)

Observe that (4.18) and (4.19) do not involve the (small) temperature variations – hence,
the temperature (4.8) can be simply omitted.

Equations (4.18) and (4.19) and expression (4.9) for the viscous stress form a closed set
of approximate equations for the unknowns ρi and v. The chemical potential Gi in these
equations should be treated as a known function of ρ1 . . . ρN , and the temperature T as a
known parameter.

Unlike the exact set – which describes fast acoustic waves and slow interfacial flow – the
approximate equations describe only the latter. This is a clear advantage: in a numerical
simulation, for example, waves necessitate a small time step and, thus, dramatically slow
down the computation. At the same time, the two sets of equations have very similar
properties: they share the same steady solutions, both conserve mass and energy, and
satisfy the H-theorem.
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5. Basic solutions and their stability

5.1. Spatially uniform states
Consider a uniform fluid where there is no flow and all species are in vapour phase. If
the temperature drops, one of the species may become overcooled, giving rise to rapid
condensation. A similar instability may occur when all or some of the species are in liquid
phase and the temperature increases, giving rise to rapid evaporation.

To determine exactly which states are unstable (thus, do not occur in real world), one
could perform the usual linear analysis. For a pure fluid (N = 1), this is a straightforward
task yielding the following stability criterion:

∂p
∂ρ

> 0. (5.1)

Thus, instability occurs if an increase in density lowers the pressure, so that the flow
generated by the pressure gradient brings even more fluid to this region.

For an arbitrary N, however, the analysis of linearised equations is extremely
cumbersome. Instead, it will be examined via the entropy principle, i.e. using expression
(3.15). Taking the limit D → R

3 (unbounded fluid), assuming that ρi is spatially uniform
and recalling that Kij 
 0 and c > 0, one can deduce from (3.15) that H has a maximum if

∂Gi

∂ρj

 0. (5.2)

This is the standard stability criterion for a spatially uniform state of a multicomponent
fluid (Glansdorff & Prigogine 1971).

The following four comments are in order.

(i) For a physically meaningful Gi(ρ1 . . . ρN, T), condition (5.2) holds for a sufficiently
rarefied vapour or a sufficiently dense liquid.

(ii) The states with marginal stability are sometimes referred to as ‘spinodal points’ and
stable vapour as ‘subspinodal vapour’.

(iii) Interestingly, the viscosity and transport coefficients do not appear in criterion (5.2).
The corresponding effects can only slow the instability down, but not eliminate it.

(iv) To reconcile criterion (5.2) with its pure-fluid counterpart (5.1), note that, for N = 1,
∂G/∂ρ and ∂p/∂ρ have the same sign (as implied by identity (2.6)).

5.2. Two-phase saturated states
Consider an interface separating liquid and vapour of the same pure fluid. If they are
in equilibrium, their temperatures are equal, and the rest of the parameters satisfy the
so-called Maxwell construction (Maxwell 1875),

G(ρ(l), T) = G(ρ(v), T), p(ρ(l), T) = p(ρ(v), T), (5.3a,b)

where the superscripts (l) and (v) mark the parameters of the liquid and vapour,
respectively. The former and latter equalities in (5.3a,b) guarantee thermodynamic and
mechanical equilibria of the interface, respectively.

954 A41-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1032


The multicomponent diffuse-interface model

Assume also that both phases are stable,(
∂G
∂ρ

)
ρ=ρ(l)

> 0,
(
∂G
∂ρ

)
ρ=ρ(v)

> 0, (5.4a,b)

and the density of the liquid exceeds that of the vapour,

ρ(l) > ρ(v). (5.5)

Subject to these conditions, the Maxwell construction (5.3a,b) uniquely determines the
saturated densities ρ(l) and ρ(v) as functions of T .

In what follows, the multicomponent version of the Maxwell construction will be shown
to follow from the DIM’s entropy principle.

Consider an insulated container with fluid subdivided between two states, liquid
and vapour. If the liquid/vapour and fluid/wall interfaces are sufficiently thin, the
corresponding full entropy, mass and energy can be approximately written in the form

S = V(l)ρ(l)s(ρ(l)1 . . . ρ
(l)
N , T(l))+ V(v)ρ(v)s(ρ(v)1 . . . ρ

(v)
N , T(v)), (5.6)

Mi = V(l)ρ(l)i + V(v)ρ(v)i , (5.7)

E = V(l)ρ(l)e(ρ(l)1 . . . ρ
(l)
N , T(l))+ V(v)ρ(v)e(ρ(v)1 . . . ρ

(v)
N , T(v)), (5.8)

where V(l) and V(v) are the volumes of the liquid and vapour phases, respectively. We also
introduce the full volume of the container,

V = V(l) + V(v). (5.9)

The Maxwell construction can be derived by maximizing S subject to the constraints
of fixed Mi, E and V (which are now functions, as opposed to being functionals in the
previous subsection). Straightforward calculations show that the maximum of entropy is
achieved if T(l) = T(v) (isothermality) and

Gi(ρ
(l)
1 . . . ρ

(l)
N , T) = Gi(ρ

(v)
1 . . . ρ

(v)
N , T), (5.10)

p(ρ(l)1 . . . ρ
(l)
N , T) = p(ρ(v)1 . . . ρ

(v)
N , T). (5.11)

The following four comments are in order.

(i) Since the solution describing coexistence of two phases satisfies the entropy
principle, it is automatically stable.

(ii) The Maxwell construction can sometimes yield a solution with negative V(l) or V(v).
In such cases, the two-phase equilibrium is irrelevant, and the fluid evolves towards
the one-phase state with the same masses of the species and total energy.

(iii) The multicomponent Maxwell construction (5.10) and (5.11) comprises N + 1
equations for 2N unknowns – hence, does not uniquely fix the liquid and vapour
densities.
To close set (5.10) and (5.11), one should assume the masses Mi and the total energy
E to be known and view equalities (5.7)–(5.9) as additional equations. They bring the
total number of equations to 2N + 3 (making the ‘expanded’ Maxwell construction
appear overdetermined), but in this formulation V(l), V(v) and T should also be
viewed as unknowns.
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Physically, if a certain amount of fluid, with a certain amount of energy, is placed
in a box, the entropy principle uniquely determines the final temperature and the
proportion in which the box is subdivided between the liquid and vapour phases.

(iv) The closure of the Maxwell construction described in the previous bullet is,
obviously, inapplicable to containers of infinite volume. To understand how
conditions (5.10) and (5.11) should be closed in this case, consider the interface
between the Earth’s atmosphere and ocean. For this setting, one should prescribe
the (atmospheric) pressure and composition of dry air above the ocean’s surface.
With these parameters given, (5.10) and (5.11) yield the saturated moisture content
of the air and the saturated amounts of nitrogen, oxygen, etc. dissolved in the oceanic
water.

To illustrate the use of the Maxwell construction, consider a van der Waals fluid, whose
pressure and chemical potential are described by expressions (2.17) and (2.18). Assume for
simplicity that the fluid is pure (N = 1) and monatomic (ci = 3Ri/2), and let the scales 
,
P and R used for non-dimensionalisation be such that

a11 = 1, b1 = 1, R1 = 1. (5.12a–c)

If T < 8/27 (which is a subcritical temperature of the van der Waals fluid), two states exist
representing the liquid and vapour phases, with some (but not all) of the states in between
being unstable (see figure 1). If the temperature is supercritical, only one phase exists and
interfaces do not.

The simplest model describing a water/air interface is that with N = 2. The Maxwell
construction in this case should be complemented with one extra condition, setting the
pressure above the interface equal to its atmospheric value,

p(ρ(v)1 , ρ
(v)
2 , T) = pA. (5.13)

The difference between a pure and a multicomponent fluid is illustrated in figure 2 for
parameters (5.12a–c) and

a22 = 0.2, a12 = 0, b2 = 1, R2 = 0.6, pA = 0.03. (5.14a–e)

These values reflect a compromise between simplicity, illustrative purposes (the curves
with N = 1 and N = 2 should be visibly different) and an attempt to loosely match the
parameters of water and air (loosely, because the van der Waals model includes few
adjustable constants). In particular, parameters (5.14a–e) make the critical temperature
of the second species noticeably smaller than that of the first species. As a result, a
temperature range exists where the former is definitely vapour, whereas the latter can be
either vapour or liquid (as is indeed the case with water under normal conditions).

The most important difference between a multicomponent fluid at fixed pressure and a
pure fluid is that the former exhibits a boiling point. It occurs when the saturated pressure
of the liquid-phase species matches the applied (atmospheric) pressure: as a result, the
second species is completely replaced by the vapour of the first species, and so the fluid
becomes pure. If it is heated beyond the boiling point, the pressure can no longer be kept
fixed, but ought to increase (to match the saturated pressure of the first species, which
grows with T).

