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We study the stability of laminar wakes past three-dimensional rectangular prisms. The
width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3
covers a wide range of geometries from thin plates to elongated Ahmed bodies. First,
global linear stability analysis yields a series of pitchfork and Hopf bifurcations: (i) at
lower Reynolds numbers Re, two stationary modes, A and B, become unstable, breaking the
top/bottom and left/right planar symmetries, respectively; (ii) at larger Re, two oscillatory
modes become unstable and, again, each mode breaks one of the two symmetries. The
critical Re values of these four modes increase with L/H, reproducing qualitatively the
trend of stationary and oscillatory bifurcations in axisymmetric wakes (e.g. thin disk,
sphere and bullet-shaped bodies). Next, a weakly nonlinear analysis based on the two
stationary modes A and B yields coupled amplitude equations. For Ahmed bodies, as Re
increases, state (A, 0) appears first, followed by state (0, B). While there is a range of
bistability of those two states, only (0, B) remains stable at larger Re, similar to the static
wake deflection (across the larger base dimension) observed in the turbulent regime. The
bifurcation sequence, including bistability and hysteresis, is validated with fully nonlinear
direct numerical simulations, and is shown to be robust to variations in W and L in the
range of common Ahmed bodies.

Key words: bifurcation, wakes

1. Introduction

Flows past two-dimensional (2-D) bluff bodies, steady at low Reynolds number, generally
become unstable to oscillatory perturbations, leading to vortex shedding. For example,
the wake of a 2-D circular cylinder undergoes a Hopf bifurcation at the critical Reynolds
number Rec = 47, which breaks time invariance and results in the famous von Kármán
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vortex street. Other examples include flows past rectangular cylinders of various aspect
ratios, including the square cylinder, but also ellipses, wedges, and so on. This first Hopf
bifurcation seems to be generic to flows past isolated 2-D bluff bodies, although some 2-D
flows first become unstable to stationary perturbations via a pitchfork bifurcation, like the
planar sudden expansion (Fearn, Mullin & Cliffe 1990) and the rotating circular cylinder
(Pralits, Giannetti & Brandt 2013).

Flows past three-dimensional (3-D) bluff bodies exhibit a richer series of bifurcations,
whose sequence depends on the specific geometry. Often, wakes past axisymmetric bodies
(e.g. thin disk, sphere, elongated bullet-shaped bodies) first become unstable to stationary
perturbations of azimuthal wavenumber m = 1. The pitchfork bifurcation breaks the
axisymmetry, leading to a steady wake deflected in some azimuthal direction, selected
in practice by noise or imperfections. At larger Reynolds number, the flow undergoes a
Hopf bifurcation, still with m = 1, and the wake oscillates. For example, the stationary
and oscillating critical Reynolds numbers are Res

c � 115 and Reo
c � 125 for the wake of

a thin disk, and Res
c � 210 and Reo

c � 275 for the wake of a sphere (Natarajan & Acrivos
1993; Fabre, Auguste & Magnaudet 2008; Gumowski et al. 2008; Meliga, Chomaz &
Sipp 2009a). Axisymmetric rings also undergo an m = 1 pitchfork bifurcation followed
by an m = 1 Hopf bifurcation for sufficiently small ratios of the torus diameter to the
cross-section diameter (Sheard, Thompson & Hourigan 2003). Interestingly, turbulent
flows past axisymmetric bodies often exhibit multi-stability: the wake is almost always
statically deflected in an arbitrary azimuthal direction, and randomly switches orientation
with no preferred frequency. In other words, axisymmetry is broken instantaneously, but
restored in the mean flow averaged over long times. This m = 1 static symmetry breaking
is reminiscent of the first laminar bifurcation, just as turbulent wakes past 2-D cylinders
exhibit a large-scale coherent vortex shedding reminiscent of the first laminar bifurcation.

Rectangular prisms are some of the simplest non-axisymmetric 3-D bluff bodies. In a
systematic numerical study, Marquet & Larsson (2015) investigated the linear stability of
relatively thin rectangular plates (length-to-height ratio L/H = 1/6), and found that the
nature of the first bifurcation depends on the frontal aspect ratio (width-to-height aspect
ratio W/H). For large aspect ratios (W/H > 2.5), the wake becomes unstable via the
Hopf bifurcation of an oscillatory eigenmode that breaks the planar symmetry across
the smaller dimension while preserving the planar symmetry in the larger dimension.
This is fully consistent with the limit of infinite aspect ratios, i.e. 2-D cylinders. For
intermediate aspect ratios (2 < W/H < 2.5), the wake still becomes unstable via a Hopf
bifurcation but, remarkably, the oscillatory eigenmode breaks the planar symmetry across
the larger dimension. For small aspect ratios (W/H < 2), the wake becomes unstable via
a pitchfork bifurcation, which is reminiscent of the first bifurcation of the flow past a thin
axisymmetric disk, and the stationary eigenmode breaks the planar symmetry across the
smaller dimension.

A particular example of longer rectangular prisms is the cube (W = L = H). Direct
numerical simulations (DNS) by Saha (2004) and Meng et al. (2021) identified a pitchfork
bifurcation at Rec � 205–220, leading to a steady wake with one planar symmetry. It
is worth mentioning that since W = H, the two cross-flow directions (say, top/down
and left/right) are equivalent, so there are actually two simultaneous bifurcations, each
breaking one of the two planar symmetries. The flow then becomes unstable to oscillatory
perturbations at Rec � 250–270, leading to oscillations that preserve one of the two planar
symmetries. Those regimes have also been observed in the experiments of Klotz et al.
(2014).

Even longer rectangular prisms (L > W, H) include Ahmed bodies and simplified
ground vehicles, of strong interest in the automotive industry. Motivated by practical
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applications, many studies have been conducted at large Re and in the presence of a
horizontal ground (e.g. Grandemange, Gohlke & Cadot 2013; Cadot, Evrard & Pastur
2015; Brackston et al. 2016; Evrard et al. 2016; Barros et al. 2017; Varon et al. 2017;
Bonnavion & Cadot 2018; Pavia, Passmore & Sardu 2018; Legeai & Cadot 2020). Most
of the time, the turbulent wake is not aligned with the body but rather deflected in one of
two preferred states, and randomly switches between the two states, leading to a bimodal
probability density function for the wake deflection. Interestingly, the direction of that
deflection is dictated not by the ground but by the body geometry. For instance, bodies that
are wider than tall have a wake deflected to the left or the right, i.e. in the direction parallel
to the ground, and random switches restore the left/right planar symmetry in the long-term
mean flow; conversely, bodies that are taller than wide have a wake deflected upwards or
downwards, i.e. in the direction perpendicular to the ground (Grandemange et al. 2013).
A recent turbulent study with no ground proximity (Legeai & Cadot 2020) confirmed that
the static deflection is in the larger direction. A similar scenario was observed in laminar
experiments (Grandemange, Cadot & Gohlke 2012) and laminar simulations (Evstafyeva,
Morgans & Dalla Longa 2017) for a wide Ahmed square-back body in ground proximity:
the wake, initially symmetric, bifurcates to a steady deflected state at Rec � 340 and
becomes oscillatory at Rec � 410–430, both bifurcations breaking the left/right planar
symmetry.

To the best of our knowledge, there is no systematic study on rectangular prisms in
the laminar regime, and several questions remain unanswered. For instance, what are the
critical Reynolds numbers and the properties of the first linear instabilities? Are those
instabilities oscillatory or stationary? Which spatial symmetry do they break? Is one
of these laminar instabilities persisting at larger Reynolds number in the form of the
symmetry breaking observed in the turbulent regime? What kind of flow is expected in
the nonlinear regime? In the present study, we address those questions by investigating
the stability of rectangular prisms of fixed width-to-height aspect ratio W/H = 1.2, and
varying length-to-height ratio L/H. We also vary the front fillet radius R to assess the
effect of rounding the leading edges, which is known to modify instability thresholds in
2-D rectangular cylinders (see e.g. Park & Yang 2016; Chiarini, Quadrio & Auteri 2021);
this allows us to consider geometries ranging from thin plates with sharp edges (as in
Marquet & Larsson 2015) to Ahmed bodies with rounded leading edges.

After describing the flow configuration in § 2 and the numerical methods in § 3, we
characterise the steady symmetric base flow in § 4. We then perform a 3-D linear stability
analysis in § 5. Anticipating the results, we find that the flow always become unstable via
two pitchfork bifurcations, at two critical Reynolds numbers close to one another. In almost
all cases, the first mode breaks the top/down symmetry (across the smaller dimension), and
the second mode breaks the left/right symmetry (across the longer dimension). In § 6, we
then study the nonlinear regime with a weakly nonlinear (WNL) analysis incorporating
the two stationary modes for a reference Ahmed body. We show that as Re increases, a
top/down symmetry-breaking state appears first, but is eventually replaced by a left/right
symmetry-breaking state. A series of fully nonlinear DNS confirms the results. Finally, we
observe that the WNL bifurcation sequence is robust to geometric variations for values of
W and L typical of common Ahmed bodies.

