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The Ideal Structures of Crossed Products of
Cuntz Algebras by Quasi-Free
Actions of Abelian Groups

Takeshi Katsura

Abstract. We completely determine the ideal structures of the crossed products of Cuntz algebras by

quasi-free actions of abelian groups and give another proof of A. Kishimoto’s result on the simplicity

of such crossed products. We also give a necessary and sufficient condition that our algebras become

primitive, and compute the Connes spectra and K-groups of our algebras.

1 Introduction

Recently the classification theory of simple C∗-algebras has developed rapidly. One
of the most important questions in the classification theory of C∗-algebras is to deter-

mine whether a given C∗-algebra is simple or not. It is also important to examine the
ideal structure of a given C∗-algebra if it turns out to be non-simple. There have been
many works examining the ideal structures of some classes of C∗-algebras. J. Cuntz
examined the ideal structures of Cuntz-Krieger algebras under a certain condition in

[C2]. In [aHR], A. an Huef and I. Raeburn determined the ideal structures of ar-
bitrary Cuntz-Krieger algebras. There have been many extensions of Cuntz-Krieger
algebras, for example, Cuntz-Pimsner algebras [Pi], graph algebras and Exel-Laca al-
gebras [EL], and there have also been many results about the ideal structures of such

algebras (for example, [KPW], [KPRR], [BPRS] and [EL]).

The crossed products of C∗-algebras give us plenty of interesting examples and the
structures of them have been examined by several authors. In [Ki], A. Kishimoto gave
a necessary and sufficient condition that the crossed products by abelian groups be-
come simple in terms of the strong Connes spectrum. For the case of the crossed

products of the Cuntz algebras by so-called quasi-free actions of abelian groups,
he gave a condition for simplicity which is easy to check and computed the strong
Connes spectra of some of such actions. It is hard to compute the strong Connes
spectrum by its definition and there have been few examples of actions whose strong

Connes spectra have been computed.

In this paper, we deal with crossed products of Cuntz algebras On by quasi-free

actions of arbitrary locally compact, second countable, abelian groups G. For similar
results on crossed products of Cuntz algebras O∞, see [Ka2]. The class of our algebras
has many examples of simple stably projectionless C∗-algebras as well as AF-algebras
and purely infinite C∗-algebras (see [KK1], [KK2] or [Ka1]). Our algebras may be

considered as continuous counterparts of Cuntz-Krieger algebras or graph algebras
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Ideal Structures of Crossed Products 1303

(see [Ka3, Ka4]). The main purpose of this paper is to determine the ideal structures
of our algebras in terms of the spectrum of the action, which is a finite subset of the

dual group Γ of G. This paper is organized as follows. After some preliminaries, we
prove that the set of all ideals that are invariant under the gauge action is in a one-
to-one correspondence to the set of closed subsets of the dual group Γ of G satisfying
certain conditions (Theorem 3.14). Next we give a necessary and sufficient condi-

tion that our algebras become simple (Theorem 4.8), which gives another proof of
A. Kishimoto’s result. We also give a necessary and sufficient condition that our al-
gebras become primitive (Theorem 4.12). In Section 5, we completely determine the
ideal structures of our algebras. If actions satisfy a certain condition which is an ana-

logue of Condition (II) in the case of Cuntz-Krieger algebras [C2] or Condition (K)
in the case of graph algebras [KPRR], then one can show that all ideals are invariant
under the gauge action and so one can describe all ideals in terms of closed sets of
the group Γ (Theorem 5.2). It is rather difficult to describe the ideal structures when

actions do not satisfy the condition. We have to determine all primitive ideals and
investigate the topology of the primitive ideal spaces of our algebras. After that, we
show that when actions do not satisfy the condition, the set of all ideals corresponds
bijectively to the set of closed subsets of a certain topological space satisfying a certain

condition (Theorem 5.49). As a consequence of knowing the ideal structures com-
pletely, we can compute the strong Connes spectra of quasi-free actions on Cuntz
algebras. Our algebras can be considered as Cuntz-Pimsner algebras and by using
this fact we compute the K-groups of our algebras. Finally we conclude this paper by

giving some examples and remarks.
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2 Preliminaries

In this section, we review some basic objects and fix the notation.
For n = 2, 3, . . . , the Cuntz algebra On is the universal C∗-algebra generated by n

isometries S1, S2, . . . , Sn, satisfying
∑n

i=1 SiS
∗
i = 1 [C1]. For k ∈ N = {0, 1, . . . }, we

define the set W
(k)
n of k-tuples by W

(0)
n = {∅} and

W
(k)
n =

{
(i1, i2, . . . , ik) | i j ∈ {1, 2, . . . , n}

}
.

We set Wn =
⋃∞

k=0 W
(k)
n . For µ = (i1, i2, . . . , ik) ∈ Wn, we denote its length k

by |µ|, and set Sµ = Si1
Si2
· · · Sik

∈ On. Note that |∅| = 0, S∅ = 1. For µ =

(i1, i2, . . . , ik), ν = ( j1, j2, . . . , jl) ∈ Wn, we define their product µν ∈ Wn by
µν = (i1, i2, . . . , ik, j1, j2, . . . , jl).
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We fix a locally compact abelian group G which satisfies the second axiom of
countability. The dual group of G is denoted by Γ which is also a locally compact

abelian group satisfying the second axiom of countability. We always use + for multi-
plicative operations of abelian groups except for T, which is the group of the unit cir-
cle in the complex plane C. The pairing of t ∈ G and γ ∈ Γ is denoted by 〈 t | γ 〉 ∈ T.

Let us take ω = (ω1, ω2, . . . , ωn) ∈ Γ
n and fix it. Since the n isometries

〈 t |ω1 〉S1, 〈 t |ω2 〉S2, . . . , 〈 t |ωn 〉Sn also satisfy the relation above for any t ∈ G,

there is a ∗-automorphism αωt : On → On such that αωt (Si) = 〈 t |ωi 〉Si for i =

1, 2, . . . , n. One can see that αω : G 3 t 7→ αωt ∈ Aut(On) is a strongly continuous
group homomorphism.

Definition 2.1 Let ω = (ω1, ω2, . . . , ωn) ∈ Γ
n be given. We define the action

αω : G y On by

αωt (Si) = 〈 t |ωi 〉Si (i = 1, 2, . . . , n, t ∈ G).

The action αω : G y On becomes quasi-free (for a definition of quasi-free actions
on the Cuntz algebras, see [E]). Conversely, any quasi-free action of abelian group G

on On is conjugate to αω for some ω ∈ Γ
n.

By definition, the (full) crossed product OnoαωG is the universal C∗-algebra gen-

erated by the ∗-algebra L1(G,On) whose multiplication and involution are defined as
the following:

f g(t) =

∫

G

f (s)αωs
(

g(t − s)
)

ds, f ∗(t) = αωt
(

f (−t)∗
)
,

for f , g ∈ L1(G,On) (cf. [Pe]). The crossed product OnoαωG has a C∗-subalgebra

C1oαωG, which is isomorphic to C0(Γ) via the map C1oαωG ⊃ L1(G) 3 f 7→ f̂ ∈
C0(Γ), where

f̂ (γ) =

∫

G

〈 t | γ 〉 f (t) dt.

Throughout this paper, we always consider C0(Γ) as a C∗-subalgebra of OnoαωG,
and use f , g, . . . for denoting elements of C0(Γ) ⊂ OnoαωG. The Cuntz algebra On

is naturally embedded into the multiplier algebra M(OnoαωG) of OnoαωG. For each

µ = (i1, i2, . . . , ik) in Wn, we define an element ωµ of Γ by ωµ =
∑k

j=1 ωi j
. For γ0 ∈

Γ, we define a (reverse) shift automorphism σγ0
: C0(Γ) → C0(Γ) by (σγ0

f )(γ) =

f (γ + γ0) for f ∈ C0(Γ).

Once noting that αωt (Sµ) = 〈 t |ωµ 〉Sµ for µ ∈ Wn, one can easily verify the
following.

Proposition 2.2 For any f ∈ C0(Γ) ⊂ OnoαωG and any µ ∈ Wn, we have f Sµ =

Sµσωµ f .

For a subset X of a C∗-algebra, the linear span of X is denoted by span X, and the
closure of span X is denoted by span X.
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Proposition 2.3 We have OnoαωG = span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(Γ)}.

Proof By Proposition 2.2,

span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(Γ)} = span {SµS∗ν f | µ, ν ∈Wn, f ∈ C0(Γ)}.

Obviously span {SµS∗ν f | µ, ν ∈Wn, f ∈ C0(Γ)} contains all elements of L1(G,On),
which is dense in OnoαωG. The proof is complete.

We denote by Mk the C∗-algebra of k× k matrices for k = 1, 2, . . . , and by K the
C∗-algebra of compact operators of the infinite dimensional separable Hilbert space.

3 Gauge Invariant Ideals

There is an action β of T on On called the gauge action which is defined by βt (Si) = tSi

for t ∈ T, i = 1, 2, . . . , n. We can extend this action to OnoαωG which is also
called the gauge action and denoted by β. Explicitly, βt (Sµ f S∗ν ) = t |µ|−|ν|Sµ f S∗ν for

µ, ν ∈Wn, f ∈ C0(Γ) and t ∈ T.

By an ideal we mean a closed two-sided ideal. In this section, we determine all the
ideals which are globally invariant under the gauge action.

Definition 3.1 For an ideal I of the crossed product OnoαωG, we define the closed

subset XI of Γ by

XI =

⋂

f∈I∩C0(Γ)

{γ ∈ Γ | f (γ) = 0}.

In other words, XI is determined by C0(Γ \ XI) = I ∩ C0(Γ) where for a closed
subset X of Γ, C0(Γ \ X) means the set of functions in C0(Γ) which vanish on X. In
particular, C0(Γ \ Γ) = {0}. One can easily see that I1 ⊂ I2 implies XI1

⊃ XI2
and

XI1∩I2
= XI1

∪ XI2
for ideals I1, I2 of OnoαωG.

Definition 3.2 A subset X of Γ is called ω-invariant if X is a closed set satisfying the
following two conditions:

(i) For any γ ∈ X and any i ∈ {1, 2, . . . , n}, we have γ + ωi ∈ X.

(ii) For any γ ∈ X, there exists i ∈ {1, 2, . . . , n} such that γ − ωi ∈ X.

For an element γ of an ω-invariant set X, one can easily show that γ + ωµ ∈ X for
any µ ∈ Wn and that there exists i ∈ {1, 2, . . . , n} such that γ − mωi ∈ X for any
m ∈ N. For a subset X of Γ and an element γ0 of Γ, we define the subset X +γ0 of Γ by

X+γ0 = {γ+γ0 | γ ∈ X}. Similarly, we define X1+X2 = {γ1+γ2 | γ1 ∈ X1, γ2 ∈ X2}
for X1,X2 ⊂ Γ. A closed set X is ω-invariant if and only if X =

⋃n
i=1(X + ωi).

Proposition 3.3 For any ideal I of the crossed product OnoαωG, the closed set XI is

ω-invariant.
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Proof Take γ ∈ XI and i ∈ {1, 2, . . . , n} arbitrarily. Let f be an element of I∩C0(Γ).
By Proposition 2.2, S∗i f Si = S∗i Siσωi

f = σωi
f . Hence σωi

f ∈ I ∩C0(Γ), so we have

σωi
f (γ) = 0. Thus, f (γ + ωi) = 0 for any f ∈ I ∩C0(Γ). It implies γ + ωi ∈ XI .
Let γ0 be a point of Γ such that γ0 − ωi /∈ XI for any i = 1, 2, . . . , n, and we will

show that γ0 /∈ XI . Since Γ\XI is open, there is a neighborhood U of γ0 ∈ Γ such that
U − ωi ⊂ Γ \ XI for any i = 1, 2, . . . , n. There exists f ∈ C0(Γ) such that f (γ0) 6= 0

and f (γ) = 0 for any γ /∈ U . Then U − ωi ⊂ Γ \ XI implies σωi
f ∈ C0(Γ \ XI) ⊂ I

for i = 1, 2, . . . , n. Since

f =

n∑

i=1

SiS
∗
i f =

n∑

i=1

Siσωi
f S∗i ,

we have f ∈ I. It implies γ0 /∈ XI . Thus XI is ω-invariant.

We will show that for any ω-invariant subset X, there exists a gauge invariant ideal
I such that X = XI (Proposition 3.6).

Definition 3.4 Let X be an ω-invariant subset of Γ. We define IX ⊂ OnoαωG by

IX = span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(Γ \ X)}.

Proposition 3.5 For anω-invariant subset X of Γ, the set IX becomes a gauge invariant

ideal of OnoαωG.

Proof Clearly IX is a ∗-invariant closed linear space. Since βt (Sµ f S∗ν ) = t |µ|−|ν|Sµ f S∗ν
for t ∈ T, IX is invariant under the gauge action β. By Proposition 2.3, it suffices to
show that for any µ1, ν1, µ2, ν2 ∈Wn and any f ∈ C0(Γ\X), g ∈ C0(Γ), the product
xy of x = Sµ1

f S∗ν1
∈ IX and y = Sµ2

gS∗ν2
∈ OnoαωG is an element of IX .

