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On certain forms of Vibration.

By CHARLES CHREE, M.A.

Certain cases of motion in a gas contained in a spherical or in a
cylindrical envelope or surrounding a sphere or a cylinder have been
considered by Professor Stokes and Lord Rayleigh, of which a clear
idea may be obtained from chapters xvii. and xviii. of Rayleigh's
Sound. Their chief object is to determine the motion in the gas
when the motion in the bounding surface is given, or to determine
the modification in the nature of a wave being propagated through
the gas by the presence of an obstacle.

Now if the spherical or cylindrical boundary be looked on as an
elastic solid, then any vibration instituted in a contiguous liquid or
gas will tend to produce vibrations in the boundary, precisely as any
vibration set up in the solid will tend to produce vibrations in the
fluid.

The object of the present paper is to consider certain simple forms,
of vibration when the solid boundary and the fluid are treated as one
system.

If u denote the radial displacement in a sphere or spherical shell
at a distance r from the centre, p being the density, and m, n in
Thomson and Tait's notation the elastic constants for the material,
the equation for radial vibrations as given in Lame's Lemons sur
L' JElasticite* becomes

dS _ p d?u ,,v

dr tn + n d&
It must be noticed that ra=/t, »i=A. + ft and 8=0 in Lame's

notation. Also the dilatation 8 = — +— ... ... (2),
dr T

as may be seen from a previous paper by the author in the Prooeed-

ings, noticing that e — —, / = g = -.
dr r

The surface condition may be put in the form

(m + n)8- 4n- = normal traction ... (3). f
r

* Equations (8), p. 200.
t Gf. Lamd, § 80.
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In (1) assume u (xcoakt, and let—£.— = oJ ... ... (4),

then we have to determine u as a function of r from

dr\dr r
This may be put in the form

This is the well-known Bessel's equation,* and since — is not an
2

integer a complete solution is, A' and B' being arbitrary constants,

it*i = A'J^kar) + B'J_i(kar) ... (6).
If the sphere be solid B' must be zero, but for a shell both func-

tions may exist. Leaving out a constant multiplier, we havef

}
' - | W ~ ; M ~ — • ) / •"

For convenience let A'(£a)s = A, and B'(£a)2 = B, then for a solid
sphere we have

whence 8 = A c o s & ! ^ l (9).
kar

From (3) the periods — of the free vibrations of the sphere are
K

given by (m + n)S - in^- = 0 when r = a, if a denote the radius of the
r

sphere.
Hence we find

kaacotkaa = 1 - m + n(kaay ... (10).

One root is kaa = 0, none of the others are very small.

• See the Bessel'schen Functionen of Neumann or Lommel.
t Lommel, p. 118. Also Lord Eayleigh's Sound, vol. L, p. 278, Eqn. (3).
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Now suppose an incompressible fluid to surround the sphere and
to be otherwise unlimited. Then the vibrations existing in the
sphere will cause vibrations of the same pitch in the fluid of a purely
radial character also. Thus the velocity potential <f> for the fluid
motion is a function only of r and t, therefore Tj*<f> = 0* reduces to

g+!^=o
dr r dr

Obviously a solution is <j>-1 _ + DJsinifc< ... ... (12),

where 0 and D are arbitrary constants. This solution gives- the

velocity -JP zero at infinity, and from the equation at the surface of
the sphere we can determine C and D in terms of A and so satisfy
all necessary conditions.

It is obvious that the fluid in contact with the sphere must have
the same normal velocity as the sphere; thus when r = a,

dd> du

T = l
Again the pressure on the surface of the sphere is the fluid pres-

sure, and thus the variable parts of these must be identical. Now,
if a- be the density and p the variable part of the fluid pressure, and
if the action of gravity be disregarded, and the square of the velocity
neglected,

^ + 0
at <r

therefore from (3), when r = a

^ ^ (15).a (m + n)S4n

Determining C and D in terms of A from (13) and (15), and
substituting in (12) we obtain

j A . T T / , a\\ (sinkaa , \ If , Nsin£aa
<f smkt\ 1 1 ) { c o s k a a } + \(m + n)- 1 1 - _ ) _ { _ -coskaa}+ -

\ r/aH kaa } <Tk 1 y rU^ kaa J oAv 'kaa

-i
(kaayy kaa

lVI ... (16)

* See Lamb's Motion of Fluids, § 43.
t See Lamb's Motion of Fluids, Eqn. (4), p. 20, putting F (t) -0.
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Thisgives -/- = - {— .-cos&aaf ... (17).

rFhus the velocity in the fluid is independent of a-, and of course
varies inversely as the square of the distance from the centre.