2. Flow configuration

We consider the incompressible flow of a Newtonian fluid past a 3-D rectangular prism.
The planar faces of the bluff body define a Cartesian coordinate system. The incoming
flow is U∞ = (U∞, 0, 0)T, i.e. the body’s roll, pitch and yaw are zero. For convenience,
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Figure 1. Sketch of the flow configuration. A rectangular prism of height H, width W, length L and front
edge fillet radius R is aligned with the incoming flow U∞ = (U∞, 0, 0)T. (a) Top, side and front views. (b) A
3-D view, highlighting the symmetry planes y = 0 and z = 0, and the quarter-body (darker) used in our linear
and WNL calculations. In this sketch, the specific geometry W/H = 1.2, L/H = 3, R/H = 0.3472 is shown, a
reference Ahmed body that we also investigate with DNS around the full body.

we call the x, y and z directions the streamwise, lateral and vertical directions, respectively.
We can therefore say that the front/rear faces of the body are normal to the x direction,
left/right faces to the y direction, and upper/lower faces to the z direction. Similarly, we
define the body dimensions as length L, width W and height H (cf. figure 1). Bodies with
rounded front edges are also considered, with a fillet radius R. Hereafter, all quantities are
made dimensionless using the body height H as reference length and free-stream velocity
U∞ as reference velocity.

In this study, we fix the body width W = 1.2, except in the final part of the WNL analysis
(§ 6.4). The length is varied between L = 1/6 � 0.167 (thin plate orthogonal to the flow)
and L = 3.8 (similar to some Ahmed bodies). The fillet radius of the front edges is
varied between R = 0 (sharp edges) and R = min(0.5, L) (fully rounded edges, with either
upper/lower fillets meeting tangentially and the front face vanishing, or all fillets reaching
the rear face and all lateral faces vanishing). In between, the value R = 100/288 � 0.347
is typical of Ahmed bodies. See figure 2 for an overview.

The velocity field u(x, t) = (u, v, w)T and pressure field p(x, t) are solutions of the
incompressible Navier–Stokes (NS) equations, expressing the conservation of mass and
momentum, and written in the dimensionless form

∇ · u = 0, ∂tu + (u · ∇)u = −∇p + 1
Re

∇2u, (2.1a,b)

where the Reynolds number Re = U∞H/ν is based on the free-stream velocity, the body
height and the fluid kinematic viscosity. Throughout this paper, all lengths and velocities
are made dimensionless using H and U∞, respectively.

3. Numerical methods

In this study, two different numerical methods are used. The nonlinear base flow
calculation, linear stability analysis and WNL stability analysis are performed with the
finite element software FreeFEM (Hecht 2012), while DNS are performed with the finite
volume software OpenFOAM (Greenshields 2022).

For finite element calculations, we first build a tetrahedral mesh using the
3-D finite element mesh generator Gmsh (Geuzaine & Remacle 2009), with
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Figure 2. Rectangular prisms of different lengths L and front fillet radii R.

mesh nodes strongly clustered near the body surface. We choose the domain
Ω ′ = {x, y, z | −10 ≤ x ≤ 20; 0 ≤ y, z ≤ 10} (approximately similar to that in Evstafyeva
et al. 2017) and the mesh density so as to achieve a tradeoff between accuracy and
computational effort. See Appendix A for more details about the mesh characteristics
and convergence studies on mesh density and domain size. We use the same mesh to
solve the base flow problem (4.1a,b), the direct and adjoint eigenvalue problems (5.6)
and (5.11), and the linear problems (6.13)–(6.16) appearing in the WNL analysis and the
coefficients (6.22)–(6.27) of the amplitude equations (6.20)–(6.21). We discretise the weak
form of the equations to be solved with FreeFEM, using a basis of Arnold–Brezzi–Fortin
MINI-elements, i.e. P1 (linear) elements for pressure, and P1b (linear enriched with a
cubic bubble function) elements for each velocity component. We solve for the nonlinear
base flow using an iterative Newton method. Linear systems involved in each Newton
iteration and in the WNL analysis are inverted with the PETSc library. Eigenvalue
problems are solved with the SLEPc library, using a Krylov–Schur method to obtain
a set of eigenvalues closest to a given complex shift, together with the associated
eigenmodes. Calculations are repeated with a series of shifts chosen so as to obtain
all leading eigenvalues in a range of frequencies of interest (typically |ω| ≤ 1). All
problems involve several millions of degrees of freedom, and are solved in parallel using
a domain-decomposition method on 24–48 processes. Typical calculation times are of the
order of one hour for the base flow at a few Re values, and one hour for a few eigenvalues.

The DNS are carried out on the same domain as the linear and WNL
analyses, without assuming a priori symmetry conditions, i.e. on the full domain
Ω = {x, y, z | −10 ≤ x ≤ 20, −10 ≤ y, z ≤ 10}. The mesh is generated exploiting the
routine snappyHexMesh. As starting point, an initial Cartesian mesh generated with
blockMesh is employed, with 5 cells per unit length. Four nested regions of increasing
refinements are introduced around the solid body, to guarantee 0.5 × 106 cells per unit
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volume in the vicinity of the body. To test convergence, the same mesh generation strategy
is used, employing 2.5 and 10 cells per unit length as initial mesh; the drag coefficient
is used as a convergence criterion, showing differences of less than 1.3 % between the
two finest meshes. A time-marching strategy is employed to calculate the steady flow
solution, based on a Crank–Nicolson scheme with initial uniform solution equal to
U = (U∞, 0, 0)T. The NS equations are solved by exploiting the PIMPLE method, which
decouples velocity from pressure. The spatial discretisation of each equation is based on
the finite volume method with Gauss linear integration scheme, assuring second-order
precision in both time and space. Typical calculation times are of the order of one week
for one nonlinear flow simulated over 103 convective times.

4. Base flow

In this section, we characterise the steady base flow q0(x) = (u0, p0)
T past rectangular

prisms of various lengths L and fillet radii R, for a fixed width W = 1.2. The base flow is
a solution of the steady NS equations

∇ · u0 = 0, (u0 · ∇)u0 = −∇p0 + 1
Re

∇2u0 (4.1a,b)

in the fluid domain Ω . We look for base flows that have the same symmetries as the
body: reflectional symmetries in the y and z directions (i.e. symmetry with respect to
the vertical x–z plane and the horizontal x–y plane, respectively). We take advantage of
these symmetries to reduce the computational cost. Namely, we solve the stationary NS
equations (4.1a,b) on the quarter-space Ω ′ = {x, y, z | y ≥ 0, z ≥ 0} instead of the full
space Ω , and we impose the following symmetry conditions on the symmetry planes:

∂yu0 = v0 = ∂yw0 = 0 on the y = 0 plane,

∂zu0 = ∂zv0 = w0 = 0 on the z = 0 plane.

}
(4.2)

Additionally, we impose a free-stream velocity u0 = (1, 0, 0)T on the inlet plane, a no-slip
condition u0 = 0 on the body surface, a stress-free condition −p0n + Re−1 ∇u0 · n = 0
on the outlet plane (with n the outward unit normal vector), and symmetry conditions
identical to (4.2) on the remaining (lateral and upper) boundaries.

4.1. Effect of Re
We start by illustrating the effect of the Reynolds number for a selected geometry,
namely L = 3 and R = 0. Figures 3 and 4 show cuts of the streamwise velocity field
and contours of zero streamwise velocity for different values of Re. There are several
recirculation regions found around the prism: a ‘wake recirculation’ originating from the
trailing edges, and ‘side recirculations’ originating from the leading edges. Figure 5(a)
shows the variation in length of these regions: the wake recirculation length lw, measured
along the symmetry axis y = z = 0, and the side recirculation lengths ls, measured in the
symmetry planes on the left/right faces (|y| = W/2, z = 0) and on the upper/lower faces
(y = 0, |z| = H/2). Since W > H, side recirculations on the upper/lower faces are slightly
longer than those on the left/right faces. Their length is seen to increase monotonically
with Re in the investigated range of Reynolds number, until they extend all the way down
to the trailing edges (ls = L = 3) and connect with the wake recirculation at Re � 500.
By contrast, the length of the wake recirculation varies non-monotonically, reaching a
maximum at Re � 350. The maximum backflow, i.e. the minimum streamwise velocity
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Figure 3. Streamwise velocity u0 of the base flow past a rectangular prism, W = 1.2, L = 3, R = 0, in the
planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view), for (a) Re = 150, (b) Re = 250, (c) Re =
350, and (d) Re = 450.

along the symmetry axis, Ub = min u0(x, 0, 0), decreases in the investigated range of Re
from −0.18 to −0.26 (inset of figure 5a). Its non-monotonic variation seems correlated
with that of lw. In addition, figure 4(a) shows that although the width of the backflow
region in the wake increases monotonically, its height varies non-monotonically. As a
result, vertical cross-sections of the backflow region change from circles to wider-than-tall
ellipses. It is important to note that 2-D cuts in the symmetry planes y = 0 and z = 0
provide only partial information about the 3-D structure of the flow. The 3-D views
in figures 4(b,c) show, for instance, that reattachment occurs farther downstream in the
symmetry planes than away from them, and that the backflow regions on the sides of the
prism become non-convex for large enough Re. All this suggests that even before they
merge at Re � 500, the recirculation regions on the sides and in the wake undergo some
3-D reorganisation, which affects lw and Ub.

At larger Re, the wake recirculation becomes substantially longer, wider and taller (not
shown) as it merges with the side recirculations, and the backflow becomes stronger. We
do not, however, focus on this topological change of the base flow because bifurcations of
interest occur at smaller Re, as will become clear in §§ 5 and 6.