If S∗ν1
Sµ2

= 0, then xy = 0 ∈ IX . Otherwise, S∗ν1
Sµ2

= Sµ or S∗ν1
Sµ2

= S∗µ for some
µ ∈Wn. For the case S∗ν1

Sµ2
= Sµ,

xy = Sµ1
f S∗ν1

Sµ2
gS∗ν2

= Sµ1
f SµgS∗ν2

= Sµ1µ(σωµ f )gS∗ν2
.

Since f ∈ C0(Γ \ X) and X is ω-invariant, we have σωµ f ∈ C0(Γ \ X). This implies

(σωµ f )g ∈ C0(Γ \ X) and so xy ∈ IX . For the case S∗ν1
Sµ2

= S∗µ,

xy = Sµ1
f S∗ν1

Sµ2
gS∗ν2

= Sµ1
f S∗µgS∗ν2

= Sµ1
f (σωµg)S∗ν2µ.

Since f ∈ C0(Γ \ X), we have xy ∈ IX . It completes the proof.

Proposition 3.6 For any ω-invariant subset X of Γ, we have XIX
= X.

Proof By the definition of IX , we get XIX
⊂ X. Let us assume XIX

$ X. Then there

exists f ∈ IX ∩C0(Γ) such that f (γ0) = 1 for some γ0 ∈ X. Since f ∈ IX , there exist
fk ∈ C0(Γ \ X), µk, νk ∈Wn (k = 1, 2, . . . ,K) such that

∥∥∥ f −

K∑

k=1

Sµk
fkS∗νk

∥∥∥ <
1

2
.
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From this inequality, we will derive a contradiction.
Since X is ω-invariant, there exists i ∈ {1, 2, . . . , n} such that γ0 − mωi ∈ X for

any m ∈ N. Take j ∈ {1, 2, . . . , n} with j 6= i. Set M = max
{
|µk|, |νk|

∣∣ k =

1, 2, . . . ,K
}

. Then, S∗j S∗i
M f SM

i S j = σ(Mωi +ω j ) f and S∗j S∗i
MSµk

fkS∗νk
SM

i S j is either 0 or
σ(mkωi +ω j ) fk for some mk ≤ M. Therefore, from

∥∥∥S∗j S∗i
M

(
f −

K∑

k=1

Sµk
fkS∗νk

)
SM

i S j

∥∥∥ <
1

2
,

we get ∥∥∥σ(Mωi +ω j ) f −
∑

k

σ(mkωi +ω j ) fk

∥∥∥ <
1

2
.

By evaluating at γ0−Mωi−ω j , we find k ∈ N such that fk

(
γ0−(M−mk)ωi

)
6= 0. It

contradicts the fact that fk ∈ C0(Γ \ X) and γ0 −mωi ∈ X for any m ∈ N. Therefore
we are done.

By Proposition 3.6, the map I 7→ XI from the set of gauge invariant ideals I of
OnoαωG to the set of ω-invariant subsets of Γ is surjective. Now, we turn to showing
that this map is injective (Proposition 3.13). The method we use here is inspired by

[C1].
Let I be an ideal that is not OnoαωG. We investigate the quotient (OnoαωG)/I of

OnoαωG by an ideal I. Since I ∩ C0(Γ) = C0(Γ \ XI), a C∗-subalgebra C0(Γ)/
(

I ∩

C0(Γ)
)

of (OnoαωG)/I is isomorphic to C0(XI). We will consider C0(XI) as a
C∗-subalgebra of (OnoαωG)/I. No confusion should occur by using the same sym-

bols S1, S2, . . . , Sn ∈ M
(

(OnoαωG)/I
)

as the ones in M(OnoαωG) for denoting the

isometries of On which is naturally embedded into M
(

(OnoαωG)/I
)

.
For an ω-invariant set X, we can define a ∗-homomorphismσωµ : C0(X)→ C0(X)

for µ ∈Wn. This map σωµ is always surjective, but it is injective only in the case that

X−ωµ ⊂ X, which is equivalent to X−ωµ = X. One can easily verify the following.

Lemma 3.7 Let I be an ideal that is not OnoαωG.

(i) For µ, ν ∈ Wn and f ∈ C0(XI), Sµ f S∗ν ∈ (OnoαωG)/I is zero if and only if

f = 0.

(ii) For µ ∈Wn and f ∈ C0(XI), we have f Sµ = Sµσωµ f .

(iii) (OnoαωG)/I = span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(XI)}.

We define a C∗-subalgebra of (OnoαωG)/I, which corresponds to the AF-core for
Cuntz algebras.

Definition 3.8 Let I be an ideal that is not OnoαωG. We define C∗-subalgebras F
(k)
I

(k ∈ N) and FI of (OnoαωG)/I by

F
(k)
I = span {Sµ f S∗ν | µ, ν ∈W

(k)
n , f ∈ C0(XI)},

FI = span {Sµ f S∗ν | µ, ν ∈Wn, |µ| = |ν|, f ∈ C0(XI)}.

When I = 0, we write simply F(k),F for F
(k)
0 ,F0.
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Lemma 3.9 Let I be an ideal that is not OnoαωG.

(i) The C∗-subalgebra F
(k)
I of (OnoαωG)/I is isomorphic to Mnk ⊗C0(XI) for k ∈ N.

(ii) F
(k)
I ⊂ F

(k+1)
I and the inductive limit of F

(k)
I is FI .

Proof (i) Since the set W
(k)
n has nk elements, we may use {eµ,ν}µ,ν∈W

(k)
n

for denoting

the matrix units of Mnk . For x1 = Sµ1
f1S∗ν1

, x2 = Sµ2
f2S∗ν2

∈ F
(k)
I , we have x∗1 =

Sν1
f1S∗µ1

and x1x2 = δν1,µ2
Sµ1

f1 f2S∗ν2
. Thus the map

Mnk ⊗C0(XI) 3 eµ,ν ⊗ f 7→ Sµ f S∗ν ∈ F
(k)
I

defines a ∗-homomorphism. By the definition of F
(k)
I , it is surjective. It is injective

by Lemma 3.7(i). Thus Mnk ⊗C0(XI) ∼= F
(k)
I .

(ii) Since Sµ f S∗ν =
∑n

i=1 SµSiσωi
f S∗i S∗ν , we have F

(k)
I ⊂ F

(k+1)
I . The latter part is

trivial by the definitions of F
(k)
I and FI .

Definition 3.10 A linear map E from some C∗-algebra A onto a C∗-subalgebra B

of A is called a conditional expectation if ‖E‖ ≤ 1 and E(x) = x for any x ∈ B. A

conditional expectation E is called faithful if E(x) = 0 implies x = 0 for a positive
element x of A.

The following proposition essentially appeared in [C1].

Proposition 3.11 For i = 1, 2, let Ei be a conditional expectation from a C∗-algebra

Ai onto a C∗-subalgebra Bi of Ai . Let ϕ : A1 → A2 be a ∗-homomorphism with ϕ◦E1 =

E2 ◦ ϕ. If the restriction of ϕ on B1 is injective and E1 is faithful, then ϕ is injective.

Proof Let x be a positive element of kerϕ ⊂ A1. Since ϕ ◦ E1 = E2 ◦ ϕ, we have
ϕ
(

E1(x)
)

= 0. Since E1(x) ∈ B1 and ϕ is injective on B1, we have E1(x) = 0. Then
x = 0 since E1 is faithful. Thus kerϕ = {0} which means that ϕ is injective.

For an ideal I which is invariant under the gauge action β, we can extend the gauge
action on OnoαωG to one on (OnoαωG)/I, which is also denoted by β.

Lemma 3.12 Let I be a gauge invariant ideal that is not OnoαωG. Then,

EI : (OnoαωG)/I 3 x 7→

∫

T

βt (x) dt ∈ (OnoαωG)/I

is a faithful conditional expectation onto FI , where dt is the normalized Haar measure

on T.

Proof For x ∈ (OnoαωG)/I, we have

‖EI(x)‖ =

∥∥∥
∫

T

βt (x) dt
∥∥∥ ≤

∫

T

‖βt (x)‖ dt = ‖x‖.
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Thus ‖EI‖ ≤ 1. One can see that EI(x) = 0 implies x = 0 for a positive element
x ∈ (OnoαωG)/I.

For µ, ν ∈Wn and f ∈ C0(XI),

EI(Sµ f S∗ν ) =

∫

T

βt (Sµ f S∗ν ) dt =

∫

T

t |µ|−|ν|(Sµ f S∗ν ) dt = δ|µ|,|ν|Sµ f S∗ν .

Therefore EI(x) = x for any x ∈ span
{

Sµ f S∗ν
∣∣ µ, ν ∈Wn, |µ| = |ν|, f ∈ C0(XI)

}
,

thus for any x ∈ FI by the continuity of EI . By the above computation, EI(x) ∈ FI

for x ∈ span {Sµ f S∗ν | µ, ν ∈ Wn, f ∈ C0(XI)}, which is dense in (OnoαωG)/I by
Lemma 3.7(iii). Therefore, the image of EI is FI by the continuity of EI . We have

shown that EI is a faithful conditional expectation onto FI .

Proposition 3.13 For any gauge invariant ideal I, we have IXI
= I.

Proof When I = OnoαωG, we have XI = ∅. Thus IXI
= OnoαωG. Let I be a

gauge invariant ideal that is not OnoαωG and set J = IXI
. By the definition, J ⊂ I.

Hence there is a surjective ∗-homomorphism π : (OnoαωG)/ J → (OnoαωG)/I. By

Lemma 3.9, the restriction of π on F
(k)
J is an isomorphism from F

(k)
J onto F

(k)
I and so

the restriction of π on F J is an isomorphism from F J onto FI . By Lemma 3.12, there
are faithful conditional expectations E J : (OnoαωG)/ J → F J and EI : (OnoαωG)/I →
FI . Since EI

(
π(x)

)
= π

(
E J(x)

)
for any x ∈ span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(X)},

which is dense in (OnoαωG)/ J, we have EI ◦ π = π ◦ E J . By Proposition 3.11, π is
injective. Therefore IXI

= I.

Theorem 3.14 The maps I 7→ XI and X 7→ IX induce a one-to-one correspondence

between the set of gauge invariant ideals of OnoαωG and the set of ω-invariant subsets

of Γ.

Proof Combine Proposition 3.6 and Proposition 3.13.

4 Simplicity and Primitivity of OnoαωG

In this section, we give necessary and sufficient conditions forω ∈ Γ
n that the crossed

product OnoαωG becomes simple or primitive.

Proposition 4.1 Let I be an ideal of OnoαωG. Then, I = OnoαωG if and only if

XI = ∅.

Proof The “only if” part is trivial. The “if” part follows from Proposition 2.3.

For an ideal I of OnoαωG, we have IXI
⊂ I. In general there exists an ideal I such

that IXI
6= I (see Proposition 5.26). However if XI satisfies a certain condition, then

I = IXI
(Theorem 4.5).
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Definition 4.2 An ω-invariant subset X of Γ is said to be bad if there exists γ ∈ X

such that there is only one element i with γ−ωi ∈ X in {1, 2, . . . , n} and this element

i satisfies that mωi = 0 for some positive integer m. An ω-invariant subset X of Γ is
said to be good if X is not bad.

Note that ∅ is a good ω-invariant set.

Lemma 4.3 An ω-invariant subset X of Γ is good if and only if for any γ ∈ X, one of

the following two conditions is satisfied:

(i) There exists i ∈ {1, 2, . . . , n} such that γ − mωi ∈ X and γ − mωi 6= γ for any

positive integer m.

(ii) There exist i, j ∈ {1, 2, . . . , n} with i 6= j such that γ − mωi − ω j ∈ X for any

positive integer m.

Proof When X is bad, there exists γ ∈ X such that there is only one element i with
γ−ωi ∈ X in {1, 2, . . . , n} and this element i satisfies that mωi = 0 for some positive
integer m. This γ ∈ X satisfies neither condition in the statement.

Let us assume that X is good and that γ ∈ X does not satisfy the condition (i). We
will prove that γ ∈ X satisfies the condition (ii). Since X is ω-invariant, there exists

i ∈ {1, 2, . . . , n} such that γ−mωi ∈ X for any positive integer m. Since γ ∈ X does
not satisfy the condition (i), there exists a positive integer K with Kωi = 0. Since X is
good, there exists j ∈ {1, 2, . . . , n} with j 6= i such that γ−ω j ∈ X. For any positive
integer m, if we take l ∈ N so that lK −m ≥ 0, we have

γ − ω j −mωi = γ − ω j + (lK −m)ωi ∈ X.

Thus γ ∈ X satisfies the condition (ii).

Proposition 4.4 Let I be an ideal that is not OnoαωG. If XI is a good ω-invariant set,

then there exists a unique conditional expectation EI from (OnoαωG)/I onto FI such

that EI(Sµ f S∗ν ) = δ|µ|,|ν|Sµ f S∗ν for µ, ν ∈Wn, f ∈ C0(XI).