If the vibration be one of those natural to the sphere, we see

from (10) that (16) becomes, the co-efficient of — vanishing,

^coskaa) ... (18).
} kaa J

In this case we see from (14) that the variable part of the fluid
pressure is directly proportional to its density.

If kaa be small, which however excludes the vibrations natural
to the sphere, an approximate solution is from (17)

i £ ^ (19).i£=JA^s
dr r*

Suppose next that the solid sphere is surrounded by a gas.
Then (8) and (9) will still represent the motion in the sphere, and if
o- now denote the density of the gas, whose vibrations are supposed
not very large, (13) and (15)* will also give the surface conditions.
But if $ denote the velocity potential in the gas, the vibrations in
which are purely radial, the equation is nowf

S <»>•
where c is the velocity of sound in the gas.

Assume <f> ocaiakt, then (20) may be put in the form

The two solutions of this equation are JAk— I and J_j(/fc—j,

both of which will apply since the gas is excluded from the origin.

From Lommel,or by direct trial, Jj(z) a — sinz,and J_j(z)a-LCos z;

therefore a complete solution of (21) is

* See Lord Rayleigh's Sound, Eqn. (6) of § 244.
t Lamb's Motion of Fluids, Eqn. (12) of § 167.
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where E and F are arbitrary constants.

If for shortness
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Esin(-)+Fcos-
\±Li ... (22),

kaa
(23),

j zr I f / s s in£aa 4n fsmkaa , \ \ , / o . x

and K^_[(W + ̂ _ - _ { - _ - c o s * a a } ] '(24),
then it will be found from (13) and (15) that

X5 A F T T &* tr f ka ka • ka\ 1

E = Al - Hcos — + K{ cos— + —sin— J- I
L c I c e c . ' J

j -ci A FTT • ka Tr ( . ka ka &a~ll
and F = Al Hsin— - K{ sin cos— } I.

L c \ c c c J A
Whence from (22)

(K - H)Bin(£Zf \ + K*?cos(^Zf \
V c 7 f L 1 Z (25).

c

If the vibration be one of those natural to the sphere, then, from
(10), K = 0, and reducing H we get

( ,r — a\
k 1

9 = -AKa-sm*. - C—L (26).
in kaa kr

c

From (14) it appears that in this case the variable part of the
pressure is everywhere and at all times directly proportional to <r.

If the vibration be not one of those natural to the sphere, but be
such that kaa is small, then approximately

H = ̂ «2 ... (27), a n d K ^ ? ^ - ! 1 ... (28).

Introducing these values in (25) and noticing that —, though for
c

kr
large values of r not —, is also small we get a very simple result.
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To give some idea of the relative magnitudes of c and— we may

a
mention that in the C. G. S. system of units c is about 33000 for air
at 0°O.

I t is difficult to give exact values for a as different experimenters
get different results, in many cases doubtless owing to the difference
between specimens nominally the same; but for metals such as brass
or iron it is safe to say that to take — = 15000 gives at all events a

a
correct idea of its dimensions. Thus if we assume kaa small we
must also take — small.

c
From (25) we can determine A so as to get a given amplitude of

vibration over any spherical surface concentric with the solid sphere.
We might thus suppose the motion to be forced by an arbitrary
purely radial vibration of any elastic spherical membrane containing
the gas, in whole or in part, and concentric with the solid sphere.
The consequent forced vibrations in the sphere are then given by (8).

Suppose next a spherical shell of elastic solid structure, the radii
of whose surfaces are r = a, and r = a', containing a gas and itself
surrounded by gas. We need not in the first place consider the
surrounding gas.

From (5), (6), (7), and (8) we see that a suitable solution for a

vibration of period - - in the shell is

(29),

giving ^=T—•{ AsinAar + BcosAar J- ...