Figure 5(b) shows the evolution of the drag coefficient,

Cx = Fx
1
2ρU2∞WH

, where Fx = −
∮

Γb

(σ 0 · n) · ex dΓ, (4.3)

where Γb is the surface of the full body, and the stress tensor σ 0 = −p0I + Re−1 ∇u0
includes pressure and viscous effects. The drag coefficient decreases with Re, as do both
pressure and viscous contributions, which is typically of bluff bodies in the laminar regime
(see e.g. Henderson (1995) for the 2-D circular cylinder wake). As Re increases, the
viscous contribution becomes much smaller than its pressure counterpart, because the
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Figure 4. Contours of zero streamwise velocity u0 = 0 for the base flow past a rectangular prism, W = 1.2,
L = 3, R = 0: (a) in the planes z = 0 (top view a1), y = 0 (side view a2) and x = 2.5 (rear view a3), for
Re = 150, 250, 350 and 450; and 3-D views for (b) Re = 250 and (c) Re = 450. While the width of the wake
recirculation increases monotonically with Re (plot a1), its length and height vary non-monotonically (plot a2).
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Figure 5. Base flow past a rectangular prism, W = 1.2, L = 3, R = 0. (a) Length of the wake recirculation
and side recirculations. Dashed line is ls = L = 3, when the side recirculations reach the end of the body and
connect with the wake recirculation. Inset: maximum backflow Ub. (b) Drag coefficient.

side recirculations extend over a larger body surface area while the wake recirculation is
not modified substantially.

4.2. Effect of L
We now investigate the effect of the length L on the steady base flow past bodies with
sharp edges (R = 0). For the sake of illustration, we choose Re = 250 (which will prove
to be close to the critical Reynolds number in § 5). Figure 6 shows the streamwise velocity
field for L between 1/6 and 3. For large L, the flow separates at the leading edges and
reattaches onto the body, as described previously; the flow then re-separates at the trailing
edges with a small angle with respect to the streamwise direction, which leads to a rather
narrow and short wake recirculation. As L decreases, the side recirculations and the wake
merge, and the wake recirculation becomes longer and the backflow stronger. The overall
flow also becomes increasingly different in the two symmetry planes y = 0 and z = 0:
separation occurs with a larger angle from the upper/lower leading edges, and the wake
becomes significantly taller, but not wider.

966 A19-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.426


Linear and weakly nonlinear stability of rectangular prisms

1

0y
–1

1

0z
–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0y
–1

1

0z
–1

1

0y
–1

1

0z

x y x y

–1

1

0

–1

1

0

–1

(a) (b)

(c) (d )

–2 0 2 4 6 –1 0 1 –2 0 2 4 6 –1 0 1

–2 0 2 4 6 –1 0 1 –2 0 2 4 6 –1 0 1

–2 0 2 4 6 –1 0 1 –2 0 2 4 6 –1 0 1

1.0

0.5

0
–0.5

1.0

0.5

0
–0.5

1.0

0.5

0
–0.5

1.0

0.5

0
–0.5

1.0

0.5

0
–0.5

1.0

0.5

0
–0.5

(e) ( f )

Figure 6. Streamwise velocity u0 of the base flow past rectangular prisms, W = 1.2, R = 0, at Re = 250, in
the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view), for (a) L = 1/6, (b) L = 0.5, (c) L = 1,
(d) L = 1.5, (e) L = 2, and ( f ) L = 2.5.

These qualitative observations are confirmed in figure 7(a): the length of the wake
recirculation decreases with L, while the side recirculations (disconnected from the wake
only when L > lw) keep a fairly constant length. The backflow Ub (inset) is much stronger
when L � 1.5, i.e. when the side and wake recirculations are connected.

Figure 7(b) shows that the drag coefficient varies non-monotonically with L, reaching
a minimum for L � 1.5. This is the result of a competition between pressure and viscous
effects. Pressure drag decreases with L, as longer bodies have narrower wakes, associated
with a weaker front/rear pressure difference. Conversely, viscous drag increases with L, as
longer bodies are subjected to positive wall shear stress over a wider surface area.

4.3. Effect of R
We now investigate the effect of the fillet radius R on the steady base flow past bodies
of lengths L = 1 and L = 3. Figure 8 shows the streamwise velocity field for L = 3
and several fillet radius values. Rounding the front edges clearly suppresses the side
recirculations. It turns out that a very small fillet, R � 0.05, is sufficient to keep the flow
attached to the body. For the shorter body, L = 1, this also makes the wake recirculation
narrower and slightly shorter. For the longer body, L = 3, this has no visible effect on the
wake recirculation. Figure 9 confirms that the wake recirculation length is slightly reduced
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Figure 7. Base flow past rectangular prisms, W = 1.2, R = 0, at Re = 250. (a) Length of the wake
recirculation and side recirculations. Dashed line is ls = L, when the side recirculations reach the end of the
body and connect with the wake recirculation. Inset: maximum backflow Ub. (b) Drag coefficient.
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Figure 8. Streamwise velocity u0 of the base flow past rectangular prisms, W = 1.2, L = 3, at Re = 250, in
the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view), for (a) R = 0, (b) R = 0.05, (c) R = 0.1,
(d) R = 0.2, (e) R = 0.3472, and ( f ) R = 0.5.
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Figure 9. Length of the wake recirculation in the flow past rectangular prisms, W = 1.2, at Re = 250, for
(a) L = 1, and (b) L = 3. Insets: maximum backflow.
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Figure 10. Drag coefficient of rectangular prisms, W = 1.2, at Re = 250, for (a) L = 1, and (b) L = 3.

for L = 1 and barely affected for L = 3. The backflow (inset) follows different trends for
L = 1 and L = 3.

Finally, figure 10 shows that R has a strong effect on drag. For both L = 1 and L = 3,
pressure drag decreases with R, as a result of the reduced front area. By contrast, viscous
drag increases because boundary layers stay attached to the body. Overall, pressure effects
are stronger and Cx decreases.

5. Linear stability analysis

We now investigate the linear stability of the steady base flows q0(t) computed in § 4. We
therefore consider small-amplitude perturbations

q(x, t) = q0(x) + ε q1(x, t), (5.1)

where 0 < ε � 1. Injecting (5.1) in the NS equations (2.1a,b) yields at order ε the linear
dynamics of the perturbations q1(x, t) = (u1, p1)

T:

∇ · u1 = 0, ∂tu1 + (u0 · ∇)u1 + (u1 · ∇)u0 = −∇p1 + 1
Re

∇2u1. (5.2)
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We rewrite (5.2) in the compact form

B ∂tq1 + Aq1 = 0, (5.3)

with the linear operators

A =
( C(u0, ·) − Re−1 ∇2(·) ∇(·)

∇ · (·) 0

)
, B =

( I 0
0 0

)
, (5.4a,b)

with C(a, b) = (a · ∇)b + (b · ∇)a the (symmetric) convection operator, and I the
identity operator.

Using the normal mode ansatz q1(x, t) = q̂1(x) eλt + c.c. (where c.c. stands for complex
conjugate) yields an eigenvalue problem for the complex eigenvalues λ = σ + iω and
complex-valued eigenmodes (or direct modes) q̂1(x):

∇ · û1 = 0, λû1 + (u0 · ∇)û1 + (û1 · ∇)u0 = −∇p̂1 + 1
Re

∇2û1, (5.5a,b)

or in compact form,

λBq̂1 + Aq̂1 = 0. (5.6)

Unlike the base flow, which is symmetric in both y and z directions, there are four
families of eigenmodes corresponding to all possible combinations of symmetry (S) and
antisymmetry (A) in the y and z directions: SySz, SyAz, AySz, AyAz. For each base flow,
i.e. each set of parameters (W, L, R, Re), we therefore compute four eigenspectra. On the
symmetry planes, boundary conditions for these four families are as follows:

SySz : ∂yu1 = v1 = ∂yw1 = 0 on the y = 0 plane,

∂zu1 = ∂zv1 = w1 = 0 on the z = 0 plane;

}
(5.7)

SyAz : ∂yu1 = v1 = ∂yw1 = 0 on the y = 0 plane,

u1 = v1 = ∂zw1 = p1 = 0 on the z = 0 plane;

}
(5.8)

AySz : u1 = ∂yv1 = w1 = p1 = 0 on the y = 0 plane,

∂zu1 = ∂zv1 = w1 = 0 on the z = 0 plane;

}
(5.9)

AyAz : u1 = ∂yv1 = w1 = p1 = 0 on the y = 0 plane,

u1 = v1 = ∂zw1 = p1 = 0 on the z = 0 plane.

}
(5.10)

Elsewhere, boundary conditions are derived directly from and consistent with the
base flow boundary conditions: homogeneous Dirichlet boundary condition u1 = 0 on
the inlet plane, no-slip condition u1 = 0 on the body surface, stress-free condition
−p1n + Re−1 ∇u1 · n = 0 on the outlet plane, and symmetry conditions similar to (4.2)
on the remaining (lateral and upper) boundaries.