Proof Let µl, νl ∈ Wn and fl ∈ C0(XI) be given for l = 1, 2, . . . , L. Then x =∑L
l=1 Sµl

flS
∗
νl

is an element of

span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(XI)} ⊂ (OnoαωG)/I.

Set k = max
{
|µl|, |νl|

∣∣ l = 1, 2, . . . , L
}

. We may assume that if |µl| = |νl|, then

|µl| = |νl| = k. Let x0 =
∑

|µl|=|νl|
Sµl

flS
∗
νl

. Since x0 ∈ F
(k)
I
∼= Mnk ⊗ C0(XI),

there exists γ0 ∈ XI such that ‖x0‖ = ‖
∑

|µl|=|νl |
Sµl

fl(γ0)S∗νl
‖. We will prove that

‖x0‖ ≤ ‖x‖.
Since XI is a good ω-invariant set, γ0 ∈ XI satisfies one of the two conditions

in Lemma 4.3. We first consider the case that γ0 ∈ XI satisfies the condition (i)
in Lemma 4.3, that is, there exists i ∈ {1, 2, . . . , n} such that γ0 − mωi ∈ X and
γ0−mωi 6= γ0 for any positive integer m. We can find a neighborhood U of γ0−kωi ∈
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XI such that U ∩ (U + mωi) = ∅ for m = 1, 2, . . . , k. Choose a function f with
0 ≤ f ≤ 1 satisfying f (γ0 − kωi) = 1 and the support of f is contained in U . Set

u =
∑

µ∈W
(k)
n

SµSk
i f 1/2S∗µ ∈ (OnoαωG)/I. Since

u∗u =

∑

µ,ν∈W
(k)
n

Sµ f 1/2S∗i
k
S∗µSνSk

i f 1/2S∗ν =

∑

µ∈W
(k)
n

Sµ f S∗µ,

u∗u is an element of F
(k)
I which corresponds to the element 1⊗ f under the isomor-

phism F
(k)
I
∼= Mnk ⊗ C0(XI). Thus we have ‖u∗u‖ = supγ∈XI

| f (γ)| = 1, and so

‖u‖ = 1. When |µl| 6= |νl|, for any µ, ν ∈W
(k)
n , (S∗i

kS∗µ)Sµl
S∗νl

(SνSk
i ) is either zero, Sm

i

or S∗i
m with some 0 < m ≤ k. In the case that (S∗i

kS∗µ)Sµl
S∗νl

(SνSk
i ) = Sm

i , we have

( f 1/2S∗i
k
S∗µ)Sµl

S∗νl
(SνSk

i f 1/2) = Sm
i (σmω1

f 1/2) f 1/2
= 0.

Similarly, we have ( f 1/2S∗i
kS∗µ)Sµl

S∗νl
(SνSk

i f 1/2) = 0 in the case that

(S∗i
k
S∗µ)Sµl

S∗νl
(SνSk

i ) = S∗i
m.

Hence if |µl| 6= |νl|, then u∗Sµl
flS

∗
νl

u = 0. When |µl| = |νl| = k, we have

u∗Sµl
flS

∗
νl

u =

∑

µ,ν∈W
(k)
n

(Sµ f 1/2S∗i
k
S∗µ)Sµl

flS
∗
νl

(SνSk
i f 1/2S∗ν ) = Sµl

f (σkωi
fl)S∗νl

.

Hence u∗xu =
∑

|µl|=|νl|
Sµl

f (σkωi
fl)S∗νl

. Thus we have

‖u∗xu‖ ≥
∥∥∥

∑

|µl|=|νl|

Sµl
f (γ0 − kωi)σkωi

fl(γ0 − kωi)S∗νl

∥∥∥

=

∥∥∥
∑

|µl|=|νl|

Sµl
fl(γ0)S∗νl

∥∥∥ = ‖x0‖.

Therefore when the condition (i) is satisfied, we have ‖x0‖ ≤ ‖u
∗xu‖ ≤ ‖x‖.

Next we consider the case that there exist i, j ∈ {1, 2, . . . , n} with i 6= j such that

γ0 − mωi − ω j ∈ X for any positive integer m. Set u =
∑

µ∈W
(k)
n

SµSk
i S jS

∗
µ ∈ On ⊂

M(OnoαωG/I). Since

u∗u =

∑

µ,ν∈W
(k)
n

(SµS∗j S∗i
k
S∗µ)(SνSk

i S jS
∗
ν ) =

∑

µ∈W
(k)
n

SµS∗µ = 1,
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u is an isometry. Since S∗j S∗i
kS∗µSνSk

i S j = δµ,ν for µ, ν ∈ Wn such that |µ|, |ν| ≤ k,
we have u∗Sµl

S∗νl
u = δ|µl|,|νl|Sµl

S∗νl
, for l = 1, 2, . . . , L. Therefore,

u∗xu =

L∑

l=1

u∗Sµl
flS

∗
νl

u

=

L∑

l=1

u∗Sµl
S∗νl

u(σkωi +ω j−ωνl
fl)

=

∑

|µl|=|νl|

Sµl
S∗νl

(σkωi +ω j−ωνl
fl)

=

∑

|µl|=|νl|

Sµl
(σkωi +ω j

fl)S∗νl
.

Since γ0 − kωi − ω j ∈ XI , we have

‖u∗xu‖ ≥
∥∥∥

∑

|µl|=|νl |

Sµl
σkωi +ω j

fl(γ0− kωi −ω j)S∗νl

∥∥∥ =

∥∥∥
∑

|µl|=|νl |

Sµl
fl(γ0)S∗νl

∥∥∥ = ‖x0‖.

Therefore also for the case that the condition (ii) is satisfied, we have ‖x0‖ ≤ ‖x‖.

Suppose x is expressed in two ways: x =
∑L

l=1 Sµl
flS

∗
νl

=
∑L ′

l=1 Sµ ′
l

f ′
l S∗ν ′

l
. Let

y =
∑L

l=1 Sµl
flS

∗
νl
−

∑L ′

l=1 Sµ ′
l

f ′
l S∗ν ′

l
and y0 =

∑
|µl|=|νl|

Sµl
flS

∗
νl
−

∑
|µ ′

l
|=|ν ′

l
| Sµ ′

l
f ′
l S∗ν ′

l
.

Since ‖y0‖ ≤ ‖y‖ and y = x − x = 0, we get y0 = 0. Thus
∑

|µl|=|νl|
Sµl

flS
∗
νl

=∑
|µ ′

l
|=|ν ′

l
| Sµ ′

l
f ′
l S∗ν ′

l
which means that x0 does not depend on expressions of x. Hence

we can define a norm-decreasing linear map EI by

EI : span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(XI)} 3 x

7→ x0 ∈ span
{

Sµ f S∗ν
∣∣ µ, ν ∈Wn, |µ| = |ν|, f ∈ C0(XI)

}
.

Since EI is norm-decreasing and span {Sµ f S∗ν | µ, ν ∈ Wn, f ∈ C0(XI)} is dense
in (OnoαωG)/I, we can extend EI on (OnoαωG)/I with ‖EI‖ ≤ 1 whose image is
contained in FI . Since EI(x) = x for x ∈ span

{
Sµ f S∗ν

∣∣ µ, ν ∈ Wn, |µ| = |ν|,

f ∈ C0(XI)
}

, which is dense in FI , we get EI(x) = x for any x ∈ FI .

Therefore EI is a conditional expectation onto FI . Uniqueness follows from the
condition EI(Sµ f S∗ν ) = δ|µ|,|ν|Sµ f S∗ν for µ, ν ∈Wn and f ∈ C0(X).

When an ideal I such that XI is good is gauge invariant, the conditional expecta-
tion EI defined in Proposition 4.4 coincides with the one in Lemma 3.12 by unique-

ness. Actually any ideal I such that XI is good is gauge invariant.

Theorem 4.5 Let I be an ideal of OnoαωG such that XI is good. Then we have IXI
= I,

and so I is gauge invariant.
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Proof If XI = ∅, then I = OnoαωG so IXI
= I. Let I be an ideal that is not OnoαωG,

and set J = IXI
. By the same way as in the proof of Proposition 3.13, there exists a

surjective ∗-homomorphism π : (OnoαωG)/ J → (OnoαωG)/I whose restriction on
F J is an isomorphism from F J onto FI . By Proposition 4.4, there exists a conditional
expectation EI : (OnoαωG)/I → FI . Since EI

(
π(x)

)
= π

(
E J(x)

)
for all x in a dense

subset

span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(X)} ⊂ (OnoαωG)/ J,

we have EI ◦ π = π ◦ E J where E J : (OnoαωG)/ J → F J is a faithful conditional

expectation defined in Lemma 3.12. By Proposition 3.11, π is injective. Therefore
I = IXI

.

When an ω-invariant set X is bad, there exists an ideal I with XI = X which is

not gauge invariant (Proposition 5.26). As a special case of Theorem 4.5, we get the
following.

Proposition 4.6 Let I be an ideal of the crossed product OnoαωG. Then I = 0 if and

only if XI = Γ.

Proof The “only if” part is trivial. The “if” part follows from Theorem 4.5 since Γ is
a good ω-invariant set.

Definition 4.7 For a non-empty subset I of {1, 2, . . . , n}, we denote by ΩI the closed

semigroup generated by ω1, ω2, . . . , ωn and−ωi for i ∈ I.

For a non-empty subset I of {1, 2, . . . , n}, the set ΩI is ω-invariant. In [Ki],
A. Kishimoto found a necessary and sufficient condition for OnoαωG to become sim-
ple. Now we can reprove it.

Theorem 4.8 (cf. [Ki, Theorem 4.4]) The following conditions for ω ∈ Γ
n are equiv-

alent:

(i) The crossed product OnoαωG is simple.

(ii) Any ω-invariant subset of Γ must be ∅ or Γ.

(iii) Ω{i} = Γ for any i = 1, 2, . . . , n.

Proof (i)⇔ (ii): Combine Proposition 4.1 and Proposition 4.6.
(ii)⇒ (iii): Since Ω{i} is a non-empty ω-invariant subset, we have Ω{i} = Γ for

any i.
(iii)⇒ (ii): Let X be a non-empty ω-invariant subset. Let us choose an element

γ0 ∈ X. There exists i ∈ {1, 2, . . . , n} such that γ0 + γ ∈ X for any γ ∈ Ω{i}. Since
Ω{i} is Γ, we get X = Γ.

Now we turn to determining for which ω ∈ Γ
n the crossed product OnoαωG

becomes primitive. An ideal I of a C∗-algebra A is called primitive if I is a kernel of
some irreducible representation. A C∗-algebra A is called primitive if 0 is a primitive
ideal. When a C∗-algebra A is separable, an ideal I of A is primitive if and only if I is
prime, i.e. I1 ∩ I2 ⊂ I implies I1 ⊂ I or I2 ⊂ I for ideals I1, I2 of A.
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Definition 4.9 An ω-invariant set X is called prime if for any ω-invariant sets X1,X2

with X ⊂ X1 ∪ X2, either X ⊂ X1 or X ⊂ X2 holds.

Proposition 4.10 If an ideal I of OnoαωG is primitive, then XI becomes a prime ω-

invariant set.

Proof Let I be a primitive ideal of OnoαωG. Assume that two ω-invariant subsets

X1,X2 of Γ satisfy XI ⊂ X1 ∪ X2. Then IX1
∩ IX2

⊂ IXI
⊂ I. Since I is prime, either

IX1
⊂ I or IX2

⊂ I. Hence either X1 ⊃ XI or X2 ⊃ XI . Therefore XI is prime.

In general, the converse of Proposition 4.10 is not true (see Corollary 5.3 and
Proposition 5.43).

Proposition 4.11 For a non-empty ω-invariant set X, the following are equivalent:

(i) X is prime.

(ii) For any γ0, γ1 ∈ X and any neighborhoods U0 and U1 of γ0 and γ1 respectively,

there exist γ ∈ X and µ, ν ∈Wn such that γ + ωµ ∈ U0 and γ + ων ∈ U1.

(iii) For any γ0, γ1 ∈ X, there exist sequences µ1, µ2, . . . and ν1, ν2, . . . in Wn such

that γ0−ωµk
, γ1−ωνk

∈ X for any k and limk→∞

(
(γ0−ωµk

)−(γ1−ωνk
)
)

= 0.

(iv) X = γ + ΩI for some γ ∈ Γ and non-empty I ⊂ {1, 2, . . . , n}.

Proof (i)⇒ (ii): Let X be a non-empty prime ω-invariant set, γ0, γ1 elements of X,
and U0, U1 neighborhoods of γ0, γ1 respectively. Set two open sets Y0,Y1 by

Y0 =

∞⋃

k=0

⋂

µ∈W
(k)
n

⋃

ν∈Wn

(U0 + ωµ − ων), Y1 =

∞⋃

k=0

⋂

µ∈W
(k)
n

⋃

ν∈Wn

(U1 + ωµ − ων).