By making the expression (3), namely, (m + n)S - in— vanish
r

over both surfaces r = a and r=a 'we find, after eliminating A and B,
for the equation giving the frequency of the free radial vibrations of
the shell
ka(a - a')cotka(a - a') • 4n{(m + n)lc'a?aa' + in] =

{ )ki i) \ ... (31).

If a~a be small an approximate solution will be found to be
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m W ) } ( 3 3 )

m + n

For the Contained gas we see from (2i) and (22) that a suitable
. krsin—

solution is <£ = Esin&—1 ... ... ... (33),
kr

as this remains finite and - 2 vanishes when r — 0.
dr

The equations (13) and (15) apply at the surface r = a. From
these, if H and K have the same form as in (23) and (24), and if

further L = l { C - ^ + sm*aa} (34)

and M= j . \ { m + %)«*»- J l _ { c _ ^ + sinto}] ... (35),
fort kaa /fcWl kaa JJ

(36)

we find, noticing that K L - H M = m + n ,
k?a?cur

m + n i

and iJ — I Jŝ -{ sin— — cos V — JAsin I .•• lot).

Substituting these values in (29) we have the solution completely
expressed in terms of the one arbitrary constant E, which may be
determined so that the vibration at any distance from the centre,
whether in the gas or in the shell, may have a given amplitude.

If the vibration be one of those natural to the shell, on the usual
theory, we have the right hand side of (15) vanishing, and thus from

(33) we should also have <rE—
hot

c
If we regard terms in a- as negligible this is satisfied, but other-

wise the result is in general impossible. We cannot suppose E to
vanish, as then no vibration would exist either in the gas or in the
shell. The solution = iir could happen only through accident,

c
as A; is one of a series of numbers already determined. If for instance
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we suppose the shell very thin we see from (32) that ka = iir could

happen only if gC = LV{"(3 r o -w)} (38).

The ratio m : n is not known with much certainty for any solids,
in fact it forms one of the most disputed points in the range of
Physical Science. We will at least approach to an average result if
we take Poisson's value 2 for this ratio. This would require

21
iac= roughly, which, even taking i=\, is considerably too small

44
for most combinations of a gas and a solid. The smaller c is, the
more nearly would (38) be true; thus carbonic acid gas for which c
is about 26000 would more nearly suit the conditions than air, which
in turn would suit very much better than hydrogen.

The real solution of the difficulty is that if or be not negligible a
vibration natural to the shell, as usually defined, cannot really exist,
while if the period approach closely to one of those natural to the
shell E must be small if cr be big. Thus if the gas be at a high pres-
sure it will very seriously muffle those vibrations of the shell which at
small pressures would be far the most important. It is well known
that the amplitude of vibration of any elastic body under the influence
of a periodic force is comparatively small, unless the period of the
force approximate to one of the natural periods of vibration of the
elastic body. Thus great importance may attach to the values of o-
and of ac as modifying the amplitude and period of vibration under
certain forms of excitation.

For the gas surrounding the shell we may take the solution (22),
writing E' for E and F' for F. Then to determine E' and F' in
terms of A and B, and so of E, we have the equations (13) and (15)
applied to the surface r = a'. If we denote the value of H &c, when
a' is written for a by H' ifcc., we find

E'sin— + F'cos*- = — (K'A + M'B) ... (39)
c c c

and E'cos^' - F'sin— = (K' - H')A + (M' - L')B (40).
c c

These give E' and F' simply in terms of A and B, and so of E by
means of (36) and (37). Thus the vibrations in the shell as well as
in the enclosed and surrounding gases are all expressed in terms of
the one constant E. Thus the motion might be produced by forced
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displacement of the surface of the shell, or of any concentric spherical
membrane. We can obviously extend the method to any series of
concentric elastic solid spherical shells separated by layers of gas.
Exactly the same method also applies to concentric contiguous layers
of different elastic solids or of different gases.