Eigenmodes are defined up to a complex-valued factor. For the sake of comparison, in
the following we choose to normalise the modes as 〈Bq̂1, q̂1〉 = 〈û1, û1〉 = 1, where the
inner product is defined by 〈a, b〉 = ∫

Ω ′ a∗ · b dx, the superscript ∗ stands for complex
conjugate, and whether a and b contain both velocity and pressure fields or velocity fields
only is clear from the context.
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We also compute the adjoint modes q†
1 solution of the eigenvalue problem

λBq̂†
1 + A†q̂†

1 = 0, (5.11)

where the adjoint linearised NS operator is defined by 〈Aa, b〉 = 〈a,A†b〉 for any a, b.
Integration by parts yields

A† =
( C†(·, u0) − Re−1 ∇2(·) −∇(·)

∇ · (·) 0

)
, (5.12)

where C†(a, b) = ∇bT · a − (b · ∇)a is the (non-symmetric) adjoint advection operator,
responsible for convective non-normality in open flows (Chomaz 2005). Boundary
conditions are similar for the adjoint and direct modes. Again, adjoint modes are defined
up to a complex-valued factor, and we choose the normalisation 〈Bq̂†

1, q̂1〉 = 〈û†
1, û1〉 = 1.

5.1. Results
In the following, we fix W = 1.2 and compute eigenspectra for different body lengths L,
fillet radii R and Reynolds numbers Re. Figure 11 shows typical spectra for L = 1, R = 0, at
Re = 185 (figure 11a) and Re = 220 (figure 11b). In each panel, the left half-plane shows
SySz and AyAz eigenmodes (circles and triangles, respectively), and the right half-plane
shows SyAz and AySz eigenmodes (squares and diamonds, respectively). Full spectra can
be reconstructed from half-plane spectra because eigenvalues are frequency-symmetric:
they come either as purely real values (stationary modes, λ = σ , ω = 0) or as complex
conjugate pairs (oscillatory modes, λ = σ ± iω with ω /= 0). In figure 11(a), it appears that
two modes are marginally stable (small growth rate σ ): one SyAz mode and one AySz mode.
These two modes are both stationary, i.e. they become unstable via pitchfork bifurcations.
At larger Re, in figure 11(b), two other modes are marginally stable, and belong again
to the SyAz and AySz families. These two modes are both oscillatory, i.e. they become
unstable via Hopf bifurcations. Other modes, in particular doubly symmetric SySz modes,
and doubly antisymmetric AyAz modes, are all strongly stable.

Figures 12(a–d) show the stationary direct and adjoint modes at Re = 180. By definition,
the SyAz mode breaks the top/down symmetry, while the AySz mode breaks the left/right
symmetry. Velocity perturbations are maximal in the recirculation region and extend far
downstream of the body. Adjoint velocity perturbations are localised in the recirculation
region and, to a smaller extent, upstream of the body. This difference in the spatial
localisation of direct and adjoint modes is typical of convective non-normality, which
results from transport by the base flow in different directions: downstream and upstream
for direct and adjoint perturbations, respectively (Chomaz 2005; Marquet et al. 2009).
One can also note that the direct modes have a stronger velocity component in the
streamwise direction than in the cross-stream directions, while the opposite is true for
the adjoint modes. This is analogous to the lift-up type non-normality in parallel shear
flows, where cross-stream perturbations (vortices) can generate strong streamwise velocity
perturbations (streaks).

Figures 12(e, f ) show the ‘structural sensitivity’ ‖û†
1‖ ‖û1‖ associated with these

stationary modes, where ‖·‖ denotes the Euclidean norm. Introduced by Giannetti &
Luchini (2007), the structural sensitivity is an upper bound for the eigenvalue variation
|δλ| induced by a small-amplitude perturbation of the linearised NS operator in the form of
a ‘force–velocity coupling’ (i.e. a feedback from a localised velocity sensor to a localised
force actuator at the same location). It is maximal where the direct and adjoint modes
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Figure 11. Eigenvalue spectra for the rectangular prism W = 1.2, L = 1, R = 0, at (a) Re = 185, between
the first and second pitchfork (stationary) bifurcations, and (b) Re = 220, between the first and second Hopf
(oscillating) bifurcations. The first four bifurcating eigenmodes belong to the families SyAz and AySz, i.e. break
either the top/down symmetry or the left/right symmetry, respectively: (c) stationary modes (isosurfaces ±0.08
of the streamwise velocity û1), and (d) oscillatory modes (isosurfaces ±0.05 of the real part of the streamwise
velocity û1).

overlap, and thus identifies the wavemaker region. We note in passing that the sensitivity of
an eigenvalue with respect to a base flow modification or to a control can also be computed,
at the cost of additional calculations. Here, the structural sensitivity is maximal in the core
of the recirculation region, with two main lobes above/below the horizontal plane z = 0
for the SyAz mode, and on the left/right sides of the vertical plane y = 0 for the AySz mode.
Therefore, these two stationary modes are mostly sensitive to localised perturbations in the
recirculation region.

Figures 13(a–d) show the (real part of the) oscillatory direct and adjoint modes at
Re = 225. Direct velocity perturbations extend far downstream of the body, but are
maximal farther downstream than for the stationary modes. Adjoint velocity perturbations
are localised mainly in the recirculation region, but decrease more slowly upstream up
the body than for the stationary modes. Overall, convective non-normality is strong for
these two modes as well. Their lift-up type non-normality, however, is weaker than for
the stationary modes, as velocity perturbations are less concentrated on one specific
component.

Figures 13(e, f ) show the structural sensitivity associated with these oscillatory modes.
Again, it is large in the recirculation region, so these two modes are mostly sensitive to
localised perturbations in that region. Unlike the stationary modes, however, the structural
sensitivity reaches maximal values along the separation line rather than in the core of the
recirculation region.

All the above observations about the stationary/oscillatory direct/adjoint modes and
their structural sensitivities are qualitatively very similar to those made by Meliga,
Chomaz & Sipp (2009b) for the flow past a sphere. This suggests that despite their
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û†
1

û†
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Figure 12. (a,b) Stationary direct modes û1, (c,d) adjoint modes û†
1, and (e, f ) structural sensitivity ‖û†

1‖ ‖û1‖,
for the rectangular prism W = 1.2, L = 1, R = 0, at Re = 180 (between the first and second pitchfork
bifurcations), in the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view), for (a,c,e) SyAz mode,
and (b,d, f ) AySz mode.

non-axisymmetric geometry, rectangular prisms of length-to-height and width-to-height
ratios close to 1 share important stability properties with the sphere.

5.1.1. Effect of L
In this subsubsection, we investigate the effect of the length L on the linear stability
of wake flows past bodies with sharp edges (R = 0). The corresponding steady base
flows were described in § 4.2. Figure 14 shows the critical Reynolds number of the first
bifurcations observed. Throughout this study, critical Reynolds numbers are computed by
cubic interpolation of Re(σ ) from at least three values of Re that bracket σ = 0, with a
maximum step ΔRe = 5 between two successive Reynolds numbers. For all the values
of L investigated in this study, two stationary SyAz and AySz modes become unstable
first (pitchfork bifurcations), followed by two pairs of oscillatory SyAz and AySz modes
(Hopf bifurcations). These four bifurcating modes all involve one symmetry breaking,
while SySz and AyAz modes remain stable until much larger Reynolds numbers. The
critical Reynolds numbers of the first four bifurcations shown in figure 14 all increase
with L. For the flat plate, L = 1/6, the stationary and oscillatory modes become unstable
almost simultaneously, 110 < Rec < 120. As L increases, the oscillatory modes remain
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Figure 13. Same as figure 12 for the oscillatory (a,b) direct modes û1, (c,d) adjoint modes û†
1, and (e, f )

structural sensitivity ‖û†
1‖ ‖û1‖, at Re = 225 (between the first and second Hopf bifurcations). In (a–d), the

real part of the complex field is shown.

stable much longer than the stationary ones. Of the two stationary modes, the SyAz mode
becomes unstable slightly earlier than the AySz mode for L < 3, and slightly later for L > 3.

We note that typical oscillatory instabilities in wakes are due to a shear-induced
Kelvin–Helmholtz mechanism, implying that global instability occurs when the local
growth rate is large enough and the absolutely unstable region is long enough (Chomaz
2005), such that in 2-D wakes, the critical Reynolds number may be estimated by some
measure of the shear or backflow and of the length of the absolutely unstable region
(Chiarini, Quadrio & Auteri 2022); by contrast, the physical mechanism responsible for
stationary instabilities in 3-D wakes is not fully understood, although some studies did
attempt to characterise it (see, for instance, Magnaudet & Mougin (2007) on wakes past
axisymmetric bubbles). That Rec increases with L more slowly for the stationary modes
than for the oscillatory modes suggests that the instability mechanisms are associated with
different scales, if any.

For all values of L, the two stationary modes become unstable in close succession, which
is certainly related to the body width-to-height ratio being close to 1. For thin plates,
L = 1/6, Marquet & Larsson (2015) observed that the gap between the critical Reynolds
numbers of these two modes is exactly zero for W = H, as expected by symmetry, and
increases with W/H.
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Figure 14. Properties of the first bifurcations in the wake flow past rectangular prisms of various lengths
L and with sharp edges (R = 0). (a) Critical Reynolds number Rec. Filled symbols indicate stationary
(pitchfork) bifurcations; open symbols indicate oscillatory (Hopf) bifurcations. (b) Critical angular frequency
ωc = ω(Rec) (left-hand axis) and Strouhal number Stc = ωc/(2π) (right-hand axis) of the oscillatory modes.