One should keep in mind that the small-T part of figure 2 is physically meaningless due
to freezing (which is not described by the DIM).
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Figure 1. The pressure (a) and chemical potential (b) of a pure van der Waals fluid as functions of the
density, for three values of the temperature: (1) T = 0.26 (subcritical), (2) T = 8/27 (critical), (3) T = 0.33
(supercritical). The critical point on curve (2) is marked with a filled circle; the saturation and spinodal
points on curve (1) are shown by filled and empty squares, respectively. The labels ‘undersat(urated) vapour’,
‘oversat(urated)v(apour)’, etc. apply only to curve (1).

6. One-dimensional steady states

6.1. Flat liquid/vapour interfaces
Consider an unbounded fluid involving liquid and vapour phases in equilibrium, separated
by a static flat interface. Its spatial structure is described by (3.12) derived from the entropy
principle. To adapt it specifically for a flat interface, let ρi depend on a single coordinate
– say, z – so that the interface is horizontal. Let the fluid below the interface be liquid and
above vapour,

ρi → ρ
(l)
i as z → −∞, (6.1)

ρi → ρ
(v)
i as z → +∞. (6.2)
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Figure 2. The saturated densities (a) and pressure (b) versus the temperature, for a pure (solid line) and
two-component (dotted line) van der Waals fluid, with the parameters (5.12a–c)–(5.14a–e). The empty circles
mark the boiling point, the filled circle marks the critical point. The saturated densities of the second species
(of the two-component fluid) are not shown.

Taking in (3.12) the limit z → +∞, one can determine the constant ηi and rewrite (3.12)
in the form

∑
j

Kij
d2ρj

dz2 = Gi − Gi(ρ
(v)
1 . . . ρ

(v)
N , T). (6.3)

The boundary-value problem (6.1)–(6.3) is invariant with respect to the change z → z +
const. – hence, its solution is not unique. To make it such, an extra condition is needed,
say,

ρ1 = 1
2 (ρ

(l)
1 + ρ

(v)
1 ) at z = 0. (6.4)

As shown before, the parameters ρ(l)i and ρ(v)i are not arbitrary but have to satisfy the
Maxwell construction, i.e. conditions (5.10) and (5.11). Thus, they must be intrinsic to the
boundary-value problem (6.1)–(6.4) and can be derived directly from it, as a condition for
the existence of solution.
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Indeed, consider (6.3) in the limit z → −∞ and recall (6.1), which immediately yields
the first half of the Maxwell construction, (5.10). To derive the second half, consider∑

i

∫ ∞

−∞
(6.3) × dρi

dz
dz. (6.5)

The integral in this equation can be evaluated via identity (2.7), and the constant of
integration can be fixed via boundary condition (6.2). After straightforward algebra, one
obtains

1
2

∑
ij

Kij
dρi

dz
dρj

dz
=
∑

i

ρi[Gi − Gi(ρ
(v)
1 . . . ρ

(v)
N , T)] − p + p(ρ(v)1 . . . ρ

(v)
N , T). (6.6)

Taking in this equation the limit z → −∞ and recalling boundary condition (6.1), one
recovers the second part of the Maxwell construction, (5.11), as required.

The boundary-value problem (6.1)–(6.4) was solved numerically for a two-component
van der Waals fluid, using the MATLAB function BVP4c based on the three-stage
Lobatto IIIa formula (Kierzenka & Shampine 2001). Examples of numerical solutions
with parameters (5.12a–c)–(5.14a–e) and

K11 = K22 = 1, K12 = 0 (6.7a,b)

are shown in figure 3. Observe that an increase in temperature makes the interface thicker,
and it becomes infinitely thick when the critical temperature is reached.

As shown in Appendix C.1, all solutions describing liquid/vapour interfaces are stable
as long as dρi/dz never vanishes (ρi(z) is strictly monotonic) for all i.

6.2. One-dimensional drops and bubbles
Apart from liquid/vapour interfaces, (3.12) admits spatially localised solutions, describing
drops or bubbles floating in vapour or liquid, respectively. In this subsection the simplest
– one-dimensional (1-D) – solutions of this kind are discussed, describing a flat layer of
increased or decreased density. They both correspond to the following boundary condition:

ρi → ρ∞,i as z → ±∞. (6.8)

Here ρ∞,i is the density of the vapour (liquid). Unlike the interface solutions examined
above, the fluid outside the drop (bubble) does not have to be saturated vapour (liquid); it
can actually be any stable or metastable state.

The 1-D reduction of the steady state (3.12) and expression (3.13) for ηi can be written
in the form ∑

j

Kij
d2ρj

dz2 = Gi − G∞,i, (6.9)

where G∞,i = Gi(ρ∞,1 . . . ρ∞,N, T) is the chemical potential at infinity.
Figure 4 illustrates typical solutions of the boundary-value problem (6.8) and (6.9)

computed for a pure fluid. The following features can be observed in panel (a) depicting
some 1-D drop solutions.

(i) Drop solutions exist only if ρ∞,1 corresponds to oversaturated vapour.
(ii) As ρ∞,1 → ρ

(v)
1 + 0, the drop becomes increasingly thick.
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Figure 3. Comparison between liquid/vapour interfaces in pure (solid line) and two-component (dotted line)
van der Waals fluids with parameters (5.12a–c)–(5.14a–e) and (6.7a,b). Curves (1)–(3) correspond to T =
0.17, 0.23, 0.28132. The last of these values is the (approximate) boiling point, so that the solid and dotted
curves virtually coincide and ρ2 is virtually zero.

(iii) Once ρ∞,1 passes ρ(v)1 , drop solutions cease to exist. Physically, this is because liquid
drops surrounded by undersaturated vapour evaporate.

Similar tendencies have been observed for 1-D bubble solutions, illustrated in
figure 4(b).

Most importantly, all drops (bubbles) in oversaturated vapour (undersaturated liquid)
are likely to be unstable. For pure fluids (N = 1), the instability can be proven rigorously;
as shown in Appendix C.2, the entropy has a saddle (not maximum) on these solutions.

To understand how slightly perturbed drops and bubbles evolve, they were simulated
numerically using the simplest asymptotic version of the DIM, the one based on (4.18),
(4.19) and (4.9). It is adapted for N = 1 and a single spatial coordinate in Appendix D,
which also outlines the numerical method used.

Various initial conditions have been simulated for the van der Waals pure fluid, with
only two patterns of evolution observed. If the initial condition includes a steady-drop
solution ρ(sd)

1 (z) plus some extra fluid, spontaneous condensation is typically triggered off,
giving rise to two shock waves propagating away from the drop’s centre. This behaviour
is illustrated in figure 5(a) for

T = 0.2, ρ∞,1 = 0.05, (6.10a,b)
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Figure 4. Solutions of boundary-value problem (6.8) and (6.9) for a pure van der Waals fluid with T = 0.2.
(a) Drop solutions with ρ∞,1 = 0.1, 0.05, 0.03587, 0.0358485 (curves (1)–(4), respectively). (b) Bubble
solutions with ρ∞,1 = 0.63, 0.68, 0.7286, 0.728671 (curves (1)–(4), respectively). The labels ‘u(ndersaturated)
v(apour)’, ‘o(versaturated) v(apour)’, etc. characterise ρ∞,1.

and the initial condition

ρ1 = ρ
(sd)
1 (1.01 z), w = 0 att = 0, (6.11)

where w is the vertical velocity (the other two velocity components are zero due to the 1-D
nature of the flow).

If, however, the initial condition includes less fluid than ρ
(nm)
1 (z), the drop would

typically evaporate. This pattern is illustrated in figure 5(b) for parameters (6.10a,b) and
the following initial condition:

ρ1 = ρ
(sd)
1 (0.99 z), w = 0 at t = 0. (6.12)

The two patterns can be understood physically on the basis of the fact that the steady-drop
solutions exist only for drops surrounded by oversaturated metastable vapour, which is
stable with respect to infinitesimally small perturbations, but may be unstable with respect
to finite ones. One can thus assume that the drop solution provides a lower bound for the
mass of perturbations capable of triggering off instability of the surrounding vapour.

It is also interesting to see how a drop would evolve if it is surrounded by saturated (not
oversaturated) vapour.

The fact that the thickness of a steady drop becomes infinite as ρ∞,1 → ρ
(v)
1

suggests that a finite-size liquid layer, surrounded by saturated vapour, evaporates. The
mechanism of this evaporation, however, is not immediately clear. Two-dimensional and
three-dimensional drops, for example, evaporate because the curvature of their boundary
gives rise to a liquid-to-vapour mass flux (Benilov 2020d, 2021, 2022b), but the boundaries
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Figure 5. Evolution of a perturbed drop, described by (D3) and (D4) and boundary conditions (D5a,b) and
(D6a,b), for a pure van der Waals fluid and parameters (6.10a,b). (a) Initial condition (6.11) (the steady solution
plus extra fluid); the time t of a snapshot and the corresponding curve number n are inter-related via t = 5000 n.
(b) Initial condition (6.12) (the steady solution minus extra fluid); t = 500 n.

of 1-D drops are flat. One can only assume that they evaporate due to a long-range
interaction of the drop’s upper and lower interfaces.