If the vibration be one natural to the shell we must have K'A
+ M'B = 0, and therefore from (39) and (40)

Fcosec— = -E ' sec— =(H'A + L'B) ... (41).
c c

There is no difficulty in satisfying these equations for all values
of o-. It should however be noticed that since E' and F' are deter-
mined, a difficulty would arise if the gas surrounding the shell were
in turn bounded by a surface such as to restrict the motion in the
gas. If for instance this new boundary were a rigid spherical shell

this would require — to vanish for a given value of r, which of course
dr

could happen only accidentally ; though if the radius of this boundary
were large this defect might be neglected. Further, in the case of
the natural vibration, the above equation (41) shews from the values
of H' and L', to be obtained from (23) and (36) by writing a' for a,

that E' and F' do not contain terms in—. Thus from (22) the value

of c/> for the surrounding gas contains no term in _, and therefore

from (14) the variable part of the pressure in this gas is directly
proportional to o\

Thus by diminishing the density of a gas surrounding a sphere
performing free radial vibrations the sound should appear weakened
to an observer surrounded by this rarefied atmosphere. If the
rarefied gas be surrounded by an elastic solid envelope, the variable

gaseous pressure o-_? on the inside of this envelope being diminished
at

will in turn diminish the variation in the pressure transmitted
through the envelope to the gas surrounding it. Thus a lowering in
the sound would also be perceived by an observer though not actually
inside the space containing the rarefied gas.

Similar methods are applicable to the case of the vibrations in two
dimensions of a right circular cylinder containing or surrounded by a
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fluid. We shall suppose no displacement parallel to the length of the
cylinder which we assume to be so long that we may neglect the con-
ditions at its ends. The following solution would thus strictly as-
sume the ends of the cylinder maintained at a constant distance apart
by suitably varying normal forces, which suitable supports would give.
The results should also be limited to points in the fluid the distances
of which from the central cross section of the cylinder are consider-
ably less than half the length of the cylinder. If, however, the cross
section be small, these limitations may be disregarded, excluding points
in the axis of the cylinder produced.

If u denote the displacement for purely radial vibrations in the
cross section, the equation of motion for the cylinder is

f = _ P _ ^ (42),*
dr m + n dt* '

where now, however
S = ^ + - (43).*

dr r '
Also, the surface condition is now

(m + «)8-2«—= normal traction ... (44).*

n

Assuming a vibration of period -r we have to determine u as a

function of r from
-=^ + i L + « ( & V - _ ) ... ... (45),
dr r dr r '

where a has the same meaning as before.
This is a Bessel's equation, the two solutions being denoted by

J^kar) and Y-^kar), the latter occurring only for a hollow cylinder.
Thus, A being an arbitrary constant, we have for a solid cylinder

u = AcosktJ1(kar) ... ... (46).
If 6 denote the radius of the cylinder, it will be found from (44)

that the periods of free vibration, as usually defined, are given by

(47)

where J\'(&<*&) — jr~j~*M*ar)> putting r = b after differentiation.

* See a paper by the author in the Philosophical Magazine, February 1886,
pp. 81, 82.
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Suppose now the cylinder surrounded by an incompressible
fluid of density o\ The velocity potential will be given by

d^<f> I dd> f. i. Qv

dr r dr
A suitable solution is

<f> = sinAtf(Clogr + D) . . . ... (49),

where 0 and D are arbitrary constants.
The surface conditions are obviously

- ^ = # (50)
dt dr v '

and

(m + n)S — 2w— = <r—— . . . . . . (51)

when r = J.
From these two equations C and D are given in terms of A, and

it will be found that (49) becomes

<f> = Asin&f - kbJ^kafylog-?- + — |(m + nJJ^

Thus the velocity in the fluid is given by

*t J^kafysinkt ... ... (53),
dr r

which is independent of tr, and of course inversely proportional to the
distance from the axis.
If the vibration be one of those natural to the cylinder the coefficient

of — in (52) vanishes. Thus <r—?-, that is, the variable pressure in
<r dt

the fluid is directly proportional to <r.
For a gas surrounding a solid cylinder the velocity potential is

given by

where c denotes the velocity of sound in the gas.

Assuming a vibration of period ~, we get to determine <f> as a function
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of r the Bessel's equation of zero order, viz.,

*£+J_£+**-0 (55).

The two solutions are denoted by Jo | I and Yoi — I, the latter oc-

curring only when the gas is excluded from the axis r = 0. Supposing

this the case, we may take

jo^+DYo^] ... (56),

where C and D are arbitrary constants. Determining them from
(50) and (51), we get

<«>•

,Tr, . , L A T(kb\^-,(kb\ •vikb\T,/kb\Where for shortness A = Jol —IY01 — 1 - Yol — I J 0 ' | _ I.

kb
It is easy to prove* that A = (numerical factor), and so A can

c
never vanish, and no forced vibration could become infinite.