The increase of Rec with L is fully consistent with results reported for other 3-D
bluff bodies. For example, for axisymmetric bodies such as a thin disk, a sphere and
bullet-shaped bodies, the first bifurcating mode is always stationary, followed by an
oscillatory mode. As shown in table 1, the associated critical Reynolds numbers increase
with the length-to-diameter ratio, L/D, and the overall trend is in qualitative agreement
with that of the rectangular prisms of the present study (choosing D approximately
between the height H and the width W = 1.2H), including the slower increase of Rec
for larger L values. Note that the first two bifurcating modes reported in table 1 are of
azimuthal wavenumber m = 1 and break the axisymmetry of the wake with an arbitrary
azimuthal orientation. By contrast, rectangular prisms have two planar symmetries, which
selects the orientation of the modes: vertical wake deflection for modes SyAz, and lateral
deflection for modes AySz.

5.1.2. Effect of R
We now investigate the effect of the fillet radius R on the linear stability of wake flows past
bodies of length L = 3, similar to our reference Ahmed body (L = 3, R = 0.3472). The
corresponding steady base flows were described in § 4.3. Figure 15(a) shows that for the
shorter body, L = 1, rounding the front edges makes the first four bifurcating modes more
stable until R � 0.1 − 0.2, before making them more unstable. Figure 15(b) shows that for
L = 3, however, rounding makes the stationary modes more unstable. These trends of Rec
are clearly correlated with those of the backflow (figure 9). This is perhaps not surprising
for the oscillatory bifurcations, as stronger backflow tends to yield stronger shear.
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Body L/D Res
c Reo

c

Disk �1 116–117 125
Sphere 1 210–213 273–278
Bullet 1 216 285

1.5 286 415
2 326 517

2.5 352 596
3 372 652

3.5 388 696

Table 1. Critical Reynolds numbers of the first two bifurcations in wake flows past axisymmetric bodies. Here,
Res

c is for stationary (pitchfork) bifurcation, and Reo
c is for oscillatory (Hopf) bifurcation. All bifurcating modes

have an azimuthal wavenumber m = 1. Ranges reflect variations found in the literature (Natarajan & Acrivos
1993; Fabre et al. 2008; Gumowski et al. 2008; Meliga et al. 2009a; Bohorquez et al. 2011).

0 0.1 0.2 0.3 0.4 0.5
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200

250

300

350

0 0.1 0.2 0.3 0.4 0.5
100

150

200

250

300

350

R

Rec

R

SyAz
AySz

(a) (b)

Figure 15. Critical Reynolds number Rec of the first stationary bifurcations in the wake flow past rectangular
prisms of lengths (a) L = 1 and (b) L = 3, and various fillet radii R. Filled symbols indicate stationary
(pitchfork) bifurcations; open symbols indicate oscillatory (Hopf) bifurcations.

For the stationary bifurcations, it suggests that the instability mechanism is partly related
to backflow.

These trends are also similar to those reported in Park & Yang (2016) and Chiarini et al.
(2021) for the first oscillatory mode past 2-D square and rectangular cylinders, respectively.
While this may have been anticipated for the oscillatory bifurcations, since the instability
mechanism is the same in 2-D and 3-D prism flows, this is not the case for the stationary
bifurcations.

6. Weakly nonlinear stability analysis

For the geometries investigated in § 5, two stationary modes, with SyAz and AySz
symmetries, are the first to become unstable, and their critical Reynolds numbers are close
to one another. In the following, we refer to these modes as modes A and B, respectively.
Linear stability analysis cannot predict the state of the flow once the two modes are
unstable. Therefore, in this section we perform a WNL stability analysis in order to clarify
the nonlinear interactions between modes A and B, and the nonlinear states expected to
be observed in an experiment or DNS close to the bifurcation thresholds. Rigorous WNL
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Figure 16. (a) Eigenvalue spectrum for the reference Ahmed body (W = 1.2, L = 3, R = 0.3472) at Re =
300, just between the first and second pitchfork bifurcations (ReA

c = 293, ReB
c = 304). (b) Symbols indicate

growth rates of modes A and B, the two leading stationary modes. Dashed lines indicate shifted growth rates
σA − σA(Rec) and σB − σB(Rec) for Rec = 300 (see the WNL analysis in § 6).

analyses based on global eigenmodes have been applied to the first (Hopf) bifurcation of
the 2-D circular cylinder wake by Sipp & Lebedev (2007), and to the first two bifurcations
(pitchfork and Hopf) of the axisymmetric disk wake by Meliga et al. (2009a).

Motivated by the strong interest in wake deflection in simplified car models, as already
mentioned in § 1, we focus on geometries representative of Ahmed bodies. While the
applicability of such a laminar study to practical, turbulent automotive aerodynamics is
not straightforward, there is a fundamental interest in understanding the first instabilities
and the bifurcation sequence, which may for instance prove useful for flow control, and
which also motivated earlier work (Grandemange et al. 2012; Evstafyeva et al. 2017). We
first consider the reference Ahmed body W = 1.2, L = 3, R = 0.3472, and present detailed
WNL results in § 6.2, complemented with DNS results in § 6.3. We will then show in
§ 6.4 that the WNL bifurcation sequence obtained for this reference geometry is robust to
variations in L and W for usual Ahmed body geometries.

6.1. Derivation of the amplitude equations
For the reference Ahmed body, figure 16 shows the eigenspectrum at Re = 300, as well
as the evolution of the growth rates of modes A and B for Reynolds numbers in the
vicinity of Re = 300. Mode A becomes unstable slightly before mode B: ReA

c = 293 and
ReB

c = 304. These two modes are depicted in figures 17(a,b), together with the associated
adjoint modes in figures 17(c,d). As already observed, mode A breaks the top/down
symmetry, while mode B breaks the left/right symmetry. Velocity perturbations extend far
downstream and, as expected for stationary modes, do not show the wavepacket structures
typical of oscillatory modes. Adjoint perturbations have the same symmetries and are
localised in the recirculation region. We note that although eigenmodes are generally
complex-valued, stationary modes like modes A and B are associated with real eigenvalues
(λ = σ ) and therefore can always be defined as purely real-valued. Figures 17(e, f ) show
the structural sensitivities of modes A and B, which are very similar to those of the
two stationary modes in the wake of the shorter prism L = 1 without fillet (figure 12).
Therefore, for the reference Ahmed body too, modes A and B are mostly sensitive to
localised perturbations in the recirculation region.
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Figure 17. Direct modes, adjoint modes and structural sensitivities for the reference Ahmed body (W = 1.2,
L = 3, R = 0.3472) at Re = 300, in the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view):
(a) ûA

1 , (b) ûB
1 , (c) ûA†

1 , (d) ûB†
1 , (e) ‖ûA†

1 ‖ ‖ûA
1 ‖, and ( f ) ‖ûB†

1 ‖ ‖ûB
1 ‖.

We assume that the Reynolds number is close to the bifurcation thresholds of modes
A and B. We introduce a reference critical Reynolds Rec that we choose typically in
[ReA

c , ReB
c ], for example Rec = 300 for the reference Ahmed body. In practice, the specific

choice of Rec has little effect, as shown in Appendix B. We quantify the departure from
criticality with

1
Rec

− 1
Re

= α = ε2α̃, (6.1)

where 0 < ε � 1, and α̃ is a parameter of order 1 (negative for Re < Rec and positive for
Re > Rec). At Rec, the growth rates σA and σB are small but non-zero: mode A is slightly
unstable, and mode B is slightly stable (figure 16). Following Meliga et al. (2009a), we
introduce rescaled order 1 growth rates

σ̃A = σA

ε2 , σ̃B = σB

ε2 , (6.2a,b)

together with a shift operator S such that

S q̂A
1 = σ̃A(Rec)Bq̂A

1 , S q̂B
1 = σ̃B(Rec)Bq̂B

1 , (6.3a,b)

and S q̂1 = 0 for all other modes. The interest of the shift operator is that although the
linearised NS operator is not singular at Re = Rec (since Aq̂A

1 = −σABq̂A
1 /= 0 and Aq̂B

1 =
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Linear and weakly nonlinear stability of rectangular prisms

−σBBq̂B
1 /= 0), the shifted linearised NS operator defined by

Ã = A + ε2S (6.4)

is exactly singular at Re = Rec for both modes A and B, i.e.

Ãq̂A
1 = Ãq̂B

1 = 0. (6.5)

In other words, modes A and B are exactly neutral for Ã at Re = Rec, as shown by the
shifted growth rates σA − σA(Rec) and σB − σB(Rec) in figure 16.

We perform our WNL analysis with the method of multiple scales, therefore we
introduce the slow time scale T = ε2t. The flow field expansion

q(x, t, T) = q0 + εq1 + ε2q2 + ε3q3 + · · · (6.6)

is injected in the NS equations (5.2) at Re = Rec, where ∂t is now transformed into ∂t +
ε2∂T . Collecting like-order terms in ε and making use of (6.4) yields a series of problems
detailed hereafter.

6.1.1. Orders ε0 and ε1

The equations at order ε0 are the nonlinear NS equations (2.1a,b), and the zeroth-order
field q0(x) is the steady base flow computed in § 4 at the reference Reynolds number Rec.

The equations at order ε1 are the linearised NS equations (5.3) at Re = Rec, now with
the shifted linearised NS operator:

B ∂tq1 + Ãq1 = 0. (6.7)

We assume that the first-order field q1 is a superposition of the two stationary modes A
and B computed in § 5 and shown in figure 17:

q1(x, T) = A(T) q̂A
1 + B(T) q̂B

1 , (6.8)

where A and B are two real-valued slowly varying amplitudes, yet to be determined.