To explore this hypothesis, 1-D drops floating in saturated vapour were simulated
numerically (using the same model and numerical method as before). It turned out that
these drops do evaporate, and their evolution can be subdivided into the following three
distinct stages.

(i) The boundaries of the drop rapidly assume the profile of a steady liquid/vapour
interface, of the kind examined in the previous subsection.

(ii) The drop begins to get thinner, but the density of the drop’s core remains close to
ρ
(l)
1 .

(iii) Once the thickness of the drop becomes comparable to the interfacial thickness, the
density at the drop’s centre begins to rapidly decrease, and the drop disappears.

The main characteristic of such behaviour is the evaporation time te, which can be
defined as the interval over which the density at the drop’s centre falls by a factor of,
say, 10, i.e.

ρ1(0, te)
ρ1(0, 0)

= 0.1. (6.13)
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Here te was computed as a function of the drop’s initial size W for the following initial
condition:

ρ1 = ρ
(v)
1 + ρ

(l)
1 − ρ

(v)
1

1 +
(

2z
W

)6 , w = 0 at t = 0. (6.14)

It turned out that, for W changing from 0.2 to 10, the evaporation time te grows from
48.5 to 106, i.e. exponentially. This agrees with the hypothesis that the drop evaporation is
caused by long-range interaction of the drop’s boundaries and the fact that the density in
liquid/vapour interfaces tends to ρ(v)1 and ρ(l)1 (as z → ±∞) exponentially quickly.

6.3. Solid/fluid interfaces
Let the fluid be bounded below by a flat horizontal wall (substrate) located at z = 0, so
that the boundary condition (2.47) reduces to

ρi = ρ0,i at z = 0. (6.15)

Far above the substrate, the fluid is homogeneous,

ρi → ρ∞,i as z → +∞, (6.16)

where ρ∞,i corresponds to a stable or metastable state. Finally, (6.9) used in the previous
subsection for 1-D drops and bubbles applies to the present case as well.

The boundary-value problem (6.9), (6.15) and (6.16) was solved numerically for a van
der Waals pure fluid with

T = 0.2, ρ0,1 = 0.3. (6.17a,b)

Its typical solutions are illustrated in figure 6 (ρ0,i varies, ρ∞,1 is fixed) and in figure 7
(ρ0,i is fixed, ρ∞,1 varies). The following features can be observed.

(i) For a given ρ∞,1, there exists a certain pool of ρ0,i that can be ‘connected’ to this
ρ∞,1. If, for example, ρ∞,1 equals the saturated vapour density (the case illustrated
in figure 6a), then ρ0,1 must be smaller than the saturated liquid density (and vice
versa: if ρ∞,1 = ρ

(l)
1 , then ρ0,i > ρ

(v)
1 ; see figure 6b). When ρ∞,1 approaches the

pool’s boundary, a clearly visible liquid/vapour interface emerges in the solution
and gradually moves away from the substrate.

(ii) It follows from above that, for some pairs (ρ0,1, ρ∞,1), no solution exists. As
illustrated in figure 7, some such pairs involve unstable values of ρ∞,1 (and, thus,
are unimportant), but there are also ones with a metastable ρ∞,1.
To clarify what happens in such cases, the evolution was simulated numerically
(using the model and method used in the previous two subsections). It turned out
that, if the boundary-value problem (6.9), (6.15) and (6.16) does not have a solution,
the substrate triggers off a spontaneous phase change. This result can be readily
interpreted physically: if a sufficiently hydrophilic substrate (with a sufficiently
small ρ0,1) touches oversaturated vapour, it triggers off spontaneous condensation,
whereas a sufficiently hydrophobic substrate touching undersaturated liquid triggers
off evaporation. In either case, a shock wave of phase change propagates away from
the substrate, and the solid/fluid interface cannot be stationary.

(iii) For some pairs (ρ0,1, ρ∞,1), there are two different solutions: a monotonic and
non-monotonic one (see figure 7). It is unclear which of the two occurs in reality.
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Figure 6. Examples of solid/fluid interfaces for a pure van der Waals fluid with parameters (6.17a,b), for a
given ρ∞,1: (a) ρ∞,1 = ρ

(v)
1 , ρ0,1 varies from 0 to ρ(l)1 ; (b) ρ∞,1 = ρ

(l)
1 , ρ0,1 varies from 1 to ρ(v)1 . The arrows

show the direction towards the boundary of the pool of allowable values of ρ0,1.

It turned out that only monotonic solutions of the boundary-value problem (6.9),
(6.15) and (6.16) maximise the entropy, whereas non-monotonic solutions do not
(the former claim is proved in the general case, but the latter, only for N = 1; see
Appendix C.3). That is, non-monotonic solutions cannot be ruled out with certainty
for N ≥ 2 – yet the mere fact that the general stability proof that works for monotonic
solutions cannot be extended to non-monotonic ones seems to resolve the dilemma
in favour of the former.

(iv) Another physically important conclusion follows from the fact that the
boundary-value problem (6.9), (6.15) and (6.16) has no more than one stable
solution, and, thus, does not admit solutions describing a liquid layer of a finite
thickness on a substrate, with saturated vapour above it. All such layers, regardless
of their thickness, evaporate, and the Kelvin effect cannot be responsible for this
effect (because the liquid/vapour interface is flat). The evaporation in this case can
only be caused by long-range interaction between the interface and the substrate.

(v) It is interesting to compare the interfacial profiles shown in figures 6 and 7 to those
computed by Evans, Stewart & Wilding (2017) via the density functional theory and
Monte Carlo method for a Lennard-Jones fluid bounded by a single wall or contained
between two parallel walls. The single-wall profiles of Evans et al. (2017) (see their
figure 3) are qualitatively similar to those computed in this paper, but their two-wall
profiles are riddled with short-scale oscillations (see figures 6, 14 and 20 of Evans
et al. 2017). It is not clear whether the oscillations are caused by ‘interference’ of
the walls: on the one hand, the distance between the walls exceeds the spatial scale
of wall–molecule interaction by a factor of 30 (hence, the ‘interference’ should be
weak), but, on the other hand, no oscillations occur when this distance is infinite.
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Figure 7. Examples of solid/fluid interfaces for a pure van der Waals fluid with parameters (6.17a,b). The fluid
at infinity is: (1) undersaturated vapour, (2) oversaturated vapour with two possible solutions (the unstable one
is shown as a thin line), (3) oversaturated vapour with a single solution, (4) undersaturated liquid with a single
solution, etc. Observe that there are no solutions between curves (3) and (4).

Whatever the nature of the oscillations is, one should not expect the DIM to describe
them due to the omission of the higher-order derivatives of ρi when obtaining
expression (2.43) for the van der Waals force.

7. Surface tension and contact angle

Consider a fluid bounded below by a horizontal substrate, and an oblique liquid/vapour
interface intersecting the substrate; see figure 8. Note that this figure depicts a hydrophilic
substrate, such that the contact angle θ is smaller than π/2.

If in equilibrium, the setting outlined is described by the two-dimensional reduction of
(3.12). Given expression (3.13) for ηi, one obtains

Gi −
∑

j

Kij

(
∂2ρj

∂x2 + ∂2ρj

∂z2

)
+ G∞,i = 0. (7.1)

Impose also the boundary condition

ρi → ρ
(v)
i asz → +∞, (7.2)
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θ

Figure 8. A schematic illustrating boundary conditions (7.4) and (7.5) for a static contact line. Here θ is the
contact angle, φ(s/v)(z) describes the solid/vapour interface, etc.

which implies that the constant in (7.1) is G∞,i = Gi(ρ
(v)
1 . . . ρ

(v)
N , T). At the substrate, the

standard boundary condition
ρi = ρ0,i at z = 0 (7.3)

is assumed.
To close the boundary-value problem (7.1)–(7.3), one should set boundary conditions as

x → ±∞. The setting depicted in figure 8 corresponds to

ρi → ρ
(s/v)
i (z) as x → −∞, (7.4)

ρi → ρ
(s/l)
i (z)+ ρ

(l/v)
i (ξ) as x → +∞. (7.5)

Here, the function ρ
(s/v)
i (z) describes a solid/vapour interface (i.e. satisfies the

boundary-value problem (6.9), (6.15) and (6.16) with ρ∞,i = ρ
(v)
i ); the function ρ(s/l)i (z)

describes a solid/liquid interface; and ρ(l/v)i (ξ) (where ξ = z cos θ − x sin θ ) describes
a liquid/vapour interface tilted at an angle θ (it satisfies the boundary-value problem
(6.1)–(6.3) with z changed to ξ ).