One can easily see that γ − ωi ∈ Y0 for any γ ∈ Y0 and any i = 1, 2, . . . , n, and
that if γ − ωi ∈ Y0 for any i = 1, 2, . . . , n, then γ ∈ Y0. Thus the closed set Γ \ Y0

is ω-invariant. Similarly, Γ \ Y1 is ω-invariant. Since γ0 ∈ Y0 and γ1 ∈ Y1, neither
Γ \ Y0 nor Γ \ Y1 contains X. Since X is prime, (Γ \ Y0) ∪ (Γ \ Y1) does not contain

X. Therefore we get γ ′ ∈ X with γ ′ ∈ Y0 ∩ Y1. Thus for j = 0, 1, there exist k j ∈ N

satisfying that for any µ j ∈W
(k j )
n , there exists ν j ∈Wn with γ ′ ∈ U j +ωµ j

−ων j
. Let

k ∈ N be an integer with k ≥ k0, k1. Since X is ω-invariant, there exists µ ′ ∈ W(k)
n

with γ ′ − ωµ ′ ∈ X. For j = 0, 1, there exist µ j , µ
′
j ∈ Wn with µ ′

= µ jµ
′
j and

|µ j | = k j . Thus we get ν j ∈ Wn with γ ′ ∈ U j + ωµ j
− ων j

for j = 0, 1. Set
γ = γ ′ − ωµ ′ ∈ X, µ = ν0µ

′
0 and, ν = ν1µ

′
1. Then, we have γ + ωµ ∈ U0 and

γ + ων ∈ U1.

(ii) ⇒ (iii): Let γ0, γ1 be elements of an ω-invariant set X. Let U1,U2, . . . be a
fundamental system of neighborhoods of 0. From (ii), for any k = 1, 2, . . . , there

exist λk ∈ X and µk, νk ∈Wn such that λk + ωµk
∈ Uk + γ0 and λk + ωνk

∈ Uk + γ1.
Replacing {k} by a subsequence if necessary, we may assume that the number of i’s
appearing in µk and the one appearing in νk increase for any i = 1, 2, . . . , n. For any
positive integer k, we have γ0−ωµk

∈ X because γ0−ωµk
= liml→∞(λl +ωµl

−ωµk
)
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and λl + ωµl
− ωµk

∈ X when l ≥ k. Similarly we have γ1 − ωνk
∈ X for any positive

integer k. Since limk→∞(γ0 −ωµk
− λk) = 0 and limk→∞

(
λk − (γ1 −ωνk

)
)

= 0, we

have limk→∞

(
(γ0 − ωµk

)− (γ1 − ωνk
)
)

= 0.
(iii)⇒ (iv): Take γ0 ∈ X arbitrarily. From (iii), the countable set X ′

= {γ ∈ X |
γ = γ0 − ωµ + ων for some µ, ν ∈ Wn} is dense in X. Denote all the elements of
X ′ by {λ1, λ2, . . . }. Let U1,U2, . . . be a fundamental system of neighborhoods of 0.

Let us choose a bijection Z
+ 3 k 7→ (mk, lk) ∈ Z

+ × Z
+ where Z

+ is the set of positive
integers. Thus we have {(λmk

,Ulk )}∞k=1 = {(λm,Ul)}
∞
m,l=1. By (iii), for a positive

integer k, we can recursively find µk, νk ∈Wn satisfying that γ0 −
∑k

j=1 ωµ j
∈ X and

γ0−
∑k

j=1 ωµ j
− (λmk

−ωνk
) ∈ Ulk . Since an element γ0−

∑k
j=1 ωµ j

+ων is in X for
any positive integer k and any ν ∈Wn, we have

{
γ0 −

k∑

j=1

ωµ j
+ ων | k ∈ Z+, ν ∈Wn

}
⊂ X.

Since the set of the left hand side above contains X ′ which is dense in X, the inclusion
above is actually an equality. Let I be the set of i ∈ {1, 2, . . . , n} such that the number
of i’s appearing in µ1µ2 · · ·µk goes to infinity when k goes to infinity. For i /∈ I, let ni

be the limit of the number of i’s appearing in µ1µ2 · · ·µk when k goes to infinity. Set

γ = γ0 −
∑

i /∈I
niωi . Then, one can see that X = γ + ΩI.

(iv) ⇒ (i): Let X be an ω-invariant set such that X = γ + ΩI for some γ ∈ Γ

and non-empty I ⊂ {1, 2, . . . , n}. Take ω-invariant sets X1,X2 with X ⊂ X1 ∪ X2.
Since γ − k(

∑
i∈I
ωi) ∈ X for any positive integer k, either X1 or X2, say X1, contains

γ − k(
∑

i∈I
ωi) for infinitely many k. Then, X1 contains γ + γ ′ for any γ ′ in the

(algebraic) semigroup generated by ω1, ω2, . . . , ωn and −ωi for i ∈ I. Since X1 is
closed, X1 ⊃ γ + ΩI = X. Thus X is prime.

We will use the equivalence (i)⇔ (iv) in Proposition 4.11 most often. The con-
dition (ii) or (iii) in Proposition 4.11 can be considered as an analogue of maximal
tails in [BPRS].

Theorem 4.12 The following conditions for ω ∈ Γ
n are equivalent:

(i) The crossed product OnoαωG is primitive.

(ii) Γ is a prime ω-invariant set.

(iii) The closed group generated by ω1, ω2, . . . , ωn is equal to Γ.

Proof (i)⇒ (ii): This follows from Proposition 4.10.
(ii)⇒ (i): It suffices to show that 0 is prime. Let I1, I2 be ideals of OnoαωG with

I1 ∩ I2 = 0. We have XI1
∪ XI2

= XI1∩I2
= Γ. Since Γ is prime, either XI1

⊃ Γ or
XI2
⊃ Γ. If XI1

⊃ Γ hence XI1
= Γ, then I1 = 0 by Proposition 4.6. Similarly if

XI2
⊃ Γ, then I2 = 0. Thus 0 is prime and so OnoαωG is a primitive C∗-algebra.

(ii) ⇒ (iii): By Proposition 4.11, there exist γ ∈ Γ and non-empty I ⊂
{1, 2, . . . , n} with Γ = γ + ΩI. The closed group generated by ω1, ω2, . . . , ωn is
equal to Γ because it contains ΩI and ΩI = Γ− γ = Γ.
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(iii)⇒ (ii): This follows from Proposition 4.11 since Γ = Ω{1,2,...,n}.

One can prove the equivalence between (i) and (iii) in the above theorem by char-

acterization of primitivity of crossed products in terms of the Connes spectrum due
to D. Olesen and G. K. Pedersen [OP1] and the computation of the Connes spectrum
of our actions αω due to A. Kishimoto [Ki].

5 The Ideal Structures of OnoαωG

In this section, we completely determine the ideal structures of OnoαωG (Theo-

rem 5.2, Theorem 5.49). The ideal structures of OnoαωG depend on whether ω ∈ Γ
n

satisfies the following condition:

Condition 5.1 For each i ∈ {1, 2, . . . , n}, one of the following two conditions is
satisfied:

(i) For any positive integer k, kωi 6= 0.

(ii) There exists j 6= i such that −ω j ∈ Ω{i}.

This condition is an analogue of Condition (II) in the case of Cuntz-Krieger alge-

bras [C2] or Condition (K) in the case of graph algebras [KPRR].

5.1 When ω Satisfies Condition 5.1

When ω satisfies Condition 5.1, all ideals of OnoαωG are gauge invariant.

Theorem 5.2 When ω satisfies Condition 5.1, every ω-invariant set is good. Hence

any ideal is gauge invariant and there is an inclusion reversing one-to-one correspon-

dence between the set of ideals of OnoαωG and the set of ω-invariant subsets of Γ.

Proof Let X be an ω-invariant set and γ be an element of X. Since X is ω-invariant,

there exists i ∈ {1, 2, . . . , n} such that γ + γ ′ ∈ X for any γ ′ ∈ Ω{i}. If kωi 6= 0
for any positive integer k, then γ ∈ X satisfies the condition (i) in Lemma 4.3 and if
there exists j 6= i such that −ω j ∈ Ω{i}, then γ ∈ X satisfies the condition (ii) in
Lemma 4.3. Hence X is a good ω-invariant set.

By Theorem 4.5, any ideal I of OnoαωG satisfies IXI
= I and is gauge invariant.

The last part follows from Theorem 3.14.

Corollary 5.3 When ω satisfies Condition 5.1, an ideal I of OnoαωG is primitive if

and only if the ω-invariant set XI is prime.

Proof It follows from Theorem 5.2.
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5.2 When ω Does Not Satisfy Condition 5.1

From here until the end of this section, we assume that ω does not satisfy Condi-
tion 5.1, i.e. there exists i ∈ {1, 2, . . . , n} such that kωi = 0 for some positive integer

k, and that −ω j is not in the closed semigroup generated by ω1, ω2, . . . , ωn and −ωi

for any j 6= i. Without loss of generality, we may assume i = 1. Let K be the smallest
positive integer satisfying Kω1 = 0. Note that −ω1 is in the semigroup generated by
ω1, ω2, . . . , ωn and that the closed set X is ω-invariant if and only if X + ωi ⊂ X for

any i. Define A0 = span {Sk
1 f S∗1

l | f ∈ C0(Γ), k, l ∈ N} which is a ∗-subalgebra of
OnoαωG and denote its closure in OnoαωG by A.

Lemma 5.4 For any x ∈ A, the element (1 − S1S∗1 )x(1 − S1S∗1 ) is of the form

(1− S1S∗1 ) f for some f ∈ C0(Γ).

Proof One can easily verify the conclusion for x ∈ A0. We have the conclusion for

an arbitrary x ∈ A, because {(1− S1S∗1 ) f | f ∈ C0(Γ)} is closed.

Lemma 5.5 The C∗-algebra A is the universal C∗-algebra generated by C0(Γ) and

S1 ∈ M(A), that is, for any C∗-algebra B, any ∗-homomorphism ϕ : C0(Γ) → B and

u ∈ M(B) such that u∗u = 1M(B) and ϕ( f )u = uϕ(σω1
f ) for f ∈ C0(Γ), there exists

a unique ∗-homomorphism Φ : A → B such that Φ(Sk
1 f S∗1

l) = ukϕ( f )u∗ l for k, l ∈ N

and f ∈ C0(Γ).

Proof Let Ã be the universal C∗-algebra satisfying the condition in the statement of
this lemma. We may consider C0(Γ) as a C∗-subalgebra of Ã and denote by u ∈
M(Ã) the isometry satisfying f u = uσω1

f for f ∈ C0(Γ) ⊂ Ã. The C∗-algebra
Ã is the closure of the linear span of elements uk f u∗l for k, l ∈ N and f ∈ C0(Γ).
There is a unique ∗-homomorphism Ψ : Ã → A such that Ψ(uk f u∗ l) = Sk

1 f S∗1
l.

Since span {Sk
1 f S∗1

l | f ∈ C0(Γ), k, l ∈ N} is dense in A, Ψ is surjective. By the

universality of Ã, there exists an action β̃ of T on Ã such that β̃t (uk f u∗l) = tk−luk f u∗l

for t ∈ T. Define Ẽ(x) =
∫

T
β̃t (x) dt for x ∈ Ã. Then Ẽ becomes a faithful conditional

expectation onto a C∗-subalgebra B̃ = span {uk f u∗k | f ∈ C0(Γ), k ∈ N} of Ã. Since

A is invariant under the gauge action β, we can define a conditional expectation E on
A by E(x) =

∫
T
βt (x) dt . Obviously Ψ◦ Ẽ = E◦Ψ. Let us define B̃(k)

= span {ul f u∗ l |
f ∈ C0(Γ), 0 ≤ l ≤ k}. Then we have

B̃(k)
=

( k−1⊕

l=0

span {ul(1− uu∗) f u∗ l | f ∈ C0(Γ)}
)
⊕ span {uk f u∗k | f ∈ C0(Γ)}

∼=

k⊕

l=0

C0(Γ)

and lim
−→

B̃(k)
= B̃. Clearly Ψ is injective on B̃(k), hence on B̃. By Proposition 3.11, Ã

is isomorphic to A via Ψ. Thus A is the universal C∗-algebra generated by C0(Γ) and
S1 ∈ M(A).
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Remark 5.6 The C∗-algebra A is isomorphic to the Toeplitz algebra of the Hilbert
module coming from the automorphism σω1

of C0(Γ) [Pi], but we do not use this

fact.

We will denote the elements of Z/KZ by 0, 1, . . . ,K − 1 and sometimes regard
them as integers.

Definition 5.7 Let H be a separable Hilbert space whose complete orthonormal sys-

tem is given by {ξk,m | k ∈ Z/KZ,m ∈ N}. Let pk be a projection onto the subspace
generated by {ξk,m}m∈N for k ∈ Z/KZ and define u ∈ B(H) by u(ξk,m) = ξk+1,m+1.
Let us denote by TK the C∗-algebra generated by p0, p1, . . . , pK−1 and u.

One can easily see that the elements p0, p1, . . . , pK−1 and u satisfy
∑K−1

k=0 pk = 1,

u∗u = 1, and pku = upk−1 for k ∈ Z/KZ, and that TK = span {ul pku∗m | k ∈
Z/KZ, l,m ∈ N}. There is an action β ′ : T y TK such that β ′

t (u) = tu and β ′
t (pk) =

pk. For λ0, λ1, . . . , λK−1 ∈ C and θ ∈ T, the diagonal matrix and the unitary




λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λK−1


 ,




0 0 · · · 0 θ
1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




are denoted by diag{λ0, λ1, . . . , λK−1} ∈ MK and uθ ∈ MK respectively. The C∗-
algebra TK satisfies the following.