6.1.2. Order ε2

At order ε2, the second-order field q2 is a solution of the linearised NS equations

B ∂tq2 + Ãq2 = (F 2, 0)T, (6.9)

forced by a term that depends on lower-order fields only,

F 2 = −α̃ ∇2u0 − (u1 · ∇)u1. (6.10)

The first term in (6.10) is due to Reynolds number variations (proportional to α̃) in the base
flow u0, and the second term is due to the transport of u1 by itself. With the expression
(6.8) of the first-order field, this forcing reads

F 2 = −α̃ ∇2u0 − A2(ûA
1 · ∇)ûA

1 − B2(ûB
1 · ∇)ûB

1 − ABC(ûA
1 , ûB

1 ). (6.11)

All terms in (6.11) are potentially resonant since they are forcing at zero frequency an
operator that is singular precisely at zero frequency, as expressed by (6.5). Considering
the spatial symmetries of these terms, however, shows that none of them is resonant,
in a manner reminiscent of the cross-junction studied by Bongarzone et al. (2021).
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Figure 18. Second-order fields, shown in the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear
view), for (a) uA2

2 , (b) uB2

2 , (c) uAB
2 , and (d) uα

2 .

Indeed, ∇2u0, (ûA
1 · ∇)ûA

1 and (ûB
1 · ∇)ûB

1 are SySz-symmetric, and (ûA
1 · ∇)ûB

1 + (ûB
1 · ∇)ûA

1
is AyAz-symmetric, whereas Ã is singular to the SyAz-symmetric mode A and the
AySz-symmetric mode B. It follows that the forced equation (6.9) can be inverted. We
look for a second-order field of the form

q2(x, T) = α̃q̂α
2 + A2q̂A2

2 + B2q̂B2

2 + ABq̂AB
2 , (6.12)

where each term is the response to the individual forcing terms in (6.11):

B ∂tqα
2 + Ãqα

2 = −α̃(∇2u0, 0)T, (6.13)

B ∂tqA2

2 + ÃqA2

2 = −A2((ûA
1 · ∇)ûA

1 , 0)T, (6.14)

B ∂tqB2

2 + ÃqB2

2 = −B2((ûB
1 · ∇)ûB

1 , 0)T, (6.15)

B ∂tqAB
2 + ÃqAB

2 = −AB(C(ûA
1 , ûB

1 ), 0)T. (6.16)

For each of the above problems, boundary conditions are similar to those used for the
eigenmodes. In particular, the symmetry of the forcing terms imposes the symmetry of the
second-order fields, therefore we use on the symmetry planes the corresponding boundary
conditions (5.7) or (5.10). Figure 18 shows the second-order fields. As expected from the
symmetries of the forcing terms, uA2

2 , uB2

2 and uα
2 are all doubly symmetric (SySz), while

uAB
2 is doubly antisymmetric (AyAz).

6.1.3. Order ε3

At order ε3, the third-order field q3 is a solution of the linearised NS equations

B ∂tq3 + Ãq3 = (F 3, 0)T, (6.17)
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Linear and weakly nonlinear stability of rectangular prisms

forced by a term that depends on lower-order fields only,

F 3 = −∂Tu1 − α̃ ∇2u1 − C(u1, u2) + Su1. (6.18)

The first term in (6.18) is due to the slow variation of the first-order field u1, i.e. the
yet unknown amplitudes A(T) and B(T). The second term is due to Reynolds number
variations in the first-order field u1. The third term is due to the mutual transport of the
first- and second-order fields u1 and u2. The last term is due to the non-zero values of the
growth rates σA and σB at Re = Rec, accounted for by the action of the shift operator. With
the expressions (6.8) and (6.12) of the first- and second-order fields, the forcing becomes

F 3 =
(
−∂TA − Aα̃ ∇2 + AσA

)
ûA

1 +
(
−∂TB − Bα̃ ∇2 + BσB

)
ûB

1

− C(AûA
1 + BûB

1 , α̃ûα
2 + A2ûA2

2 + B2ûB2

2 + ABûAB
2 ). (6.19)

It turns out that all terms in (6.19) are either SyAz-symmetric or AySz-symmetric, and are
therefore resonant with mode A or mode B. To avoid secular terms, i.e. to ensure that (6.17)
can be inverted, a compatibility condition must be enforced. The Fredholm alternative
states that the forcing F 3 must be orthogonal to the kernel of the adjoint linearised NS
operator. This leads to the following equations for the amplitudes A and B:

∂tA = λAA − χAA3 − ηAB2A, (6.20)

∂tB = λBB − χBB3 − ηBA2B, (6.21)

where the fast time t = T/ε2 has been reintroduced. All the WNL coefficients in
(6.20)–(6.21), whose values are reported in Appendix A, are computed as scalar products
between the adjoint modes ûA†

1 , ûB†
1 and resonant forcing terms:

λA = ε2λ̃A = σA − α〈ûA†
1 , C(ûα

2 , ûA
1 ) + ∇2ûA

1 〉, (6.22)

λB = ε2λ̃B = σB − α〈ûB†
1 , C(ûα

2 , ûB
1 ) + ∇2ûB

1 〉, (6.23)

ηA = ε2η̃A = ε2〈ûA†
1 , C(ûB2

2 , ûA
1 ) + C(ûAB

2 , ûB
1 )〉, (6.24)

ηB = ε2η̃B = ε2〈ûB†
1 , C(ûA2

2 , ûB
1 ) + C(ûAB

2 , ûA
1 )〉, (6.25)

χA = ε2χ̃A = ε2〈ûA†
1 , C(ûA2

2 , ûA
1 )〉, (6.26)

χB = ε2χ̃B = ε2〈ûB†
1 , C(ûB2

2 , ûB
1 )〉, (6.27)

where we recall that the adjoint and direct modes are normalised such that 〈ûA†
1 , ûA

1 〉 =
〈ûB†

1 , ûB
1 〉 = 1.

For any given solution of the amplitude equations (6.20)–(6.21) (see § 6.2), the total
flow field up to second order can be reconstructed as

q = q0 + ε
(

Aq̂A
1 + Bq̂B

1

)
+ ε2

(
α̃q̂α

2 + A2q̂A2

2 + B2q̂B2

2 + ABq̂AB
2

)
+ O(ε3). (6.28)

We note that the values of the WNL coefficients λA, . . . , χB, and of the amplitudes A, B,
depend on the choices of ε and of the direct/adjoint modes normalisation, but the final
reconstructed field (6.28) itself is independent of these specific choices.
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6.2. Bifurcation diagram
The amplitude equations (6.20)–(6.21) are coupled ordinary differential equations. They
are partly similar to the classic Stuart–Landau equation describing the pitchfork/Hopf
bifurcation of a single stationary/oscillating mode, but differ by the two nonlinear coupling
terms ηAAB2 and ηBBA2. Their structure is well known in the literature; see, for instance,
Kuznetsov (2004) for a general mathematical treatment, and Zhu & Gallaire (2017) and
Bongarzone et al. (2021) for fluid mechanical examples with two modes, one stationary
and one oscillatory, that break two different spatial symmetries. There are in general four
equilibrium solutions (∂tA = ∂tB = 0), as follows.

(i) Symmetric state: A = B = 0.
(ii) Pure state A (top/down symmetry breaking):

A2 = λA

χA
, B = 0. (6.29a,b)

(iii) Pure state B (left/right symmetry breaking):

A = 0, B2 = λB

χB
. (6.30a,b)

(iv) Mixed state (A, B) (double symmetry breaking):

A2 = χBλA − ηAλB

χAχB − ηAηB
, B2 = χAλB − ηBλA

χAχB − ηAηB
. (6.31a,b)

We assess the linear stability of each state in two ways: (i) by computing the eigenvalues
of the Jacobian J of the system linearised about the state of interest,

J =
[
λA − 3χAA2 − ηAB2 −2ηABA

−2ηBAB λB − 3χBB2 − ηBA2

]
, (6.32)

that state being stable if both eigenvalues have a negative real part; (ii) by solving in time
the amplitude equations (6.20)–(6.21) from an initial condition close to the state of interest,
that state being stable if it is an attractor of the final solution.

We obtain the bifurcation diagram shown in figure 19 for the reference Ahmed
body (W = 1.2, L = 3, R = 0.3472), using Rec = 300 and ε = 0.1. We use a standard
representation, where solid lines indicate linearly stable states, and dashed lines indicate
unstable states. Pitchfork bifurcations are invariant under reflections A → −A and B →
−B, so it is sufficient to report results for |A| and |B| (i.e. for half of the symmetric
diagram). The bifurcation sequence is as follows.

(1) For Rec < 293, only the symmetric base flow is stable.
(2) At Re = ReA

c = 293, mode A bifurcates, leading to the stable pure state (A, 0) and
breaking the top/down symmetry of the base flow.

(3) At Re = ReB
c = 304, mode B bifurcates, but the pure state (0, B) is unstable at first,

and (A, 0) remains the only stable state.
(4) At Re = 314, the pure state (0, B) becomes stable, thus leading to bistability:

either single symmetry-breaking state (top/down or left/right) can be expected to
be observed.

(5) At Re = 330, (A, 0) becomes unstable, leaving (0, B) as the only stable state at larger
Reynolds numbers.
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Figure 19. Bifurcation diagram associated with the amplitude equations (6.20)–(6.21) obtained from a WNL
analysis, for the reference Ahmed body (W = 1.2, L = 3, R = 0.3472), using Rec = 300 and ε = 0.1. Stable
and unstable states are shown with solid and dashed lines, respectively. (a) The 3-D view in the (A, B, Re)
space. Insets show a rear view of the reconstructed field (see figure 20). (b) The 2-D views in the (|A|, Re) and
(|B|, Re) spaces. The shaded region corresponds to bistability and hysteresis.