In the framework of the DIM, the contact angle θ is not arbitrary, but is fully determined
by the fluid’s thermodynamic properties, the Korteweg matrix Kij and the near-wall density
ρ0,i. To derive an expression for θ (similar to that derived by Pismen & Pomeau (2000) for
pure fluids), consider ∑

i

∫ ∞

0
(7.1) × ∂ρi

∂x
dz. (7.6)

After straightforward algebra involving integration by parts and the use of boundary
conditions (7.2) and (7.3) and identity (2.7), one obtains

∂

∂x

∫ ∞

0

⎡
⎣∑

j

ρj(Gj − Gj,∞)− p + p∞ + 1
2

∑
ij

Kij

(
∂ρi

∂z
∂ρj

∂z
− ∂ρi

∂x
∂ρj

∂x

)⎤⎦ dz = 0,

(7.7)

954 A41-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1032


The multicomponent diffuse-interface model

where p∞ = p(ρ(v)1 . . . ρ
(v)
N , T). Finally, integrating the above expression from x = −∞

to x = +∞ and recalling boundary conditions (7.4) and (7.5), one obtains∫ ∞

0

⎧⎨
⎩
[∑

i

ρi(Gi − G∞,i)− p + p∞

]
ρi=ρ(s/v)i

+ 1
2

∑
ij

Kij
dρ(s/v)i

dz

dρ(s/v)j

dz

⎫⎬
⎭ dz

=
∫ ∞

0

⎧⎨
⎩
[∑

i

ρi(Gi − G∞,i)− p + p∞

]
ρi=ρ(s/l)i

+ 1
2

∑
ij

Kij
dρ(s/l)i

dz

dρ(s/l)j

dz

⎫⎬
⎭ dz

+
∫ ∞

0

⎧⎨
⎩
[∑

i

ρi(Gi − G∞,i)− p + p∞

]
ρi=ρ(l/v)i

+ 1
2
(cos2 θ − sin2 θ)

∑
ij

Kij
dρ(l/v)i

dξ
dρ(l/v)i

dξ

⎫⎬
⎭ dξ

cos θ
. (7.8)

This equality can be simplified using identity (6.6) (with ρi changed toρ(l/v)i ), and similar
identities for ρ(s/v)i and ρ(s/l)i . After straightforward algebra involving re-denoting ξ → z,
one obtains the DIM version of Young’s formula,

cos θ = σ (s/v) − σ (s/l)

σ (l/v)
, (7.9)

where

σ (s/v) =
∑

ij

Kij

∫ ∞

0

dρ(s/v)i
dz

dρ(s/v)j

dz
dz, σ (s/l) =

∑
ij

Kij

∫ ∞

0

dρ(s/l)i
dz

dρ(s/l)j

dz
dz,

σ (l/v) =
∑

ij

Kij

∫ ∞

−∞
dρ(l/v)i

dz

dρ(l/v)j

dz
dz,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.10)

are the surface tension coefficients of the solid/vapour, solid/liquid and liquid/vapour
interfaces, respectively. Treating hydrophobic substrates (θ > 1

2π) in a similar fashion,
one can show that (7.9) applies to that case as well.

To calculate the surface tension – say, σ (s/l) – one first needs to solve the boundary-value
problem (6.1)–(6.4) that determines the function ρi = ρ

(l/v)
i (z). For a pure fluid, however,

the expression for σ (s/l) can be rewritten as a closed-form integral. To do so, let N = 1 in
(6.6), which yields

dρ1

dz
= −

√
2

K11
{ρ1[G1(ρ1, T)− G1(ρ

(v)
1 , T)] − p(ρ1, T)+ p(ρ(v)1 , T)}. (7.11)

Using this equation to change the variable of integration in the expression for σ (l/v) in
(7.10), one obtains

σ (l/v) =
√

2K11

∫ ρ
(l)
1

ρ
(v)
1

√
ρ1[G1(ρ1, T)− G1(ρ

(v)
1 , T)] − p(ρ1, T)+ p(ρ(v)1 , T) dρ. (7.12)
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Thus, to calculate σ (l/v), one should first use the given p(ρ1, T) and G1(ρ1, T) to find ρ(l)1
and ρ(v)1 (via the Maxwell construction) and then evaluate integral (7.12).

8. Parameterising the diffuse-interface model for water/air interfaces

To use the DIM in applications, one needs the following external parameters: the fluid’s
thermodynamic properties, the dependence of the viscosity and transport coefficients on
(ρ1 . . . ρN, T), and the Korteweg matrix. In this section an approach to specifying these
parameters is described and applied to water/air interfaces.

For reasons described in § 2.2, the fluid’s thermodynamic properties will be
approximated by the EV model. It involves an undetermined matrix aij and an
undetermined function Θ(ρ1 . . . ρN), which should be fixed as the best fits of the empiric
characteristics of the fluid under consideration.

In §§ 8.1 and 8.2 we will explain how the fitting should be carried out for a pure fluid
(in application to water, nitrogen and oxygen). An approach to determining K11 for a pure
fluid will be outlined in § 8.3. Section 8.4 describes how aij, Θ and Kij can be determined
for a water/air mixture, and its viscosity and transport coefficients are dealt with in § 8.5.

All these tasks will be carried out in terms of the original (dimensional) variables.

8.1. The van der Waals parameter of pure water, nitrogen and oxygen
For a pure fluid, the EV expression (2.14) for the internal energy yields (the subscript 1 is
omitted)

e = cT − aρ, (8.1)

which suggests that the van der Waals parameter a can be determined as the linear fit of
the empiric dependence of cT − e on ρ. The heat capacity c in this expression should
be the same as that in the EV kinetic theory, i.e. 3R for water and 5R/2 for nitrogen
and oxygen. For simplicity, the fitting was carried out using only the data on the critical
isobar p = pcr (as done by Benilov & Benilov 2019), but the resulting straight line fits the
isobars p = pcr/2 and p = 2pcr reasonably well too (see the top panels of figure 9). The
parameters of the critical points for the fluids under consideration, as well as the other
parameters needed here and hereinafter, can be found in tables 1 and 2.

The resulting values of the van der Waals parameter a for H2O, N2 and O2 are presented
in table 2. Interestingly, a of water exceeds significantly those of nitrogen and oxygen.
This is likely to be caused by the difference in the molecular structure of these fluids: the
water molecule has a non-zero dipolar moment, whereas nitrogen and oxygen molecules
are symmetric – hence, do not. Since the van der Waals force is of an electric nature, one
can assume that dipolar molecules interact stronger than neutral ones.

8.2. The equation of state of pure H2O, N2, and O2

Pure fluids will be described by the EV model (2.14) and (2.15) with

Θ = R

[
−q(0) ln

(
1 − 0.99

ρ

ρtp

)
+

4∑
n=1

q(n)
(
ρ

ρtp

)n
]
, (8.2)

where q(0) . . . q(4) are undetermined coefficients and ρtp is the fluid’s density at the triple
point (ρtp is just a convenient density scale; the fact that, at the triple point, the liquid and
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Figure 9. Thermodynamic properties of H2O (left-hand panels) and N2 (right-hand panels). The
non-connected symbols show the empiric data from Lindstrom & Mallard (1997) presented in isobaric form,
for three values of the pressure p relative to its critical value, pcr (see the legend). The gap between ρ(v) and
ρ(l) in the empiric data for p = pcr/2 reflects the impossibility (difficulty) of measurements in an unstable
(metastable) fluid. The dotted lines show the parameters calculated via the EV fluid model.

Fluid Ttp (K) ρ
(l)
tp (kg m−3) ρ

(v)
tr (kg m−3) Tcr (K) ρcr (kg m−3) pcr (bar)

H2O 273.160 999.79 0.0048546 647.096 322.00 220.64
N2 63.151 867.22 0.6742700 126.192 313.30 33.958
O2 54.361 1306.10 0.0103580 154.581 436.14 50.430

Table 1. The parameters of the triple and critical points (subscripts tr and cr , respectively) of H2O, N2 and O2
(Lindstrom & Mallard 1997).

vapour are in equilibrium with the solid phase is irrelevant, as solids are not described by
the DIM). Note that the first term in expression (8.2) sets the maximum density at ρtp/0.99.

The coefficients q(n) were determined for H2O, N2 and O2 by ensuring that the
expressions for p(ρ, T) and G(ρ, T) corresponding to (8.2) yield the ‘correct’ –
i.e. empiric – values for the critical density, temperature and pressure, as well as the liquid
and vapour densities at the triple-point temperature T = Ttp (five equations for the five
unknown coefficients). All the necessary empiric data can be found in tables 1 and 2,
and the computed values of q(n) are listed in table 3. Such an approach to calibrating the
EV fluid model is a slight modification of that of Benilov (2020b), which is, in turn, a
modification of the approach of Benilov & Benilov (2018).