Proposition 5.8

(i) For any non-zero x ∈ TK , there exist l,m ∈ N with

(1− uu∗)u∗ l
xum(1− uu∗) 6= 0.

(ii) There exists a surjection π : TK → C(T,MK) with

π
(K−1∑

k=0

λk pk

)
(θ) = diag{λ0, λ1, . . . , λK−1}, π(u)(θ) = uθ.

(iii) For t ∈ T, we define a ∗-automorphism β ′ ′
t of C(T,MK) by

β ′ ′
t ( f )(θ) = diag{1, t, t2, . . . , tK−1} f (tKθ) diag{1, t̄, t̄2, . . . , t̄K−1}

for f ∈ C(T,MK ). Then we have π ◦ β ′
t = β ′ ′

t ◦ π.

(iv) If an ideal J of TK satisfies that 1 ∈ π( J), then J = TK .

https://doi.org/10.4153/CJM-2003-050-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-050-6


Ideal Structures of Crossed Products 1319

Proof (i) For any k ∈ Z/KZ and m ∈ N, um(1−uu∗)u∗m pk is the projection onto the
one dimensional subspace generated by ξk,m ∈ H. Hence, for any non-zero x ∈ TK ,

there exist k1, k2 ∈ Z/KZ and m1,m2 ∈ N such that

pk1
um1 (1− uu∗)u∗m1 xum2 (1− uu∗)u∗m1 pk2

6= 0.

Thus, we get (1− uu∗)u∗m1 xum2 (1− uu∗) 6= 0.

(ii) For k ∈ Z/KZ, set Ik = span {ul(1− uu∗)pku∗m | l,m ∈ N} ⊂ TK . Since

(
ul(1− uu∗)pku∗m)(

ul ′(1− uu∗)pk ′u∗m ′)
= δk,k ′δm,l ′u

l(1− uu∗)pku∗m ′

,

the set Ik is isomorphic to K for any k ∈ Z/KZ and Ik is orthogonal to Ik ′ if k 6= k ′.

One can easily see that I =
⊕K−1

k=0 Ik becomes an ideal of TK . Let us denote by π
the quotient map from TK onto TK/I. We will prove that TK/I is isomorphic to

C(T,MK ). Since 1− uu∗
=

∑K−1
k=0 (1− uu∗)pk ∈ I, π(u) is an unitary of TK/I. One

can verify that ei, j = π(pi)π(u)i− j
= π(u)i− jπ(p j) satisfies the axiom of matrix

units of MK for i, j ∈ Z/KZ. Thus TK/I ∼= MK ⊗ π(p0)(TK/I)π(p0). Since

p0TK p0 = span {p0ul pku∗m
p0 | k ∈ Z/KZ, l,m ∈ N}

= span {p0ulu∗m
p0 | l,m ∈ N with l −m ∈ KZ},

π(p0)(TK/I)π(p0) = π(p0TK p0) is generated by one unitary π(p0uK p0). Since
p0TK p0 and I are globally invariant under the action β ′ of T, we can define an action

β ′ of T on π(p0)(TK/I)π(p0). Since β ′
t

(
π(p0uK p0)

)
= tKπ(p0uK p0), the spectrum

of π(p0uK p0) is T. Therefore we have

π(p0)(TK/I)π(p0) ∼= C(T).

Thus, we have TK/I ∼= C(T,MK) and one can easily verify that π is a desired surjec-
tion.

(iii) For k ∈ Z/KZ, we have π ◦ β ′
t (pk) = β ′ ′

t ◦ π(pk) = π(pk). One can easily
see that π ◦ β ′

t (u)(θ) = tuθ . On the other hand,

β ′ ′
t ◦ π(u)(θ) = diag{1, t, t2, . . . , tK−1}π(u)(tKθ) diag{1, t̄, t̄2, . . . , t̄K−1}

= diag{1, t, t2, . . . , tK−1}utKθ diag{1, t̄, t̄2, . . . , t̄K−1}

= tuθ.

Therefore we have π ◦ β ′
t = β ′ ′

t ◦ π.

(iv) Since 1 ∈ π( J), there exist xk ∈ Ik for each k ∈ Z/KZ with 1−
∑K−1

k=0 xk ∈ J.
For k ∈ Z/KZ, there exists yk ∈ Ik such that yk 6= xk yk since Ik is not unital. For

k ∈ Z/KZ, we have (1 −
∑K−1

k=0 xk)yk = yk − xk yk 6= 0 which is in J ∩ Ik. Since
Ik
∼= K, J ∩ Ik 6= {0} implies Ik ⊂ J. Thus 1 ∈ J and so J = TK .
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Proposition 5.9 There is a unique ∗-homomorphism ϕ : A → C0(Γ,TK ) such that

ϕ(Sl
1 f S∗1

m) = ul
(∑K−1

k=0 (σkω1
f )pk

)
u∗m. The map ϕ is injective and its image is

{
f ∈ C0(Γ,TK ) | f (γ + ω1) = Φ

(
f (γ)

)
for any γ ∈ Γ

}
⊂ C0(Γ,TK ),

where Φ is a ∗-automorphism of TK satisfying Φ(u) = u and Φ(pk) = pk−1.

Proof First note that C0(Γ) 3 f 7→
∑K−1

k=0 (σkω1
f )pk ∈ C0(Γ,TK ) is an injective

∗-homomorphism. Since this map and u ∈ M
(

C0(Γ,TK )
)

satisfy the condition in
Lemma 5.5, there exists a unique map ϕ : A→ C0(Γ,TK) such that

ϕ(Sl
1 f S∗1

m
) = ul

(K−1∑

k=0

(σkω1
f )pk

)
u∗m.

As we saw in the proof of Lemma 5.5, there exists a faithful conditional expectation E

from A onto the C∗-subalgebra B of A which is an inductive limit of C0(Γ)k. If one de-
fines a conditional expectation E ′ on C0(Γ,TK) by E ′( f )(γ) =

∫
T
β ′

t

(
f (γ)

)
dt , then

one can easily see that E, E ′ and ϕ satisfy the condition in Proposition 3.11. Hence
ϕ is injective. Since the C∗-subalgebra { f ∈ C0(Γ,TK) | f (γ + ω1) = Φ

(
f (γ)

)

for any γ ∈ Γ} is the closed linear span of ul
∑K−1

k=0 (σkω1
f )pku∗m for l,m ∈ N and

f ∈ C0(Γ), this subalgebra is the image of ϕ.

Definition 5.10 For γ ∈ Γ, we denote by ϕγ : A→ TK the composition of the map
ϕ : A→ C0(Γ,TK) in Proposition 5.9 and the evaluation map at γ ∈ Γ.

For (γ, θ) ∈ Γ×T, we define ψγ,θ : A→MK by the composition of ϕγ : A→ TK ,

π : TK → C(T,MK) in Proposition 5.8 and the evaluation map at θ ∈ T.

Explicitly, we have

ϕγ(Sl
1 f S∗1

m
) = ul

(K−1∑

k=0

f (γ + kω1)pk

)
u∗m ∈ TK ,

ψγ,θ(Sl
1 f S∗1

m
) = ul

θ diag{ f (γ), f (γ + ω1), . . . , f (γ + (K − 1)ω1)}u∗
θ

m ∈MK .

As we saw in Proposition 5.9, we have ϕγ+ω1
= Φ ◦ ϕγ for any γ ∈ Γ and one can

easily see that for any (γ, θ) ∈ Γ × T, ψγ+ω1,θ(x) = u∗
θψγ,θ(x)uθ for x ∈ A. For any

t ∈ T and any γ ∈ Γ, we have ϕγ ◦ βt = β ′
t ◦ ϕγ .

Denote by Γ
′ the quotient of Γ by the subgroup generated by ω1, which is iso-

morphic to Z/KZ. We denote by [γ] and [U ] the images in Γ
′ of γ ∈ Γ and U ⊂ Γ

respectively. We use the symbol ([γ], θ) for denoting elements of Γ
′ × T.

Definition 5.11 For an ideal I of OnoαωG, we define the closed subset YI of Γ
′ × T

by
YI = {([γ], θ) ∈ Γ

′ × T | ψγ,θ(x) = 0 for all x ∈ A ∩ I}.

Note that ψγ,θ(x) = 0 if and only if ψγ+ω1,θ(x) = 0.
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Definition 5.12 A subset Y of Γ
′ × T is called ω-invariant if Y is a closed set satis-

fying that ([γ + ωi], θ
′) ∈ Y for any i 6= 1, any θ ′ ∈ T and any ([γ], θ) ∈ Y .

To show that the closed set YI is ω-invariant for an ideal I, we need the following
lemma.

Lemma 5.13 For any x ∈ A, (γ, θ) ∈ Γ× T, and i 6= 1, we have

∫

T

E
(
ψγ+ωi ,t (x)

)
dt = lim

m→∞
ψγ,θ(S∗i S∗1

mK
xSmK

1 Si),

where E is the conditional expectation from MK to its C∗-subalgebra of diagonal matri-

ces.

Proof Take (γ, θ) ∈ Γ×T, and i 6= 1. First we consider an element x = Sk
1S∗1

l f ∈ A0

for f ∈ C0(Γ) and k, l ∈ N. We have

∫

T

E
(
ψγ+ωi ,t (x)

)
dt =

∫

T

E
(

uk−l
t ψγ+ωi ,θ( f )

)
dt,

here note that ψγ+ωi ,t ( f ) does not depend on t ∈ T. When k − l is not a multiple

of K, we have E
(

uk−l
t ψγ+ωi ,θ( f )

)
= 0. When k − l = mK for some integer m, we

have E
(

uk−l
t ψγ+ωi ,θ( f )

)
= tmψγ+ωi ,θ( f ). Since

∫
T

tmψγ+ωi ,θ( f ) dt = δm,0ψγ+ωi ,θ( f ),
we get ∫

T

E
(
ψγ+ωi ,t (x)

)
dt = δk,lψγ+ωi ,θ( f ).

On the other hand, for any positive integer m satisfying mK ≥ k, l, we have

ψγ,θ(S∗i S∗1
mK

xSmK
1 Si) = δk,lψγ+ωi ,θ( f )

because S∗i S∗1
mK xSmK

1 Si = δk,lσωi
f ∈ A. By the linearity of the equation, for any

x ∈ A0, there exists a positive integer M such that

∫

T

E
(
ψγ+ωi ,t (x)

)
dt = ψγ,θ(S∗i S∗1

mK
xSmK

1 Si)

for m ≥ M. Approximating x by elements of A0, we have

∫

T

E
(
ψγ+ωi ,t (x)

)
dt = lim

m→∞
ψγ,θ(S∗i S∗1

mK
xSmK

1 Si)

for an arbitrary x ∈ A.

Proposition 5.14 For any ideal I of OnoαωG, the closed set YI is ω-invariant.
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Proof Take ([γ], θ) ∈ YI , i 6= 1 and θ ′ ∈ T. By Lemma 5.13, for any positive element
x of A ∩ I, ∫

T

E
(
ψγ+ωi ,t (x)

)
dt = lim

m→∞
ψγ,θ(S∗i S∗1

mK
xSmK

1 Si) = 0

since S∗i S∗1
mK xSmK

1 Si ∈ A ∩ I. Hence E
(
ψγ+ωi ,θ ′(x)

)
= 0. Since E is faithful,

ψγ+ωi ,θ ′(x) = 0 for any x ∈ A ∩ I. It implies that ([γ + ωi], θ
′) ∈ YI . Thus YI is

ω-invariant.

For an ideal I of OnoαωG, the closed set XI , defined in Definition 3.1, is deter-
mined from YI as follows:

Proposition 5.15 For an ideal I of OnoαωG, we have

XI = {γ ∈ Γ | ([γ], θ) ∈ YI for some θ ∈ T}.

Proof When γ /∈ XI , there exists f ∈ C0(Γ) ∩ I ⊂ A ∩ I with f (γ) 6= 0. Then for

any θ ∈ T, ψγ,θ( f ) 6= 0. Thus ([γ], θ) /∈ YI for any θ ∈ T. Conversely assume γ ∈ Γ

satisfies ([γ], θ) /∈ YI for any θ ∈ T. Then the ideal J = ϕγ(A ∩ I) of TK satisfies
1 ∈ π( J) where π is the surjection in Proposition 5.8. By Proposition 5.8(iv), we have
ϕγ(A ∩ I) = TK . Hence there exists x ∈ A ∩ I with ϕγ(x) = 1. By Proposition 5.9, ϕ
induces the isomorphism from A to

{
f ∈ C0(Γ,TK) | f (γ + ω1) = Φ

(
f (γ)

)
for any γ ∈ Γ

}
⊂ C0(Γ,TK).

Therefor we can find y ∈ A such that xy ∈ C0(Γ) and ϕγ(xy) = 1. Since xy ∈
C0(Γ) ∩ I, we have γ /∈ XI .