If the vibration be one of those natural to the cylinder, the co-
efficient of — in (57) vanishes, and the variable part of the pressure

cr
in the gas is directly proportional to cr while the velocity is indepen-
dent of cr.

Considering next a hollow cylinder, we get for the radial vibrations

M = cosA<{AJ1(>i;ar) + BY1(Jlar)} ... ... (58).
The free vibrations, as usually denned, are given by the equation

in k which results from the elimination of A and B by means of the
conditions (m + n)8 - 2n — = 0 at both surfaces r = 6 and r = V. If

See a paper by the author in the Messenger of Mathematics, Jane 1885, p. 20.
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be very small an approximate solution will be found to be

m + n
For a gas inside this cylinder the velocity potential will be given

by the single term

<f> = GsinktJtli—\ ... ... (60).

The equations (50) and (51) at the surface r — b give

- J . ' ( - ) = - {AJ,(*«*) + BYJkab)} ... (61),
c \ c I

and (TCJ0(-\ = Att((»i + n)J,'(AoJ) + (m- n f 1 ^ \
\ c f I kab J

) - (62).kab

These determine A and B in terms of C.
If the vibration be one of those natural to the shell the second

side of (62) vanishes. If a- be not negligible this could happen only

if C = 0, or if Jo(—) = 0. But the ratio of A : B and the value of k

are determined from the conditions that the normal pressures vanish
over the surfaces r = b and r = b'; therefore 0 = 0 would from (61)
require both A and B to vanish, and so no vibration would exist.

So again, Jol — j could vanish only through accident. For instance,

in a very thin shell (59) shows that this could happen only if

Jo / — -J.^L\ = 0. Since the least root of J0(z) is about 2.4 there
I. ac(m + n) J

are certainly very few cases in which this could occur. The explanation
of the difficulty is exactly the same as for the corresponding case of
the spherical shell, and so need not be repeated.

If the shell be surrounded by the same or any other gas, the
equations (50) and (51) at the outer surface r = b' suffice to determine
the two arbitrary constants which occur in the velocity potential for
the gas in terms of G. Thus all the details of the motion are known
provided the amplitude of the vibration at any one distance from the
axis of the shell be given. The results are so exactly similar to those
already obtained for the sphere that it is unnecessary to point out
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how they may be extended to any number of coaxial cylindrical layers
of different substances, solid and fluid. We would only remark that
a diminution of density in the gas surrounding the cylinder has ex-
actly the same effect in diminishing the variable part of the pressure,
and so lowering the sound, as it had in the case of the spherical
shelL

Eighth Meeting, June Wth, 1886.

DR FERGUSON, F.R.S.E., President, in the Chair.

A. Problem in Combinations.

By ALEXANDER ROBERTSON, M.A.

I.

Given sets of balls of different colours, in how many ways may
they be arranged in line so that no two balls of the same colour shall
come together.

If we have two colours only, and the same number *m of each
colour, there are evidently two arrangements possible; if we have
m, m - 1 respectively, only one arrangement is possible; if we have
m, m - 2 ; in, m - 3, &c, no arrangement is possible. We may write
these results

(m, m) = 2, (m, m - 1) = 1, (m, m - 2) = 0, (m, m - 3) = 0, <fec.
In,the sequel we shall consider three colours only, say m white

balls, n black balls, and p red balls. The number of arrangements is
denoted by (mnp), and in general we shall take m greater than n
and n greater than p, but not always.

Keeping m and n constant, the smallest value of p is m - n - 1.
There is also a superior limit to p; taking n as then the smallest we
should have, smallest value of n=p — m — 1, therefore p = m + n +1,
and therefore the total number of values of p is 2» + 3. For example,
let m = 5 and n = 2, the smallest value of p is 2 and the greatest 8;
or p may have seven values, so that arrangements are possible with
522, 523, 524, 525, 526, 527, 528. If, however, m and n are equal,
the case is slightly different; then the smallest value of p is 0, and
the greatest is 2w +1 , or p has 2m + 2 values.
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