To illustrate how well the EV model describes real fluids, the isobaric (with p fixed)
dependence of the temperature on the density is plotted for H2O and N2 in the lower
panels of figure 9. The results for O2 (not presented) are similar to those for N2.
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Fluid m (10−26 kg) R (m2s−2 K−1) a (m5 s−2 kg−1) K (10−17m7 s−2 kg−1)

H2O 2.9915 461.53 2112.1 1.87810
N2 4.6516 296.81 222.23 1.50780
O2 5.3135 259.84 172.73 0.84587
Air 4.7706 289.41 211.84 1.36880

Table 2. The parameters of H2O, N2, O2 and air: m is the molecular mass, R is the specific gas constant, a
is the van der Waals parameter, K is the Korteweg constant. The parameters of air are calculated as the 79-21
weighted averages of the corresponding parameters of nitrogen and oxygen, respectively.

Fluid q(0) q(1) q(2) q(3) q(4)

H2O 0.071894 1.4139 8.1126 −8.3669 4.0238
N2 −0.0013920 0.72934 6.4799 −8.1143 5.0186
O2 0.010770 0.58901 8.5357 −12.034 8.0872

Table 3. The coefficients of the equation of state (8.2) for H2O, N2 and O2.

Note that the DIM has been coupled with realistic equations of state before (e.g. Caupin
2005; Magaletti, Gallo & Casciola 2021); for pure water, this was typically done using the
IAPWS-95 equation (Wagner & Pruß 2002). The EV model used here is undoubtedly less
accurate than the IAPWS-95 model, but it allows one to describe consistently all of the
fluids involved (H2O, N2 and O2).

8.3. The Korteweg parameter of pure H2O, N2, and O2

Benilov (2020b) proposed to deduce K from the requirement that the DIM predicts the
correct value of the surface tension σ (l/v) of the liquid/vapour interface at the triple point.
The same was done in the present work: σ (l/v) was calculated via the DIM formula (7.12)
with G and p of the EV fluid, and the value of K was chosen for which (7.12) yields the
same result as the empiric formula of Somayajulu (1988). The resulting K for H2O, N2
and O2 can be found in table 2.

It should be emphasised that the values of K computed via the above approach depend
on the chosen fluid model. This explains the difference between the result for K in this
paper and the one computed by Benilov (2020b): the former is based on the EV fluid
model and the latter on the van der Waals model. The resulting 30 % difference in σ (l/v)
reflects the fact that the latter model is much less accurate.

As a test of the whole approach based on the DIM and EV models, the theoretical
values for the saturation characteristics and σ (l/v) have been compared with their
empiric counterparts for the whole temperature range where liquid/vapour interfaces exist,
i.e. between the triple and critical points. The results are shown in figure 10: evidently, the
theoretical predictions are reasonably accurate.

8.4. Parameters of water/air interaction
Generally, the parameters of a fluid should be deduced from measurements of its equation
of state, surface tension, etc., but these are rarely known for multicomponent fluids. The
water/air mixture at normal conditions is an exception in this respect: the density of air is
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Figure 10. Comparison of the results obtained via the DIM for an EV fluid (solid line) with the corresponding
empiric data (dashed line): (a) the densities of saturated vapour and liquid, (b) saturated pressure, (c) surface
tension of liquid/vapour interface. The empiric data in panels (a) and (b) are from Lindstrom & Mallard (1997),
and those in panel (c) are from Somayajulu (1988).

small in this case, and its equation of state is close to that of an ideal gas. In addition, air
will be treated as a pure fluid with parameters equal to the weighted averages of those of
nitrogen and oxygen (see table 2).
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Thus, let the functionΘ (the non-ideal part of the entropy of an EV fluid) be independent
of the air density ρ2, so that expressions (2.17) and (2.18) with N = 2 yield

p = T
[

R1ρ1 + R2ρ2 + (ρ1 + ρ2)
dΘ(ρ1)

dρ1

]
− a11ρ

2
1 − 2a12ρ1ρ2, (8.3)

G1 = T
[

R1 ln ρ1 +Θ(ρ1)+ (ρ1 + ρ2)
dΘ(ρ1)

dρ1

]
− 2(a11ρ1 + a12ρ2)+ T[R1 + c1(1 − ln T)], (8.4)

G2 = T[R2 ln ρ2 +Θ(ρ1)] − 2a12ρ1 + T[R2 + c2(1 − ln T)]. (8.5)

Here, the function Θ(ρ1) is the one given by (8.2), with ρ changed to ρ1, and with its
coefficients corresponding to water.

Before using expressions (8.3)–(8.5), one needs to fix the non-diagonal term a12 of
the matrix aij, responsible for the interaction of water and air molecules. It can be
deduced from ρ

(l)
2 (the amount of air dissolved in water): one should choose such a12

that the Maxwell construction based on (8.3)–(8.5) predicts the correct value of ρ(l)2 .
Since a12 is supposed to not depend on T , such a calculation should be done for a single
temperature and the atmospheric pressure. For T = 25 ◦C and p = 1 atm, for example,
ρ
(l)
2 = 0.0227 kg m−3 (The Engineering Toolbox 2004). It can then be deduced that the

Maxwell construction based on (8.3)–(8.5) yields the correct value of ρ(l)2 if

a12 = 208 m5 s−2 kg−1, (8.6)

i.e. approximately equal to a22 and ten times smaller than a11.
The accuracy of expressions (8.3)–(8.5) can be illustrated by the corresponding value of

the boiling point (T ≈ 109 ◦C, as opposed to the exact value of T = 100 ◦C). Furthermore,
at ‘room temperature’ (say, T = 25 ◦C), the error should be even smaller, because the
room temperature is close to the triple point of water (T ≈ 0 ◦C) where (8.3)–(8.5) were
calibrated.

It still remains to determine the non-diagonal term K12 of the Korteweg matrix Kij.
Since Kij is supposed to be positive definite, K12 should satisfy

− 1 <
K12

(K11K22)1/2
< 1. (8.7)

One would think that K12 could be determined by comparing the surface tension of
liquid-water/air interface to that of liquid-water/vapour-water interface. It turns out,
however, that the difference between these is so small that the existing experimental
techniques cannot detect it (see Vargaftik, Volkov & Voljak (1983) and references therein).
This can be due to smallness of K12, but more likely, because the density of air is small.
Either way, the determination of K12 via measurements of surface tension is impossible.

To at least confirm that air cannot affect significantly the surface tension of water, the
boundary-value problem (6.1)–(6.4) was solved for the parameters of water and air at T =
25 ◦C, and K12 varying through range (8.7). It turned out that the resulting variation of the
surface tension is only 7 %.

Even though the dependence of the surface tension (which is a global characteristic) on
K12 is weak, this parameter does influence the local structure of the interface.
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Figure 11. The spatial structure of water/air interfaces for T = 25 ◦C and K12 = (K11K22)
1/2 × n/10, where n

is the curve number: (a) density of water; (b) density of air. The horizontal scales of panels (a) and (b) differ
by a factor of 5; the latter and the horizontal scale of the shaded inset in panel (b) differ by a factor of 1500.
The inset shows that the concentration of the gas dissolved in liquid is non-zero.

Figure 11 depicts the density profiles ρ1(z) and ρ2(z) for the water/air interface at
room temperature (i.e. the above-mentioned solution of the boundary-value problem
(6.1)–(6.4)). One can see that, as K12 approaches the right endpoint of range (8.7), the
profile of the water density is getting steeper, and a layer of high air density is developing
inside the interface. For curve 5 of figure 11(b), which is half-way through range (8.7), the
maximum of ρ2(z) exceeds the atmospheric air density by a factor of approximately 20.
Since the amount of air drawn into the interface grows with K12, one concludes that the
air is ‘pulled in’ by the van der Waals attraction exerted by the bulk of the liquid.

This suggests a possibility of deducing K12 from empiric data on evaporation of drops
(which depends on both global and local characteristics of the interface Benilov 2022b).
Such an approach, however, requires an extension of the evaporation model of Benilov
(2022b) to multicomponent fluids, which is currently in progress.

Observe that the interfaces depicted in figure 11 are such that ρ2(z) is not monotonic –
hence, the sufficient stability criterion from § 6.1 and Appendix C.1 does not apply. This
does not, however, mean that this interface is unstable. It is, in fact, difficult to imagine that
a microscopic non-monotonicity of the density of air dissolved in water could destabilise
the whole interface, but this issue is still of interest theoretically and, thus, deserves further
investigation.
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8.5. The viscosity and thermal conductivity of water/air mixture
There is a large body of work on the viscosity of multicomponent fluids, with
even the simplest theoretical models, e.g. that of Enskog–Chapman for dilute gases
(e.g. Ferziger & Kaper 1972, yielding a fairly complicated dependence of μs and μb on
ρi. Phenomenological results, on the other hand, tend to include many ad hoc parameters
specific to the fluid under consideration (e.g. Davidson (1993) and the references therein).
Overall, the simplest option seems to be the expression for the shear viscosity proposed on
a phenomenological basis by Hind, McLaughlin & Ubbelohde (1960) and justified, under
certain approximations, via statistical mechanics by Bearman & Jones (1960),

μs = μs,1f 2
1 + (μs,1 + μs,2)f1f2 + μs,2f 2

2 , (8.8)

where μs,i is the shear viscosity of the ith species and

fi = ρi/mi

ρ1/m1 + ρ2/m2
(8.9)

is its mole fraction. Expression (8.8) does not include any fluid-specific parameters, but is
capable of predicting the shear viscosity with a reasonable accuracy. If, for example, air
is treated as a mixture of N2 and O2, the error of (8.8) for the range T = 0 − 100 ◦C is
less than 1 %. A similar ‘mixture rule’ can be assumed for the bulk viscosity and thermal
conductivity,

μb = μb,1f 2
1 + (μb,1 + μb,2)f1f2 + μb,2f 2

2 , (8.10)

κ = κ1f 2
1 + (κ1 + κ2)f1f2 + κ2f 2

2 . (8.11)

Generally, various mechanical properties of a multicomponent fluid are often described by
the same mixture rule, in which case it is referred to as ‘generalized’.