We get the ω-invariant set YI from an ideal I of OnoαωG. Conversely, from an

ω-invariant set Y , we can construct the ideal IY of OnoαωG.

Definition 5.16 Let Y be an ω-invariant subset of Γ
′ × T. We define the subset Y |Γ

of Γ by

Y |Γ = {γ ∈ Γ | there exist i 6= 1 and θ ∈ T such that ([γ − ωi], θ) ∈ Y},

Since T is compact, the set

Xi = {γ ∈ Γ | there exists θ ∈ T such that ([γ − ωi], θ) ∈ Y}

is closed for i = 2, 3, . . . , n. Thus Y |Γ =
⋃n

i=2 Xi is a closed set of Γ. Since Y is

ω-invariant, we have ([γ], θ) ∈ Y for any γ ∈ Y |Γ and any θ ∈ T.

Definition 5.17 For an ω-invariant subset Y of Γ
′ × T, we define JY ⊂ A and

IY ⊂ OnoαωG by

JY = {x ∈ A | ψγ,θ(x) = 0 for ([γ], θ) ∈ Y, and ϕγ(x) = 0 for γ ∈ Y |Γ},

IY = span {SµxS∗ν | µ, ν ∈Wn, x ∈ JY }.
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Clearly by the definition, JY is an ideal of A. To see that IY is an ideal of OnoαωG,
we need the following lemmas.

Lemma 5.18 For any x ∈ A and i 6= 1, we have the following.

(i) (1− S1S∗1 − SiS
∗
i )xSi = 0.

(ii) limm→∞ Sm
1 S∗1

mxSi = 0.

(iii) xSi =
∑∞

k=0 Sk
1Si

(
S∗i (S∗1

kx)Si

)
.

Proof (i) and (ii): It suffices to prove them for an element of A0, and this is done just
by computation.

(iii): By (i), we have Sk
1(1 − S1S∗1 − SiS

∗
i )(S∗1

kx)Si = 0 for any k ∈ N. Taking a

summation, we get

(
1− Sm

1 S∗1
m −

m−1∑

k=0

Sk
1SiS

∗
i S∗1

k
)

xSi = 0.

By (ii), we have xSi =
∑∞

k=0 Sk
1SiS

∗
i S∗1

kxSi .

Lemma 5.19 Let Y be an ω-invariant subset of Γ
′ × T. For any x ∈ JY and i 6= 1,

we have S∗i xSi ∈ JY .

Proof Since Si = (1 − S1S∗1 )Si , we have S∗i xSi = S∗i (1 − S1S∗1 )x(1 − S1S∗1 )Si . By
Lemma 5.4, (1−S1S∗1 )x(1−S1S∗1 ) = (1−S1S∗1 ) f for some f ∈ C0(Γ). Hence S∗i xSi =

σωi
f . Since x is in JY , so is (1−S1S∗1 ) f . Let ([γ], θ) ∈ Y be given. Since γ +ωi ∈ Y |Γ,

we haveϕγ+ωi
((1−S1S∗1 ) f ) = 0. It implies that (1−uu∗)

∑K−1
k=0 f (γ+ωi +kω1)pk = 0,

and so f (γ + ωi + kω1) = 0 for k = 0, 1, . . . ,K − 1. Therefore, we have

ψγ,θ(S∗i xSi) = ψγ,θ(σωi
f )

= diag
{

f (γ + ωi), f (γ + ωi + ω1), . . . , f
(
γ + ωi + (K − 1)ω1

)}
= 0.

Similarly, if γ ∈ Y |Γ, then γ + ωi ∈ Y |Γ, and so

ϕγ(S∗i xSi) = ϕγ(σωi
f ) =

K−1∑

k=0

f (γ + ωi + kω1)pk = 0.

Therefore S∗i xSi ∈ JY .

Proposition 5.20 For an ω-invariant subset Y of Γ
′ × T, IY is an ideal of OnoαωG.

Proof By definition, IY is a ∗-invariant closed subspace of OnoαωG. To prove that IY

is an ideal of OnoαωG, it suffices to show that for any µ, ν ∈Wn, x ∈ JY , the products
of y = SµxS∗ν ∈ IY and Si , S∗i (i = 1, 2, . . . , n), or f ∈ C0(Γ) are in IY . It is clear
that yS∗i = SµxS∗νS∗i ∈ IY and y f = Sµx(σων f )S∗ν ∈ IY . It is also clear that ySi ∈ IY

when ν 6= ∅ or i = 1. Hence all we have to do is to prove SµxSi ∈ IY for µ ∈ Wn,
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x ∈ JY and i 6= 1. By Lemma 5.18, we have SµxSi =
∑∞

k=0 SµSk
1Si

(
S∗i (S∗1

kx)Si

)
. By

Lemma 5.19, we have S∗i (S∗1
kx)Si ∈ JY for any positive integer k. Therefore SµxSi ∈

IY . We are done.

We will show that an ideal IY satisfies that YIY
= Y for any ω-invariant subset Y of

Γ
′ × T.

Lemma 5.21 For an ω-invariant subset Y of Γ
′ × T, we have IY ∩ A = JY .

Proof By the definition of IY , we have IY ∩A ⊃ JY . We will prove the other inclusion.
Take x ∈ IY ∩ A. For an arbitrary ε > 0, there exist µl, νl ∈ Wn and xl ∈ JY

for l = 1, 2, . . . , L such that ‖x −
∑L

l=1 Sµl
xlS

∗
νl
‖ < ε. Take a positive integer m

such that m ≥ |µl|, |νl| for l = 1, 2, . . . , L. Then, ‖S∗1
mxSm

1 −
∑L

l=1 x ′
l ‖ < ε where

x ′
l = S∗1

mSµl
xlS

∗
νl

Sm
1 for l = 1, 2, . . . , L. Since x ′

l ∈ JY , we have ‖ψγ,θ(S∗1
mxSm

1 )‖ < ε
for ([γ], θ) ∈ Y . Since ψγ,θ(S1) is a unitary, we have ‖ψγ,θ(x)‖ < ε for arbitrary
ε > 0. Hence, we have ψγ,θ(x) = 0 for any ([γ], θ) ∈ Y .

Let γ be an element of Γ. Assume ϕγ(x) 6= 0 and we will prove that γ /∈ Y |Γ. By

Proposition 5.8 (i), there exist k, l ∈ N satisfying (1− uu∗)u∗kϕγ(x)ul(1− uu∗) 6= 0.

Set y = (1 − S1S∗1 )S∗1
kxSl

1(1 − S1S∗1 ) ∈ IY . Then there exists f ∈ C0(Γ) with y =

(1− S1S∗1 ) f . Since ϕγ(y) 6= 0, there exists an integer k with 0 ≤ k ≤ K − 1 such that
f (γ + kω1) 6= 0. Therefore, for any i 6= 1 and any θ ∈ T, we have ψγ−ωi ,θ(S∗i ySi) =

ψγ−ωi ,θ(σωi
f ) 6= 0. By the former part of this proof, we have ([γ − ωi], θ) /∈ Y for

any i 6= 1 and any θ ∈ T because S∗i ySi ∈ IY ∩ A. It implies that γ /∈ Y |Γ.

Therefore x ∈ JY . We have proved the inclusion IY ∩ A ⊂ JY and so IY ∩ A = JY .

Lemma 5.22 Let Y be an ω-invariant subset of Γ
′ × T. For any ([γ0], θ0) /∈ Y , there

exists x0 ∈ JY such that ψγ0,θ0
(x0) 6= 0.

Proof Since ([γ0], θ0) /∈ Y , we have γ0 /∈ Y |Γ. Since Y |Γ and Y are closed, there exist
a neighborhood U ⊂ Γ of γ0 and a neighborhood V ⊂ T of θ0 such that U +ω1 = U ,
Y |Γ ∩U = ∅ and Y ∩ ([U ] ×V ) = ∅. Take g ∈ C(T) whose support is contained
in V and satisfying g(θ0) = 1. The C∗-algebra C∗(SK

1 ) generated by SK
1 in M(A) is

isomorphic to the Toeplitz algebra. There exists an element x ∈ C∗(SK
1 ) ⊂ M(A) such

that Ψθ(x) = g(θ) where Ψθ is the ∗-homomorphism from C∗(SK
1 ) to C determined

by Ψθ(SK
1 ) = θ for θ ∈ T. Take f ∈ C0(Γ) whose support is contained in U and

satisfying f (γ0) = 1 and set x0 = x f ∈ A. We have x0 ∈ JY since ϕγ(x0) = 0

when γ /∈ U and ψγ,θ(x0) = 0 when (γ, θ) /∈ U × V . Thus we get x0 ∈ JY with
ψγ0,θ0

(x0) 6= 0.

Proposition 5.23 For any ω-invariant subset Y of Γ
′ × T, we have YIY

= Y .

Proof Combine Lemma 5.21 and Lemma 5.22.

By Proposition 5.23, the map I 7→ YI from the set of ideals I of OnoαωG to the set
of ω-invariant subsets of Γ

′ × T is surjective. We will prove this map is injective in
the next subsection. We conclude this subsection by proving some results on IY .
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Proposition 5.24 Let Y be an ω-invariant subset of Γ
′ × T. For t ∈ T, set ρt (Y ) =

{([γ], θ) ∈ Γ
′ × T | ([γ], tθ) ∈ Y}. Then ρt (Y ) becomes ω-invariant and βt (IY ) =

IρtK (Y ) where β is the gauge action. In particular, if t K
= 1 then βt (IY ) = IY .

Proof By Proposition 5.8 (iii), ψγ,θ
(
βt (x)

)
= 0 if and only if ψγ,tKθ(x) = 0 for

x ∈ A. Since ρtK (Y )|Γ = Y |Γ, we have

βt ( JY ) =
{

x ∈ A | ψγ,θ
(
βt (x)

)
= 0 for ([γ], θ) ∈ Y, ϕγ

(
βt (x)

)
= 0 for γ ∈ Y |Γ

}

=
{

x ∈ A | ψγ,tKθ(x) = 0 for ([γ], θ) ∈ Y, ϕγ
(
βt (x)

)
= 0 for γ ∈ ρtK (Y )|Γ

}

= JρtK (Y ).

Hence, βt (IY ) = IρtK (Y ).

A relation between IY and IX is the following.

Proposition 5.25

(i) For an ω-invariant subset X of Γ, Y = [X]× T is an ω-invariant subset of Γ
′ × T

and IY = IX .

(ii) For an ω-invariant subset Y of Γ
′ × T, X = {γ ∈ Γ | ([γ], θ) ∈ Y for some

θ ∈ T} is an ω-invariant subset of Γ and IX =
⋂

t∈T
βt (IY ).

Proof (i) It is easy to see that Y = [X] × T becomes an ω-invariant set. Noting

that YIY
= Y by Proposition 5.23, we have XIY

= X from Proposition 5.15. By
Proposition 5.24, IY is a gauge invariant ideal of OnoαωG. Therefore IY = IX .

(ii) Noting that YIY
= Y , we have XIY

= X from Proposition 5.15. Hence

( ⋂

t∈T

βt (IY )
)
∩C0(Γ) =

⋂

t∈T

βt

(
IY ∩C0(Γ)

)
= C0(Γ \ X).

Since the ideal
⋂

t∈T
βt (IY ) is gauge invariant, we have IX =

⋂
t∈T

βt (IY ).

Proposition 5.26 Let X be an ω-invariant subset of Γ and set X ′
=

⋃n
i=2(X + ωi)

which becomes an ω-invariant set satisfying X ′ ⊂ X. The set X is a bad ω-invariant set

if and only if X ′ $ X. When X is bad, the set Y = ([X] × {1}) ∪ ([X ′] × T) becomes

an ω-invariant subset of Γ
′ × T satisfying Y $ [X] × T. Any closed set Y ′ satisfying

Y ⊂ Y ′ ⊂ [X] × T is ω-invariant and satisfies XIY ′ = X.

Proof If X is good, then for any γ ∈ X there exists i 6= 1 with γ − ωi ∈ X. Hence

X ′
= X. Conversely, if X ′

= X, then for any γ ∈ X there exists i 6= 1 with γ−ωi ∈ X.
Hence γ ∈ X satisfies the condition (ii) in Lemma 4.3. Therefore X is good. When
X ′ $ X, it is easy to see that any closed set Y ′ satisfying Y ⊂ Y ′ ⊂ [X] × T is
ω-invariant. The last statement follows from Proposition 5.15.

By Proposition 5.26, we can find many ideals I with XI = X if X is a bad ω-
invariant subset of Γ (note that a bad ω-invariant set exists whenever ω does not
satisfy Condition 5.1).
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5.3 Primitive Ideals

Now, we turn to showing that IYI
= I for any ideal I (Theorem 5.49). To see this, we

examine the primitive ideal space of OnoαωG. Let P be a primitive ideal of OnoαωG.
By Proposition 4.10, the closed set XP of Γ is prime. Hence there exist non-empty

subset I of {1, 2, . . . , n} and γ0 ∈ Γ such that XP = γ0 + ΩI by Proposition 4.11.