We note that the mixed state (A, B) exists in the bistable region but is never stable,
meaning that this double symmetry-breaking state is not expected to be observed in a
stable manner. Figure 20 shows the four states at Re = 325, reconstructed up to second
order according to (6.28). The wake is deflected clearly in the vertical and horizontal
directions in the (stable) pure states (A, 0) and (0, B), respectively, and in both directions
in the (unstable) mixed state (A, B).

Interestingly, although mode A bifurcates before mode B, state (A, 0) quickly becomes
unstable, and eventually (0, B) remains the only stable state. In other words, the top/down
symmetry-breaking state cannot be observed except in the range 293 ≤ Re ≤ 330, while
the left/right symmetry-breaking state can be observed for Re ≥ 316. This is precisely
the same symmetry breaking as that observed in the turbulent regime, where Ahmed
body wakes deflect along the longer dimension of the body. Therefore, unlike wakes
past 2-D cylinders and 3-D disks, spheres and bullet-shaped axisymmetric bluff bodies,
the preferred turbulent symmetry breaking in the Ahmed body wake is reminiscent not
of the first laminar bifurcation, but of the second one. Our WNL analysis rationalises
this observation by unveiling the bifurcation sequence. In § 6.4, we will demonstrate the
robustness of this sequence for other geometries typical of Ahmed bodies.

6.3. Comparison with DNS
In this subsection, we perform fully nonlinear DNS of the flow past our reference
Ahmed body (W = 1.2, L = 3, R = 0.3472) at various Reynolds numbers, with the aim
of confirming the bifurcation sequence obtained in § 6.2. In particular, we investigate
whether the single symmetry-breaking states (A, 0) and (0, B) are indeed observed, and
if they appear and disappear in the same order. We also look for evidence of bistability
and hysteresis, increasing and decreasing the Reynolds number in two independent
sequences: Re = 290 → 310 → 330, etc., and Re = 410 → 390 → 370, etc. In each case,
simulations are run for a sufficiently long time to allow the flow to reach a truly stationary
state. We determine the flow state by monitoring the horizontal velocity v(x, 0, 0) and the
vertical velocity w(x, 0, 0) on the symmetry axis. Specifically, we should obtain:
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Figure 20. Streamwise velocity u of reconstructed flows (6.28) at Re = 325, from the WNL analysis up to
second order, shown in the planes z = 0 (top view), y = 0 (side view) and x = 2.5 (rear view), for states
(a) (0, 0) (unstable), (b) (A, B) (unstable), (c) (A, 0) (stable), and (d) (0, B) (stable).

(i) v = w = 0 for the symmetric base flow;
(ii) v = 0, w /= 0 for the top/down symmetry-breaking state (A, 0);

(iii) v /= 0, w = 0 for the left/right symmetry-breaking state (0, B);
(iv) v /= 0, w /= 0 for the double symmetry-breaking state (A, B), although we do not

expect to observe this state in the stationary regime.

Figure 21 shows the velocities obtained in the stationary regime at the location
(x∗, 0, 0) = (2.5, 0, 0). In all simulations, the final flow is steady, without any oscillations.
When increasing Re, the vertical velocity w first becomes non-zero when Re � 300, while
v = 0. In other words, state (A, 0) is observed. This state loses stability when Re � 340,
and the flow shifts to state (0, B), with a non-zero horizontal velocity v, while w = 0,
for this and larger Reynolds numbers. When decreasing Re, state (0, B) persists until
Re � 320, at which point the flow shifts back to state (A, 0). Therefore, this suggests
hysteresis in the approximate range of Reynolds numbers [315 ± 10, 340 ± 10].

It is worth mentioning that the flow transitions between (A, 0) and (0, B) via a state
reminiscent of the double symmetry-breaking state (A, B) (rather than via the symmetric
base flow), although this state is visited only transiently. We also note that transitions are
rather slow (of the order of 103 convective time units), consistent with the small growth
rates of the Jacobian (6.32) calculated near the corresponding transitions, i.e. near the
boundaries between stages 3 and 4, and between stages 4 and 5, in the bifurcation diagram
of figure 19.

The qualitative agreement between DNS and WNL analysis is excellent for the transition
Reynolds numbers between stages 1, 2 and 3. At larger Re, the agreement deteriorates for
the transition Reynolds numbers between stages 3, 4 and 5, which may be ascribed to the
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Figure 21. Vertical and horizontal velocities in the wake in (x∗, 0, 0) = (2.5, 0, 0), obtained from DNS of the
reference Ahmed body (W = 1.2, L = 3, R = 0.3472). Upward-pointing symbols (�) correspond to increasing
Reynolds numbers, and downward-pointing symbols (�) correspond to decreasing Reynolds numbers. The
shaded region shows bistability and hysteresis.

increasing departure from criticality. Nonetheless, the whole bifurcation sequence is well
predicted by the WNL analysis.

As a concluding remark, we note that since the two bifurcations of interest are stationary,
it would also be possible to compute the fully nonlinear states with a continuation method
or, alternatively, with the self-consistent model proposed by Camarri & Mengali (2019).

6.4. Effect of W and L
We have presented the bifurcation diagram of our reference Ahmed body (W = 1.2, L = 3,
R = 0.3472) in § 6.2. One may wonder whether this sequence is robust to geometric
modifications. Indeed, Ahmed bodies studied in the literature show some variations in
dimension, especially in width and length (table 2). Therefore we investigate the effect
of W and L, keeping the fillet radius constant (R = 0.3472). Specifically, we consider
narrower and wider bodies (W ∈ [1, 1.35], L = 3), as well as shorter and longer bodies
(W = 1.2, L ∈ [2.6, 3.8]). We compute the base flow and eigenmodes for these bodies,
and determine the critical Reynolds numbers ReA

c and ReB
c . We then set Rec by rounding

(ReA
c + ReB

c )/2 to the nearest multiple of 5, and finally we compute the coefficients of the
amplitude equations (6.20)–(6.21).

A convenient way to summarise the results is to consider the different possible
bifurcation diagrams for this type of amplitude equation. As detailed in Kuznetsov (2004),
there are five topologically different bifurcation diagrams, corresponding to different
regions of the θ–δ plane, where θ and δ are mixed ratios of the nonlinear coefficients
of (6.20)–(6.21):

θ = ηA

χB
, δ = ηB

χA
. (6.33a,b)
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Study W/H L/H

Bonnavion & Cadot (2018) and Evrard et al. (2016) 1.174 3.336
Barros et al. (2017) 1.179 3.007
Varon et al. (2017) 1.347 3.619
Brackston et al. (2016) 1.350 3.752
Grandemange et al. (2012) and Cadot et al. (2015) 1.350 3.625
Evstafyeva et al. (2017) 1.370 3.360

Table 2. Typical Ahmed body widths and lengths (normalised by the body height) found in the literature.
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Figure 22. (a) Five regions of the θ–δ plane, associated with the five possible bifurcation diagrams for the
amplitude equations (6.20)–(6.21). (b) Variation of θ and δ with W and L for rectangular prisms of fixed fillet
radius R = 0.3472. Dashed lines are a guide to the eye. In the considered range of widths 1 ≤ W ≤ 1.35,
and lengths 2.6 ≤ L ≤ 3.8, representative of most Ahmed bodies, θ and δ stay in region I, i.e. the bifurcation
diagram remains as in figures 19 and 23(a).

Figure 22(a) shows the five regions, labelled I to V, for the case θ ≥ δ relevant here. As
will soon become clear, regions I (θ > 0, δ > 0, θδ > 1) and II (θ > 0, δ > 0, θδ < 1)
are of particular interest to our study. In region I, the bifurcation diagram is as sketched in
figure 23(a), and is topologically equivalent to that obtained in § 6.2. We recall briefly the
bifurcation sequence for increasing Re:

(1) only the trivial state (0, 0) is stable;
(2) mode A bifurcates and the stable state (A, 0) appears;
(3) mode B bifurcates and the unstable state (0, B) appears;
(4) state (B, 0) becomes stable and the unstable mixed state (A, B) appears;
(5) state (A, B) disappears and state (A, 0) becomes unstable – only (0, B) remains

stable.

In the neighbouring region II, the bifurcation diagram is as sketched in figure 23(b), and
corresponds to another bifurcation sequence:

(1) only the trivial state (0, 0) is stable;
(2) mode A bifurcates and the stable state (A, 0) appears;
(3) mode B bifurcates and the unstable state (0, B) appears;
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Region I

|A|

|B|

B

A

Re Re

1 2 3 4 5

Region II

1 2 3 4 5

Region I

Region II

1 2 3 4 5

(b)(a)
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(A, B) (A, B)
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Figure 23. Schematic bifurcation diagrams in (a) region I and (b) region II of the θ–δ plane of figure 22. Stable
and unstable states are shown with solid and dashed lines, respectively. (c) Corresponding phase portraits in the
A–B amplitude plane. Stable and unstable states are shown with filled and open symbols, respectively. Dashed
arrows in stage 4 show how the mixed state (A, B) moves with Re.

(4) state (A, 0) becomes unstable and the stable mixed state (A, B) appears;
(5) state (A, B) disappears and state (0, B) becomes stable.