It still remains to fix the dependence of μs,i, μb,i and κi on (ρ1, ρ2, T). In application to
air, which can be treated as a dilute gas, one can assume these parameter depend only on
T (as predicted by the kinetic theory of dilute gases), i.e.

μs,2(ρ2, T) = μs,2(0, T), μb,2(ρ2, T) = μb,2(0, T), κ2(ρ2, T) = κ2(0, T),
(8.12a–c)

where μs,2(0, T), μb,2(0, T) and κ2(0, T) are the small-density limiting values of the
corresponding parameters.

For water, whose liquid phase cannot be treated as a dilute gas, such an approximation
is inapplicable. Aiming again for simplicity, one can approximate both viscosities by a
parabola passing through two reference points, the zero-density limit and the saturated
liquid state,

μs,1(ρ1, T) = μs,1(0, T)+ [μs,1(ρ
(l)
1 , T)− μs,1(0, T)]

[
ρ1

ρ
(l)
1 (T)

]2

, (8.13)

μb,1(ρ1, T) = μb,1(0, T)+ [μb,1(ρ
(l)
1 , T)− μb,1(0, T)]

[
ρ1

ρ
(l)
1 (T)

]2

. (8.14)

A similar approximation, but by a linear function, will be adopted for the thermal
conductivity,

κ1(ρ1, T) = κ1(0, T)+ [κ1(ρ
(l)
1 , T)− κ1(0, T)]

ρ1

ρ
(l)
1 (T)

. (8.15)

The accuracy of the above approximations for μs,1 and κ1 are illustrated in figure 12.
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Figure 12. The parameters of pure water at T = 327 ◦C: (a) shear viscosity, (b) thermal conductivity. The
empiric data (Lindstrom & Mallard 1997) are shown as a solid line and approximations (8.13) and (8.15)
as a dashed line. The dots mark the reference points. The gap in the empiric data reflects the impossibility
(difficulty) of measurements in an unstable (metastable) fluid.

To use (8.8)–(8.15), one needs to know how the viscosities and thermal conductivities
of water and air depend on T . For μs and κ , such data are widely available (e.g. Lindstrom
& Mallard 1997; White 2005). Measurements of μb, on the other hand, are scarce, but can
still be found in Holmes, Parker & Povey (2011), Cramer (2012) and Shang et al. (2019)
for liquid water, vapour water and air, respectively.

The empiric formulae proposed in these papers will not be discussed in detail. The
characteristic values they yield for normal conditions are listed in table 4.

8.6. The transport coefficients
Recalling restrictions (2.32a,b), one can deduce that the extended transport matrix for a
two-component fluid is

D(ext)
ij =

⎡
⎣ D11 −D11 ζ1

−D11 D11 −ζ1
ζ1 −ζ1 κ

⎤
⎦ . (8.16)
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Fluid μs (Pa s) μb (Pa s) κ (W K−1 m−1)

Liquid water 0.890 × 10−3 (Lindstrom
& Mallard 1997)

2.47 × 10−3 (Holmes et al.
2011)

0.606460 (Lindstrom &
Mallard 1997)

Vapour water 0.971 × 10−5 (Lindstrom
& Mallard 1997)

7.20 × 10−5 (Cramer 2012) 0.018433 (Lindstrom &
Mallard 1997)

Air 1.840 × 10−5 (White 2005) 1.75 × 10−5 (Shang et al.
2019)

0.026089 (White 2005)

Table 4. The empiric viscosity and thermal conductivity of liquid water, water vapour and air at 25 ◦C, and
the corresponding references.

Evidently, it involves only three independent coefficients, one of which (the thermal
conductivity κ) has already been discussed in § 8.5. The other two, D11 and ζ1, are
discussed below.

It can be safely assumed that diffusion is of importance only where the water density is
comparable to that of air. In the region where the former is high, the latter is miniscule,
and so is its influence on the global dynamics. This effectively means that the diffusivities
can be represented using the Enskog–Chapman method; even though it does not apply to
liquid water, the error due to using it anyway is negligible.

According to the leading-order Enskog–Chapman formula (e.g. Ferziger & Kaper 1972),

D11 = ρ1ρ2(ρ1m2 + ρ2m1)

(ρ1 + ρ2)2kBT
D(T), (8.17)

where D(T) does not depend on ρ1 and ρ2. Its dependence on T can be found in
The Engineering Toolbox (2018), from which the following characteristic value can be
deduced,

D(25 ◦C) = 2.49 × 10−5 m2 s−1. (8.18)

The Enskog–Chapman expression for the thermodiffusivity is fairly bulky; as a result, one
often uses the simpler formula of de Groot & Mazur (1962),

ζ1 = (ρ1 + ρ2)
(ρ1/m1)(ρ2/m2)

(ρ1/m1 + ρ2/m2)2
U(T). (8.19)

Unfortunately, no data on U(T) for water/air mixture are available in the literature; the
author of this paper was able to find only an estimate for a single temperature value (Lidon,
Perrot & Stroock 2021),

U(21 ◦C) = −4.98 × 10−6 m2s−1. (8.20)

It is shown later, however, that thermodiffusion in water/air interfaces is negligible, so the
lack of data on U(T) is unimportant.

In the next subsection characteristic values of the coefficients D11 and ζ1 will be needed.
These will be estimated for the particular case ρ1 = ρ2 = 1.17 kg m−3, i.e. when the
water density matches that of air at normal conditions. Substituting these values and the
molecular masses of water and air from table 2 into (8.17)–(8.20), one obtains

D11 ≈ 1.37 × 10−10 m3 s kg, ζ1 ≈ −2.76 × 10−6 m−1 s−1 kg. (8.21a,b)

Even though these values apply to different temperatures (T = 25 ◦C and T = 21 ◦C), they
will be used simultaneously in the same qualitative estimate (under the implied assumption
that the four-degree difference does not matter).
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8.7. The non-dimensional parameters
To understand which effects are important for water/air interfaces under normal
conditions, one should estimate the non-dimensional parameters (4.13a–e). They will be
calculated using the characteristics of water from tables 2–4 and estimates (8.21a,b). The
characteristic pressure scale will be assumed to be P = a
2, where 
 = 997 kg m−3 is the
density of liquid water at 25 ◦C and a equals the van der Waals parameter of water from
table 2. The following expression for the viscosity scale will be used:

μ = 4
3μs + μb (8.22)

that arises naturally in problems involving liquid films (Benilov 2020c, 2022a) and drops
(Benilov 2022b). In the estimates for this paper, the viscosities μs and μb are those for
water at 25 ◦C.

The following values of parameters (4.13a–e) have been obtained:

α ≈ 0.00139, τ ≈ 0.0653, β ≈ 0.0593, ν ≈ 0.0321, δ ≈ 0.0176. (8.23a–e)

The smallness of the microscopic Reynolds number α suggests that inertia plays little role
in the dynamics of water/air interfaces (hence, one can use the Stokes approximation). The
smallness of the non-dimensional temperature τ does not have physical implications, but
enables one to use asymptotic tools when calculating, say, the profile of the equilibrium
interface (Benilov 2020c). The smallness of the Nusselt number ν implies that the Soret
and Dufour effects are negligible, and so the lack of empiric data on them for water and
air is unimportant. The smallness of β, in turn, implies that the flow is almost isothermal,
whereas the small value of δ suggests that diffusion dominates advection.

Similar estimates have also been carried out for the parameters of air at p = 1 atm and
T = 25 ◦C. It turned out that α, β, ν and δ are even smaller than those for water, but the
non-dimensional temperature τ for air is order one. The latter is not surprising, as the room
temperature is much higher than the freezing temperatures of nitrogen and oxygen, but is
close to that for water.

All these observations should be helpful when using the DIM to examine asymptotically
the problems of evaporation of drops and moving contact lines.