Proposition 5.27 If a non-empty subset I is not {1}, then X = γ0 + ΩI is a good

ω-invariant set for any γ0 ∈ Γ.

Proof There is i ∈ I which is not 1. For any γ ∈ X, we have γ − mω1 − ωi ∈ X for
any positive integer m. Hence, X is good by Lemma 4.3.

If a primitive ideal P satisfies XP = γ0 + ΩI for I 6= {1}, then P = IXP
by Theo-

rem 4.5. Conversely for any γ0 ∈ Γ and I 6= {1}, the ideal Iγ0+ΩI
is primitive.

Lemma 5.28 Let γ0 ∈ Γ, I 6= {1}, and X = γ0 + ΩI. If an ideal I satisfies X ⊂ XI ,

then I ⊂ IX .

Proof Let us write P = IX . We will first show that XI+P = X. Clearly, XI+P ⊂
X. To derive a contradiction, let us assume XI+P 6= X. Choose γ ∈ X with γ /∈
XI+P. Then there exists f ∈ (I + P) ∩ C0(Γ) with f ≥ 0 and f (γ) = 1. Let us
denote f = x1 + y1 where x1 ∈ I and y1 ∈ P. Take i ∈ I with i 6= 1. For m ∈
N, let us define um =

∑
µ∈W

(m)
n

SµSmK
1 SiS

∗
µ ∈ M(OnoαωG). We have u∗

mum = 1
for any m ∈ N. By checking for elements which are finite sums of Sµ f S∗ν , one can
prove limm→∞ u∗

mxum = σωi

(
E(x)

)
for any x ∈ OnoαωG where E is the conditional

expectation onto F and σωi
is an automorphism of F coming from the shift of F

(k) ∼=
C0(Γ) ⊗Mnk . Set x2 = σωi

(
E(x1)

)
and y2 = σωi

(
E(y1)

)
. Then we have x2 ∈ I,

y2 ∈ P and σωi
( f ) = x2 + y2. For sufficiently large integer k which is a multiple of K,

one can find x3 ∈ I∩F(k), y3 ∈ P∩F(k) with ‖x3−x2‖ < 1/2, ‖y3− y2‖ < 1/2. Note

that I∩F
(k) ∼= C0(Γ\XI)⊗Mnk and P∩F

(k) ∼= C0(Γ\X)⊗Mnk . Letϕ be an evaluation
map at γ − ωi ∈ Γ from F(k) ∼= C0(Γ) ⊗Mnk to Mnk . Since γ − ωi ∈ X ⊂ XI , we
have ϕ(x3) = 0 and ϕ(y3) = 0. Since σωi

( f ) =
∑

µ∈W
(k)
n

Sµσωi +ωµ( f )S∗µ ∈ F(k), we

have ϕ
(
σωi

( f )
)

=
∑

µ∈W
(k)
n

f (γ + ωµ)SµS∗µ. Since f ≥ 0, we have ϕ
(
σωi

( f )
)
≥

f (γ + kω1)Sk
1S∗1

k
= Sk

1S∗1
k. Therefore

∥∥ϕ
(
σωi

( f )
)∥∥ ≥ 1 which contradicts the fact

that ‖σωi
( f )− x3 − y3‖ < 1. Hence XI+P = X.

Since X is a good ω-invariant set, XI+P = X implies I + P = IX = P. Therefore,
I ⊂ P.

Proposition 5.29 Let γ0 ∈ Γ, I 6= {1}, and X = γ0 + ΩI. The ideal P = IX is

primitive.

Proof Since OnoαωG is separable, it suffices to show that P is prime. Let I1, I2 be
ideals of OnoαωG with I1 ∩ I2 ⊂ P. Then XI1

∪ XI2
⊃ X. Since X is prime, either

XI1
⊃ X or XI2

⊃ X. By Lemma 5.28, we have either I1 ⊂ P or I2 ⊂ P. Thus, P is
prime.
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Next we will determine all primitive ideals P with XP = γ0 +Ω{1} for some γ0 ∈ Γ.
Note that γ0 + Ω{1} is a bad ω-invariant set. Let Ω = {ωµ | µ ∈ Wn} which

is the semigroup generated by ω1, ω2, . . . , ωn. Using that ω ∈ Γ
n does not satisfy

Condition 5.1, we can show that Ω has no accumulation point.

Proposition 5.30 For any γ ∈ Γ, there exists a neighborhood U of γ with (U \{γ})∩
Ω = ∅.

Proof To derive a contradiction, assume that there exists γ ∈ Γ such that (U \{γ})∩
Ω 6= ∅ for any neighborhood U of γ. One can find µ0, µ1, . . . , µk, . . . ∈ Wn with

limk→∞ ωµk
= γ and ωµk

6= γ for any k ∈ N. Replacing {k} by a subsequence if
necessary, we may assume the number of i’s appearing in µk does not decrease for
any i = 2, 3, . . . , n. There exists i0 6= 1 such that the number of i0’s appearing in
µk goes to infinity since ωµk

6= γ for any k ∈ N. Replacing {k} by a subsequence if

necessary, we may assume the number of i0’s appearing in µk increases strictly. We get
limk→∞(ωµk

−ωµk−1
−ωi0

) = γ−γ−ωi0
= −ωi0

. Sinceωµk
−ωµk−1

−ωi0
∈ Ω ⊂ Ω{1},

we have−ωi0
∈ Ω{1}. It contradicts the assumption for ω.

Corollary 5.31 We have Ω{1} = Ω and Ω is a discrete set.

By the corollary above, we can define the following.

Definition 5.32 For ([γ], θ) ∈ Γ
′ × T, we set

Y([γ],θ) = {([γ], θ)} ∪
(

([γ + Ω] \ {[γ]}) × T
)

which is an ω-invariant closed subset of Γ
′ × T. We write P([γ],θ) for denoting IY([γ],θ)

.

We will show that P([γ],θ) is a primitive ideal for any ([γ], θ) ∈ Γ
′× T. To see this,

we need the following proposition. This will be used to determine the topology of
primitive ideal space of OnoαωG. Let us define a subset W+

n of Wn by

W
+
n = {(i1, i2, . . . , ik) ∈Wn | ik 6= 1} ∪ {∅}.

Proposition 5.33 Let X be a compact subset of Γ such that X ∩ (X + γ) = ∅ for any

γ ∈ Ω \ {0}. If we set X1 = X + Ω and X2 = X +
(
Ω \ {0, ω1, . . . , (K − 1)ω1}

)
, then

X1 and X2 become ω-invariant sets and IX2
/IX1
∼= K ⊗C(X × T).

Proof Since X is compact and Ω is closed, X1 = X + Ω becomes closed. The

same reason shows that X2 is closed. It is easy to see that both X1 and X2 sat-
isfy the conditions of ω-invariance. Note that X1 \ X2 is a disjoint union of com-
pact sets X,X + ω1, . . . ,X + (K − 1)ω1. Since f Si = Siσωi

f = 0 for i 6= 1 and
f ∈ C(X1 \ X2) ⊂ IX2

/IX1
, we have

S1 f S∗1 = σ−ω1
( f )S1S∗1 = σ−ω1

f − σ−ω1
f

n∑

i=2

SiS
∗
i = σ−ω1

f .
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Therefore IX2
/IX1

= span {Sµ f S∗ν | µ, ν ∈ Wn, f ∈ C(X)}. For (k, µ), (l, ν) ∈

Z/KZ × W+
n , let us define e(k,µ),(l,ν) = SµSk

1χS∗1
lS∗ν ∈ IX2

/IX1
where χ is a char-

acteristic function of X. Then {e(k,µ),(l,ν)} satisfies the relation of matrix units and∑
(k,µ)∈Z/KZ×W+

n
e(k,µ),(k,µ) = 1 (strictly). Since e(0,∅),(0,∅) = χ, we have IX2

/IX1
∼=

K ⊗ B where B = χ(IX2
/IX1

)χ. We have

B = span {χSµ f S∗νχ | µ, ν ∈Wn, f ∈ C(X)} = span {(SK
1 )m f | m ∈ Z, f ∈ C(X)}.

Since B is generated by C(X) and a unitary SK
1 χ which commute with each other and

since B is globally invariant under the gauge action, we have B ∼= C(X×T). Therefore

we get IX2
/IX1
∼= K ⊗C(X × T).

Let us choose γ0 ∈ Γ and fix it. Set X1 = γ0 + Ω and X2 = γ0 +
(
Ω \ {0, ω1, . . . ,

(K−1)ω1}
)

which are ω-invariant subsets of Γ by Proposition 5.33. Since [X1]×T ⊃
Y([γ0],θ0) ⊃ [X2] × T, we have IX1

⊂ P([γ0],θ0) ⊂ IX2
for any θ0 ∈ T. Taking X = {γ0}

in Proposition 5.33, we get an isomorphism IX2
/IX1
∼= K ⊗C(T) which sends SK

1 χ to
p ⊗ z where χ ∈ C0(X1 \ X2) is a characteristic function of γ0, p ∈ K is a minimal

projection corresponding to χ, and z is the canonical generator of C(T).

Lemma 5.34 Under the isomorphism IX2
/IX1
∼= K⊗C(T) above, we have P([γ0],θ0)/IX1

∼= K ⊗C0(T \ {θ0}) for any θ0 ∈ T.

Proof Since P([γ0],θ0)/IX1
is an ideal of IX2

/IX1
, all we have to do is to show

(P([γ0],θ0)/IX1
) ∩C∗(SK

1 χ) ∼= p ⊗C0(T \ {θ0}).

For θ ∈ T, the mapψγ0,θ : A→MK vanishes on A∩IX1
. Hence we can define the map

ψ ′
θ : A/(A ∩ IX1

) → MK so that ψ ′
θ ◦ π

′
= ψγ0,θ where π ′ is the canonical surjection

from A to A/(A ∩ IX1
). The image of C∗(SK

1 χ) ⊂ A/(A ∩ IX1
) under ψ ′

θ is contained
in C1 ⊂ MK . One can show that the map ψ ′

θ : C∗(SK
1 χ) → C1 is isomorphic to the

evaluation map at θ ∈ T from p ⊗ C0(T) ⊂ K ⊗ C0(T) under the isomorphism

C∗(SK
1 χ) ∼= p ⊗ C0(T). Noting that (P([γ0],θ0)/IX1

) ∩ C∗(SK
1 χ) = ( JY([γ0],θ0)

/IX1
) ∩

C∗(SK
1 χ) by Lemma 5.21, we get the desired isomorphism (P([γ0],θ0)/IX1

)∩C∗(SK
1 χ) ∼=

C0(T \ {θ0}).

To prove P([γ0],θ0) is primitive, we need the following observation which is inspired

by [aHR]. Let H = l2((Z/KZ)×W
+
n ) be a Hilbert space whose complete orthonormal

system is given by {ξk,µ | k ∈ Z/KZ, µ ∈ W+
n}. For i = 1, 2, . . . , n, let us define

Ti ∈ B(H) by

Ti(ξk,µ) =

{
ξk+1,∅ (if i = 1, µ = ∅),

ξk,iµ (otherwise).

For γ ∈ Ω, let us denote by Qγ ∈ B(H) a projection onto span {ξk,µ | kω1 +ωµ = γ}.
One can easily see the following.
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Lemma 5.35

(i) For i = 1, 2, . . . , n, T∗
i Ti = 1 and

∑n
i=1 TiT

∗
i = 1.

(ii)
∑

γ∈Ω
Qγ = 1 (strongly).

(iii) For i = 1, 2, . . . , n and γ ∈ Ω, QγTi =

{
TiQγ−ωi

(if γ − ωi ∈ Ω),

0 (otherwise).

By this lemma, there exists a unique ∗-homomorphism ϕ1 : OnoαωG → B(H)
with ϕ1(Si) = Ti and ϕ1( f ) =

∑
γ∈Ω

f (γ0 + γ)Qγ for f ∈ C0(Γ).

Lemma 5.36 We have ϕ1(IX1
) = 0 and ϕ1(IX2

) = K(H).

Proof Since ϕ1( f ) = 0 for any f ∈ C0(Γ \ X1), we have ϕ1(IX1
) = 0. From IX2

=

span {Sµ f S∗ν | µ, ν ∈Wn, f ∈ C0(Γ \ X2)} and Qkω1
= Tk

1Q0T∗
1

k, we get

ϕ1(IX2
) = span {TµQkω1

T∗
ν | µ, ν ∈Wn, k ∈ Z/KZ}

= span {TµQ0T∗
ν | µ, ν ∈Wn}.

Writing Tµ = Tµ ′T l
1 and Tν = Tν ′Tm

1 where µ ′, ν ′ ∈ W+
n and l,m ∈ N, we see that

TµQ0T∗
ν is a one rank operator from ξm ′,ν ′ to ξl ′,µ ′ where m ′, l ′ ∈ Z/KZ are images

of m, l ∈ N respectively. Therefore ϕ1(IX2
) = K(H).