Although the initial stages (1–3) and the final stage (5) are identical in regions I and
II, what happens in between (stage 4, shaded region in figure 23a) is fundamentally
different: in region I the pure states (A, 0) and (B, 0) are simultaneously stable (bistability)
while the mixed state (A, B) cannot be observed; by contrast, in region II the pure
states (A, 0) and (B, 0) are unstable and only the mixed state (A, B) can be observed.
This is also apparent in the phase portraits of figure 23(c). From stages 3 to 5, the
stability of the pure states (A, 0) and (0, B) is exchanged. In region I, this happens
as the unstable mixed state (A, B) is born in (0, B) (making it stable) and dies when
colliding with (A, 0) (making it unstable). In region II, the stable mixed state (A, B)

is born in (A, 0) (making it unstable) and dies when colliding with (0, B) (making it
stable).

Figure 22(b) shows that all the Ahmed bodies considered in this study fall in region I
of the θ–δ plane. Our reference Ahmed body corresponds to θ = 2.68, δ = 0.554 (filled
symbol). The effect of L is very limited, with θ and δ barely varying compared to their
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reference values (inset). The effect of W is much more significant, with θ and δ varying
substantially: the point (θ, δ) moves away from the boundary between regions I and
II as the body becomes wider, and vice versa. By symmetry, the limiting case W = 1
(body as wide as tall, seldom used in practice for Ahmed bodies) lies exactly on the
boundary. We can conclude that in the WNL framework, the bifurcation sequence obtained
in § 6.2 is robust to width and length variations commonly encountered for Ahmed
bodies.

One must keep in mind that the WNL analysis is rigorously valid in the vicinity of Rec
only. Therefore, one cannot completely rule out a fully nonlinear bifurcation diagram that
differs from the WNL one, e.g. an incursion in region II. More generally, it is likely that
the deflected wake undergoes one or several secondary instabilities at sufficiently large
Reynolds number. Nonetheless, the fact that stages 1–3 and 5 are identical in regions I
and II suggests that the transition from state (A, 0) to state (0, B) is, in any case, a robust
feature of this flow. Furthermore, the fully nonlinear DNS bifurcation sequence (§ 6.3) is
in very good agreement with the WNL prediction for the reference Ahmed body, which
attests to the reliability of the WNL analysis.

7. Conclusion

In this study, we have investigated the stability of 3-D rectangular prism wakes of
width-to-height ratio W/H = 1.2. Linear stability analysis showed that two stationary
modes become unstable via pitchfork bifurcations, at critical Reynolds numbers close
to one another. Mode A breaks the top/down planar symmetry, and mode B the
left/right planar symmetry. At larger Re, two oscillatory modes become unstable via Hopf
bifurcations, each mode breaking either planar symmetry. The critical Reynolds numbers
all increase with the body length L, similar to the pitchfork and Hopf bifurcations of
axisymmetric wakes. The effect of the leading edge fillet radius R is limited, and depends
on L.

Next, a weakly nonlinear analysis performed in the vicinity of the critical Re of modes A
and B yielded a set of two coupled amplitude equations. For Ahmed bodies, the bifurcation
diagram revealed that the flow first undergoes a stationary bifurcation leading to a wake
deflection in the top/down direction, or state (A, 0). Then another stationary state (0, B)

with the opposite symmetry breaking, i.e. in the left/right direction, becomes stable.
Simultaneously, a double symmetry-breaking state (A, B) appears but remains unstable
at all Re. The two single symmetry-breaking states thus coexist in a range of Reynolds
numbers. Finally, state (A, 0) becomes unstable, leaving state (0, B) as the only stable
state. The corresponding wake deflection, i.e. along the larger dimension of the body, is
the same as the static deflection observed in the turbulent wakes of Ahmed bodies, with or
without ground proximity.

Fully nonlinear DNS confirmed the whole bifurcation sequence, including
bistability-induced hysteresis, and the final (0, B) state. We also demonstrated that the
bifurcation sequence was robust to variations in body width W and body length L in the
range of common Ahmed body geometries.

Natural extensions of this work may include: (i) sensitivity analysis with respect
to control, in order to determine optimal control strategies and locations; (ii) analysis
of possible secondary instabilities at larger Re, especially along the (0, B) branch;
and (iii) analysis of the linear and weakly nonlinear stability of Ahmed bodies with
modifications suppressing one of the two planar symmetries, such as ground proximity,
yaw/pitch angles, and asymmetric body geometries.
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Mesh M1 M2 M3

Domain size xmin −10 −10 −10
xmax 20 20 20

ymax, zmax 10 10 10

Max. mesh density n 40 60 80

Elements Nelmts 1.01 × 106 1.38 × 106 1.94 × 106

Degrees of freedom NDOF 3.73 × 106 5.13 × 106 7.18 × 106

Base flow CD 0.771 0.778 0.781
Lr 2.25 2.24 2.24

Linear stability ReA
c 293 293 292

ReB
c 304 304 304

σA 0.00560 0.00578 0.00589
σB −0.00242 −0.00253 −0.00264

WNL λ̃A 0.00560 + 68.3α̃ 0.00578 + 68.5α̃ 0.00589 + 68.3α̃

λ̃B −0.00242 + 57.1α̃ −0.00253 + 57.1α̃ −0.00264 + 56.8α̃

η̃A 0.467 0.466 0.467
η̃B 0.556 0.557 0.558
χ̃A 1.01 1.01 1.01
χ̃B 0.183 0.174 0.171
θ 2.56 2.68 2.74
δ 0.552 0.554 0.552

Table 3. Influence of the mesh size on several properties of the base flow, linear stability analysis and weakly
nonlinear analysis (WNL), for the reference Ahmed body (W = 1.2, L = 3, R = 0.3472). The drag coefficient
CD, recirculation length Lr and eigenvalues σA, σB are calculated at Re = 300. The WNL coefficients are
computed with the reference Reynolds number Rec = 300.
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Appendix A. Numerical domain and mesh

All FreeFEM calculations (base flow, linear stability, WNL analysis) are performed
on the quarter-space domain Ω ′ = {x, y, z | −10 ≤ x ≤ 20, 0 ≤ y, z ≤ 10}. Mesh points
are strongly clustered near the body, with density 1 on the outermost boundaries,
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Mesh M2 M4 M5

Domain size xmin −10 −15 −20
xmax 20 30 45

ymax, zmax 10 15 20

Max. mesh density n 60 60 60

Elements Nelmts 1.38 × 106 1.56 × 106 1.93 × 106

Degrees of freedom NDOF 5.13 × 106 5.78 × 106 7.16 × 106

Base flow CD 0.778 0.775 0.774
Lr 2.24 2.24 2.24

Linear stability ReA
c 293 293 293

ReB
c 304 304 305

σA 0.00578 0.00541 0.00520
σB −0.00253 −0.00279 −0.00291

WNL λ̃A 0.00578 + 68.5α̃ 0.00541 + 68.4α̃ 0.00520 + 68.3α̃

λ̃B −0.00253 + 57.1α̃ −0.00279 + 57.0α̃ −0.00291 + 57.1α̃

η̃A 0.466 0.325 0.238
η̃B 0.557 0.414 0.330
χ̃A 1.01 0.748 0.592
χ̃B 0.174 0.123 0.0898
θ 2.68 2.63 2.65
δ 0.554 0.554 0.558

Table 4. Influence of the domain size on several properties of the base flow, linear stability analysis and WNL
analysis, for the reference Ahmed body (W = 1.2, L = 3, R = 0.3472). The drag coefficient CD, recirculation
length Lr and eigenvalues σA, σB are calculated at Re = 300. The WNL coefficients are computed with the
reference Reynolds number Rec = 300.

10 on the boundaries of the sub-domain {x, y, z | −5 ≤ x ≤ 15, 0 ≤ y, z ≤ 2}, and n
on the body surface. Table 3 reports the variation with n of several quantities: base
drag coefficient and recirculation length at Re = 300, growth rates of modes A and
B at Re = 300, critical Reynolds number of modes A and B, and WNL coefficients
for Rec = 300. Increasing n from 40 to 80, thus doubling the number of elements
Nelmts and degrees of freedom NDOF, leads to reasonably small variations of all the
quantities of interest. Throughout the study, we have used mesh M2. Similarly, table 4
reports variations with the domain size. The drag coefficient, recirculation length
and critical Reynolds numbers are all well converged. The WNL coefficients (and
therefore the amplitudes) do show some variation, but not the ratios θ and δ, which
implies that the bifurcation diagram is consistently predicted to be topologically as in
region I.

Appendix B. Effect of the reference Reynolds number on the bifurcation diagram

Figure 24 shows the bifurcation diagram obtained with different choices of the reference
Reynolds number, Rec = 295, 300 and 305, close to the first two pitchfork bifurcations
(ReA

c = 293 and ReB
c = 304). We observe no significant effect on the bifurcation sequence,

i.e. on the symmetry-breaking states, their stability and amplitudes. The onset of existence
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0

3
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Figure 24. Effect of the reference Reynolds number on the bifurcation diagram, for the reference Ahmed
body (W = 1.2, L = 3, R = 0.3472): arrows show increasing values Rec = 295, 300, 305.

of states (A, 0) and (0, B) is not modified either. Only the extent of the bistability region is
slightly modified as Rec increases: the lower bound varies between Re = 312 and 316, and
the upper bound between Re = 328 and 331.
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