One should keep in mind, however, that parameters (4.13a–e) are sensitive to the choice
of the viscosity scale μ. Benilov (2020a), for example, chose μ equal to the half-sum of
the shear viscosities of liquid water and vapour water; as a result, α and β were noticeably
larger than those calculated above. More generally, one should choose the viscosity scale,
as well as the other characteristic scales, to essentially reflect the physics of the setting at
hand.

Note also that estimates (8.23a–e) apply to water under normal conditions, but in
industrial applications the governing non-dimensional parameters can be very different.
In steam turbines, for example, the temperature can be as high as 540 ◦C, and the pressure
can exceed 230 atm (Vasserman & Shutenko 2017).

9. Concluding remarks

The results obtained in this paper can be briefly summarised as follows.

(a) The entropy principle and conservation laws of the multicomponent DIM have
been used to examine the stability of liquid/vapour interfaces. Several physically
important results are reported as follows.
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(i) Flat liquid/vapour interfaces in an unbounded fluid are stable if the density
profiles of all species are monotonic.

(ii) There can exist up to two different solutions describing a solid/vapour interface,
one monotonic and one non-monotonic. The former is stable and the latter is
likely to be unstable (definitely unstable for pure fluids). Similar conclusions
apply to solid/liquid interfaces.

(iii) For certain values of the near-substrate density (which is an external parameter
in DIM, linked to the contact angle of the substrate), no steady solution
exists describing a solid/vapour interface. Physically, such substrates are too
hydrophilic and, thus, trigger off spontaneous condensation of adjacent vapour.
Similarly, some substrates are too hydrophobic and trigger off spontaneous
evaporation of adjacent liquid.

(iv) A liquid layer between a flat substrate and a semi-space filled with vapour can
exist as a steady state only if the vapour is oversaturated. All such layers are
unstable, however, depending on the perturbation, they either fully evaporate or
grow indefinitely due to condensation of vapour on its upper boundary.
If the vapour above the layer is saturated or undersaturated, the liquid evaporates
and no steady solution exists.
Similar conclusions apply to 1-D vapour layers between a flat substrate and a
semi-space filled with liquid.

(v) Similar conclusions to those in the previous point apply to a liquid layer with
vapour both above and below it, and a vapour layer with liquid below and above
it. Such solutions can be viewed as 1-D drops and bubbles, respectively.

(b) The multicomponent DIM has been fully parameterised for water/air interfaces
under normal conditions. It is shown that the Soret and Dufour effects are weak
in this case, which agrees with the results of Jiang, Studer & Podvin (2020). It is
also argued that the interfacial flow in this case is isothermal.
These are of importance when studying evaporation of water drops or the dynamics
of their contact lines.

Declaration of interests. The author reports no conflict of interests.
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E.S. Benilov https://orcid.org/0000-0002-5895-9746.

Appendix A. The Gibbs relation

We introduce the volumetric densities of energy U(ρ1 . . . ρN, T), entropy S(ρ1 . . . ρN, T)
and partial chemical potentials Gi(ρ1 . . . ρN, T), related to the corresponding specific
quantities by

U = eρ, S = sρ, Gi = Gi. (A1a–c)

Now, definition (2.3) of Gi can be rewritten in the form

Gi = ∂U
∂ρi

− T
∂S
∂ρi
. (A2)

The standard volumetric version of the Gibbs relation (e.g. (2.4) of Giovangigli &
Matuszewski 2013) is

dU = T dS +
∑

i

Gi dρi. (A3)
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The multicomponent diffuse-interface model

Substituting (A1a–c) and (A2) into this equality and rewriting it in terms of dT and dρi
(instead of dS and dρi), one obtains (2.4) as required.

Appendix B. The general boundary condition at a solid wall

Consider the following generalization of the boundary condition (2.47):∑
j

Cij(n·∇ρj)+ ρi = ρ0,i at r ∈ ∂D. (B1)

Here Cij is a symmetric matrix, depending generally on ρ1 . . . ρN . Equation (B1)
is a multicomponent extension of a boundary condition often used for pure fluids
(e.g. Madruga & Thiele 2009; Gallo, Magaletti & Casciola 2021).

To understand how the energy conservation law is affected by switching to a different
boundary condition, observe that the governing equations (2.19)–(2.24) and the other
boundary conditions, (2.44)–(2.46), imply that

d
dt

∫
D

⎡
⎣ρe + 1

2
ρ|v|2 + 1

2

∑
ij

Kij(∇ρi)·(∇ρj)

⎤
⎦ d3r

+
∫
∂D

∑
i

(n·∇ρi)
∑

j

Kij
∂ρj

∂t
dA = 0, (B2)

where dA is the elemental aria on ∂D. The ‘old’ boundary condition (2.47) implies that
the second integral in this equality vanishes, making the integral in the first term be a
conserved quantity (the energy) in this case.

Next, assume that the ‘new’ boundary condition (B1) is imposed. Differentiate it with
respect to t, change the indices – first j → k, then i → j – and use the resulting equality to
rearrange (B2) in the form

d
dt

∫
D

⎡
⎣ρe + 1

2
ρ|v|2 + 1

2

∑
ij

Kij(∇ρi)·(∇ρj)

⎤
⎦ d3r

−
∫
∂D

∑
ij

K′
ij(n·∇ρi)

∂(n·∇ρj)

∂t
dA = 0, (B3)

where
K′

ij =
∑

k

KikCkj. (B4)

Equation (B3) implies that the following quantity is conserved:

E =
∫
D

⎡
⎣ρe + 1

2
ρ|v|2 + 1

2

∑
ij

Kij(∇ρi)·(∇ρj)

⎤
⎦ d3r

− 1
2

∫
∂D

∑
ij

K′
ij(n·∇ρi)(n·∇ρj) dA. (B5)

The second term in this expression is the surface energy corresponding to the new
boundary condition (B1).
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By comparison to the Dirichlet boundary condition (2.47), the mixed condition (B1)
includes additional N(N − 1)/2 adjustable parameters. Even though the extra parameters
may enable the DIM to be more accurate quantitatively, one should think that a
physics-based model does not need many adjustable parameters to capture the qualitative
nature of the phenomenon it is applied to.

Appendix C. Stability of 1-D steady states

In this appendix, the stability of three families of 1-D solutions are examined:

(i) liquid/vapour interfaces,
(ii) 1-D drops and bubbles,

(iii) solid/fluid interfaces.

C.1. Liquid/vapour interfaces
As mentioned before, (3.12) describes all steady states in the problem at hand, and
expression (3.15) describes the corresponding second variation of the entropy. To adapt the
latter for flat liquid/vapour interfaces, one needs to replace the three-dimensional integral
over the domain D with a 1-D integral over the domain −∞ < z < ∞,

δ2H = 1
T

∫ ∞

−∞

∑
ij

[
−∂Gi

∂ρj
(δρi)(δρj)− Kij

d(δρi)

dz
d(δρj)

dz

]
dz. (C1)

This expression can be rewritten in the form

δ2H = 1
T

∫ ∞

−∞

∑
ij

δρiÔijδρj dz, (C2)

where

Ôij = −∂Gi

∂ρj
+ Kij

d2

dz2 (C3)

is a second-order differential operator. Since the matrices ∂Gi/∂ρj and Kij are symmetric
(see definition (2.3) of Gi and § 2.5, respectively), Ôij is self-adjoint – hence, its spectrum
is real. Note also that Ôij depends on the steady state ρi(z) via the coefficient ∂Gi/∂ρj.

It follows from (C2) that the functional H has a maximum at ρi(z) if and only if the
corresponding operator Ôij is negative definite or, equivalently, its spectrum (the set of all
discrete and continuous eigenvalues) is negative.

THEOREM C.1. If the solution ρi(z) of the boundary-value problem (6.1)–(6.3) is
monotonic for all i, the spectrum of the corresponding operator Ôij is negative.
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Proof . LetΛ be an eigenvalue of the discrete spectrum (if any) and ψi, the corresponding
eigenfunction,

∑
j

(
−∂Gi

∂ρj
ψj + Kij

d2ψj

dz2

)
= Λψi, (C4)

ψi → 0 as z → ±∞. (C5)

We introduce

φi =
(

dρi

dz

)−1

ψi, (C6)

and observe that, since ρi(z) is monotonic, dρi/dz never vanishes and φi(z) is non-singular.
Rewriting the boundary-value problem (C4) and (C5) in terms of φi and keeping in mind

that ρi(z) satisfies (6.3), one obtains

∑
j

Kij

(
2

d2ρj

dz2
dφj

dz
+ dρj

dz
d2φj

dz2

)
= Λ

dρi

dz
φi, (C7)

dρi

dz
φi → 0as z → ±∞. (C8)

Let (Kij)
−1 be the inverse matrix to Kij (the latter is positive definite – hence, invertible)

and rewrite (C7) in the form

d
dz

[(
dρj

dz

)2 dφj

dz

]
= Λ

∑
i

(
Kij
)−1 dρj

dz
dρi

dz
φi. (C9)

Multiplying this equation by φj, summing it with respect to j, integrating from z = 0 to
z = ∞, integrating the left-hand side by parts and recalling boundary conditions (C8),
one obtains

−
∫ ∞

−∞

∑
j

(
dρj

dz

)2 (dφj

dz

)2

dz = Λ

∫ ∞

−∞

∑
ij

(Kij)
−1
(
φi

dρi

dz

)(
φj

dρj

dz

)
dz. (C10)

It can be shown that the integrands of both integrals in (C10) decay exponentially as z →
+∞ – hence, the integrals converge. Keeping also in mind that Kij is positive definite
(hence, (Kij)

−1 is such), one concludes that equality (C10) implies thatΛ < 0, as required.
Next, let Λ be an eigenvalue of the continuous spectrum and ψ(z) the corresponding

eigenfunction. They satisfy (C4) and the boundary conditions

ψi ∼ Ai± eik±z asz → ±∞, (C11)

where Ai± and k± are undetermined constants (the latter is real). Substituting asymptotics
(C11) into (C4), one obtains

∑
j

[
−
(
∂Gi

∂ρj

)
ρ1=ρ(l)1 ...ρN=ρ(l)N

− k2
−Kij

]
Aj− = ΛA−, (C12)

∑
j

[
−
(
∂Gi

∂ρj

)
ρ1=ρ(v)1 ...ρN=ρ(v)N

− k2
+Kij

]
Aj+ = ΛA+. (C13)
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Evidently, Λ is a common eigenvalue of the matrices

− G′
ij− − k2

−Kij and − G′
ij+ − k2

+Kij, (C14a,b)

where

G′
ij− =

(
∂Gi

∂ρj

)
ρ1=ρ(l)1 ...ρN=ρ(l)N

, G′
ij+ =

(
∂Gi

∂ρj

)
ρ1=ρ(v)1 ...ρN=ρ(v)N

. (C15a,b)

Recall that, at infinity, the liquid and vapour are supposed to be stable, which implies that
G′

ij± are both positive definite. The Korteweg matrix Kij is also positive definite – hence,
all eigenvalues of −G′

ij± − k2±Kij are negative, as required. �

C.2. One-dimensional drops and bubbles
The entropy maximization problem in this case can again be reduced to the analysis of the
operator Ôij. Furthermore, the second part of the proof of Theorem C.1 can be applied to
1-D drops and bubbles without modifications, and so the continuous spectrum of Ôij is,
again, negative.

The discrete-spectrum part of Theorem C.1, however, cannot be generalized for
non-monotonic ρi(z). Indeed, if dρi/dz vanishes somewhere, the function φi(z) defined
by (C6) is singular, and the integral on the left-hand side of (C10) diverges. Thus, for 1-D
drops and bubbles, Ôij may have positive discrete eigenvalues, but proving that it definitely
does is not easy. In what follows, such a proof is presented only for N = 1.

THEOREM C.2. The operator Ô11 with ρ1(z) satisfying the boundary-value problem (6.8)
and (6.9) with N = 1, has at least one positive discrete eigenvalue (corresponding to an
even eigenfunction).

Proof . For N = 1, the boundary-value problem (6.8) and (6.9) becomes

K11
d2ρ1

dz2 = G1 − G∞,1, (C16)

ρ1 → ρ∞,1 asz → ±∞. (C17)

It can be readily shown that

ρ1(z) ∼ ρ∞,1 + A e
√

G′z as z → −∞, (C18)

where G′ = (∂G11/∂ρ1)ρ1=ρ∞,1 and A is a real constant (which can be expressed via a
certain integral, but its exact value is unimportant). Note that A is positive for drops
(i.e. solutions of the kind illustrated in figure 4a) and negative for bubbles (solutions
illustrated in figure 4b).

Next, the eigenvalue problem (C4) and (C5) with N = 1 has the form

−∂G1

∂ρ1
ψ1 + K11

d2ψ1

dz2 = Λψ1, (C19)

ψ1 → 0 as z → −∞, (C20)

ψ1 → 0 as z → +∞. (C21)

Note that, for 1-D drops and bubbles, ρ1(z) is even – hence, so is ∂G1/∂ρ1 that appears in
(C19). Since all other coefficients in this (linear second-order) equation are constants, one
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concludes that ψ1 is either even or odd. Assuming the latter, one can reduce the interval
where (C19) is to be solved to (0,∞) and replace boundary condition (C21) with

dψ1

dz
= 0 at z = 0. (C22)

Next, define an auxiliary function χ(z) that satisfies (C19) and boundary condition (C20),
but not necessarily condition (C22). To still have two boundary conditions, we require that

χ(z) ∼ A
√

G′ +Λ e
√

G′+Λz as z → −∞, (C23)

where A is the constant from asymptotics (C16). Note that χ(z) exists for any value Λ
(depends on it as a parameter). In particular,

χ(z) = dρ1

dz
forΛ = 0, (C24)

which can be verified by comparing (C19) with the derivative of (C16) and asymptotics
(C23) with the derivative of asymptotics (C18). For a large Λ, on the other hand, it can be
deduced from (C19) and boundary condition (C23) that

χ(z) ∼ A
√
Λ e

√
Λz as Λ → +∞. (C25)

This asymptotics applies to all finite z.
Now, consider a drop solution (e.g. one of those illustrated in figure 4a). It is evident

from the figure (and common sense) that (d2ρ1/dz2)z=0 < 0 and A > 0 – hence, (C24)
and (C25) imply that (

dχ
dz

)
z=0

< 0 forΛ = 0, (C26)

(
dχ
dz

)
z=0

> 0 as Λ → +∞. (C27)

These two inequalities indicate that there exists a Λ ∈ (0,+∞) such that (dχ/dz)z=0 = 0
– hence, the corresponding function χ(z) satisfies boundary condition (C22) (as well as
condition (C20) and (C19)). The corresponding (positive) Λ is, obviously, an eigenvalue,
as required.

The case of bubble solutions is similar to that of drops (examined above) and yields the
same conclusion. �

C.3. Solid/fluid interfaces
In this case, ρi(z) satisfies (6.9) and boundary conditions (6.15) and (6.16).

THEOREM C.3. The spectrum of the operator Ôij corresponding to a monotonic ρi(z) is
real and negative.

The proof of this theorem is similar to that of Theorem C.1. The only difference is in
the boundary conditions: since the density is constrained to a fixed value at the substrate,
its variation is zero, and the eigenfunctions of the operator Ôij should satisfy

ψi = 0 at z = 0. (C28)

This boundary condition should hold for both discrete and continuous spectra.
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THEOREM C.4. If N = 1, the operator Ô11 with non-monotonic ρ1(z) has at least one
positive discrete eigenvalue.

The proof of this theorem is similar to that of Theorem C.2.

Appendix D. One-dimensional pure-fluid reduction of (4.18), (4.19) and (4.9)

To adapt asymptotic (4.18) and (4.19) for a pure fluid, recall that the transport coefficients
D11 and ζ1 are zero in this case (because this is the only possibility to satisfy restrictions
(2.32a,b) for N = 1). Thus, one obtains

∂ρ1

∂t
+ ∇·(ρ1v) = 0, (D1)

∇·Π + ρ1∇(K11∇2ρ1 − G1) = 0. (D2)

Let the flow be one dimensional, so that the unknowns depend only on z and t, and the
velocity has only one component v = [0, 0,w]. Then, (D1) and (D2) and expression (4.9)
for the viscous stress yield

∂ρ1

∂t
+ ∂(ρ1w)

∂z
= 0, (D3)

∂

∂z

[(
4
3
μs + μb

)
∂w
∂z

]
+ ρ1

∂

∂z

(
K11

∂2ρ1

∂z2 − G1

)
= 0. (D4)

Let the substrate be located at z = 0, so that boundary conditions (2.44) and (2.47) yield

w = 0, ρ1 → ρ0,1 at z = 0. (D5a,b)

At infinity, the density tends to a fixed value and there should be no stress – hence,

ρ1 → ρ∞,1,
∂w
∂z

→ 0 as z → +∞. (D6a,b)

Using identity (2.6), one can replace in (D4), ρ1∂G1/∂z → ∂p/∂z and then integrate this
equation with respect to z. Fixing the constant of integration via boundary conditions
(D6a,b) and (D7), one obtains(

4
3
μs + μb

)
∂w
∂z

+ K11

[
ρ1
∂2ρ1

∂z2 − 1
2

(
∂ρ1

∂z

)2
]

= 0. (D7)

Given a suitable initial condition, (D3) and (D7), with boundary conditions (D5a,b) fully
determine ρ1(z, t) and w(z, t).

For numerical simulations, (D3) and (D7) were discretised in z using central differences,
and the resulting set of ordinary differential equations were solved using the MATLAB
function ODE23tb (which can handle stiff problems). This approach is usually referred to
as the ‘method of lines’ (Schiesser 1978).
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