Since ϕ1(OnoαωG) ⊃ K(H), ϕ1 is an irreducible representation. Hence kerϕ1 is
a primitive ideal. We will prove that kerϕ1 = P([γ0],θ0) for some θ0 ∈ T. For t ∈ T, let
us define a unitary Ut ∈ B(H) by Ut (ξk,µ) = t |µ|ξk,µ. One can easily see the following.

Lemma 5.37

(i) Ut QγU
∗
t = Qγ for γ ∈ Ω.

(ii) Ut TiU
∗
t = tTi for i = 2, 3, . . . , n.

(iii) Ut T1U∗
t = tT1 + (1− t)V where V ∈ B(H) is defined by V (ξk,µ) = δµ,∅ξk+1,∅.

For t ∈ T, let us define a ∗-automorphism β ′
t of B(H) by β ′

t (x) = Ut xU∗
t

for x ∈ B(H). Since β ′
t

(
K(H)

)
= K(H) for any t ∈ T, we can extend the ∗-

automorphism β ′
t of B(H) to one of B(H)/K(H) which is also denoted by β ′

t . Let us
denote by ϕ2 : OnoαωG → B(H)/K(H) the composition of ϕ1 and a natural surjec-
tion π : B(H)→ B(H)/K(H).

Lemma 5.38 For any t ∈ T, we have β ′
t ◦ ϕ2 = ϕ2 ◦ βt where β is the gauge action

on OnoαωG.

Proof The only non-trivial part is β ′
t

(
π(T1)

)
= tπ(T1) for t ∈ T which follows

from the fact that V in Lemma 5.37(iii) is a compact operator.

Lemma 5.39 We have kerϕ2 = IX2
.
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Proof By Lemma 5.38, kerϕ2 is a gauge invariant ideal. For γ ∈ Ω, Qγ becomes
a compact operator if and only if γ = kω1 for some k ∈ Z/KZ. Hence Xkerϕ2

=

γ0 +
(
Ω \ {0, ω1, . . . , (K − 1)ω1}

)
= X2. Therefore we have kerϕ2 = IX2

.

Proposition 5.40 For any θ ∈ T, P([γ0],θ) is a primitive ideal.

Proof By Lemma 5.36 and Lemma 5.39, we have IX1
⊂ kerϕ1 ⊂ IX2

. Since kerϕ1 is
primitive, the ideal kerϕ1/IX1

of IX2
/IX1

is also primitive. Hence we have kerϕ1/IX1
∼=

K ⊗C0(T \ {θ0}) for some θ0 ∈ T. By Lemma 5.34, we have kerϕ1 = P([γ0],θ0). Thus
P([γ0],θ0) is a primitive ideal. For an arbitrary θ ∈ T, there exists t ∈ T with θ = t Kθ0.

Hence P([γ0],θ) = βt (P([γ0],θ0)) is also primitive.

In fact, we can prove kerϕ1 = P([γ0],1), although we omit the proof because we do
not need it.

Proposition 5.41 For γ0 ∈ Γ, the set of all primitive ideals P satisfying XP = γ0 + Ω

is {P([γ0],θ) | θ ∈ T}.

Proof By Proposition 5.40, the ideal P = P([γ0],θ) is primitive with XP = γ0 + Ω

for any θ ∈ T. Let P be a primitive ideal of OnoαωG with XP = γ0 + Ω for
some γ0 ∈ Γ. Then, IX1

⊂ P and IX2
6⊂ P where X1 = γ0 + Ω and X2 = γ0 +(

Ω \ {0, ω1, . . . , (K − 1)ω1}
)

. The set of all primitive ideals P satisfying IX1
⊂ P and

IX2
6⊂ P corresponds to the set of primitive ideals of IX2

/IX1
∼= K ⊗ C(T) bijectively

(see, for example, [D]). Hence there is no primitive ideal P satisfying XP = γ0 + Ω

other than {P([γ0],θ) | θ ∈ T}.

Now we can describe the primitive ideal space of OnoαωG.

Lemma 5.42 Let γ1, γ2 ∈ Γ and I1, I2 be non-empty sets of {1, 2, . . . , n}. Then

Iγ1+ΩI1
= Iγ2+ΩI2

if and only if ΩI1
= ΩI2

and γ1 − γ2 ∈ ΩI1
∩ (−ΩI1

).

Proof Obviously Iγ1+ΩI1
= Iγ2+ΩI2

is equivalent to γ1+ΩI1
= γ2+ΩI2

. If ΩI1
= ΩI2

and
γ1−γ2 ∈ ΩI1

∩(−ΩI1
), then γ1+ΩI1

= γ2+ΩI2
. Conversely assume γ1+ΩI1

= γ2+ΩI2

and denote it by X. Then we have ΩI1
= ΩI2

because ΩI j
= {γ ∈ Γ | X + γ ⊂ X} for

j = 1, 2. Hence we get γ1 − γ2 ∈ ΩI1
∩ (−ΩI1

). The proof is complete.

For non-empty sets I1, I2 of {1, 2, . . . , n}, we write I1 ∼ I2 if ΩI1
= ΩI2

. Let us
choose and fix representative elements of each equivalence classes of ∼ and denote

by I the set of them. Note that {1} ∈ I because I ∼ {1} if and only if I = {1}. For
each I ∈ I, we define a topological space ΓI by ΓI = Γ/

(
ΩI ∩ (−ΩI)

)
if I 6= {1} and

Γ{1} = Γ
′ × T. For [γ] ∈ ΓI with I 6= {1}, we define a primitive ideal P[γ] by Iγ+ΩI

.
Note that if [γ] = [γ ′] in ΓI, then Iγ+ΩI

= Iγ ′+ΩI
. For ([γ], θ) ∈ Γ{1} = Γ

′ × T, the

ideal P([γ],θ) is defined in Definition 5.32.

Proposition 5.43 The map
∐

I∈I
ΓI 3 y 7→ Py ∈ Prim(OnoαωG) is bijective where

Prim(OnoαωG) is the primitive ideal space of OnoαωG.
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Proof The map is injective by Lemma 5.42 and surjective by Proposition 5.41.

The primitive ideal space Prim(OnoαωG) is a topological space whose closed sets
are given by {P ∈ Prim(OnoαωG) | I ⊂ P} for ideals I. We will investigate which
subset of

∐
I∈I

ΓI corresponds to a closed subset of Prim(OnoαωG).

Lemma 5.44 For any γ0 ∈ Γ, there exists a compact neighborhood X of γ0 such that

X ∩ (X + γ) = ∅ for any γ ∈ Ω \ {0}.

Proof By Proposition 5.30, there exists a neighborhood U of 0 with γ /∈ U for any

γ ∈ Ω\{0}. Take a compact neighborhood V of 0 with V−V ⊂ U . Then X = γ0 +V

is a desired compact neighborhood of γ0.

Lemma 5.45 We have X + Ω 6⊃ γ + ΩI for any γ ∈ Γ, I 6= {1}, and any compact set

X of Γ.

Proof To derive a contradiction, assume X + Ω ⊃ γ + ΩI for some γ ∈ Γ, I 6= {1},
and some compact set X of Γ. Take i ∈ I with i 6= 1. For any k ∈ N, the element

γ− kωi is in γ + ΩI. Hence there exists γk ∈ X and µk ∈Wn with γ− kωi = γk +ωµk

for any k ∈ N. Since X is compact, there exists a subsequence {kl}l∈N of N so that γkl

converges to some point. Thus {ωµkl
+ klωi}l∈N becomes a convergent sequence. By

the same argument as in the proof of Proposition 5.30, we can show that−ωi ∈ Ω =

Ω{1}. This contradicts the assumption for ω.

Lemma 5.46 Let Y be a subset of Γ
′ × T. If for any [γ] ∈ Γ

′, there exists a compact

neighborhood [Xγ] of [γ] such that Y ∩ ([Xγ]× T) is closed set, then Y is closed.

Proof Take a net {([γλ], θλ)} in Y converging to ([γ], θ) ∈ Γ
′×T. Eventually [γλ] ∈

[Xγ] because [Xγ] is a neighborhood of [γ]. Then ([γ], θ) ∈ Y since Y ∩ ([Xγ]× T)
is closed. Thus Y is closed.

Lemma 5.47 For any ω-invariant subset X of Γ, we have IX =
⋂

y∈[X]×T
Py .

Proof By Proposition 5.24, the ideal I =
⋂

y∈[X]×T
Py is gauge invariant. Hence I =

IX because C0(Γ)∩I =
⋂

y∈[X]×T

(
C0(Γ)∩Py

)
=

⋂
γ∈X C0

(
Γ\(γ+Ω)

)
= C0(Γ\X).

Proposition 5.48 Let Y be a subset of
∐

I∈I
ΓI and set YI = Y ∩ ΓI for I ∈ I. The set

PY = {Py | y ∈ Y} is closed in Prim(OnoαωG) if and only if Y{1} is an ω-invariant

set of Γ{1} = Γ
′ × T and YI = {[γ] ∈ ΓI | [γ + ΩI] × T ⊂ Y{1}} for any I ∈ I with

I 6= {1}.

Proof Let us take a subset Y =
∐

I∈I
YI of

∐
I∈I

ΓI. If Y{1} is an ω-invariant subset of
Γ{1} = Γ

′ × T, then we can define the ideal IY{1}
. One can easily see that {([γ], θ) ∈

Γ{1} | IY{1}
⊂ P([γ],θ)} = Y{1} and that for I 6= {1}, IY{1}

⊂ Iγ+ΩI
if and only if
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[γ + ΩI]× T ⊂ Y{1}. Therefore if Y satisfies the condition in the statement, then PY

is closed in Prim(OnoαωG).

Conversely, assume PY is closed, i.e. there exists an ideal I of OnoαωG so that
Y = {y ∈

∐
I∈I

ΓI | I ⊂ Py}. We first show that Y{1} is ω-invariant. Take γ0 ∈ Γ

arbitrarily. By Lemma 5.44, there exists a compact neighborhood X of γ0 such that
X ∩ (X + γ) = ∅ for any γ ∈ Ω \ {0}. If we set X1 = X + Ω and X2 = X +

(
Ω \

{0, ω1, . . . , (K−1)ω1}
)

, then IX2
/IX1
∼= K⊗C(X×T) by Proposition 5.33. The subset

{P ∈ Prim(OnoαωG) | IX1
⊂ P, IX2

6⊂ P} of Prim(OnoαωG) is homeomorphic to
Prim(IX2

/IX1
) ∼= X × T. By Lemma 5.45, X1 6⊃ γ + ΩI for any γ ∈ Γ and for any

I 6= {1}. Hence
{

x ∈
∐

I∈I

ΓI

∣∣∣ IX1
⊂ Px, IX2

6⊂ Px

}
= [X]× T ⊂ Γ{1}.

Therefore [X]× T 3 x 7→ Px ∈ Prim(OnoαωG) is a homeomorphism from [X] × T

whose topology is the relative topology of Γ
′ × T to

{P ∈ Prim(OnoαωG) | IX1
⊂ P, IX2

6⊂ P} ⊂ Prim(OnoαωG)

(note that X is homeomorphic to [X]). The set Y ∩ ([X] × T) ⊂ Γ{1} is closed in
[X] × T because PY is closed. By Lemma 5.46, the subset Y{1} is closed in Γ{1}. If
([γ], θ) ∈ Y{1}, then ([γ + ωi], θ

′) ∈ Y{1} for any i ∈ {2, 3, . . . , n} and θ ′ ∈ T

because P([γ],θ) ⊂ P([γ+ωi ],θ ′). Therefore Y{1} is an ω-invariant subset of Γ{1}. Take

I ∈ I with I 6= {1} and [γ] ∈ ΓI. Since Iγ+ΩI
=

⋂
y∈[γ+ΩI]×T

Py by Lemma 5.47,
the element [γ] is in YI if and only if [γ + ΩI] × T ⊂ Y{1}. Therefore Y satisfies the
condition in the statement.

By the proposition above, we get the following.

Theorem 5.49 When ω does not satisfy Condition 5.1, there is an inclusion revers-

ing one-to-one correspondence between the set of ideals of OnoαωG and the set of ω-

invariant subsets of Γ
′ × T. Hence for any ideal I of OnoαωG, we have I = IYI

.

Proof There is a one-to-one correspondence between the set of ideals of OnoαωG

and the closed subset of Prim(OnoαωG). By Proposition 5.48, the closed subset of
Prim(OnoαωG) corresponds bijectively to the set of ω-invariant subsets of Γ

′ × T.

6 The Strong Connes Spectrum and the K-Groups of OnoαωG

As a consequence of knowing all ideals of OnoαωG, we can compute the strong

Connes spectrum of the action αω : G y On. We recall the definition of the strong
Connes spectrum.

Definition 6.1 Let α : G y A be an action of an abelian group G, whose dual group

is Γ, on a C∗-algebra A. The strong Connes spectrum Γ̃(α) of α is defined by

Γ̃(α) = {γ ∈ Γ | α̂γ(I) ⊂ I, for any ideal I of A oα G},
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where α̂ : Γ y A oα G is the dual action of α.

For each action α, the strong Connes spectrum Γ̃(α) is a closed subsemigroup
of Γ. We remark that in the original paper [Ki], A. Kishimoto defined the strong

Connes spectrum in a different way and proved that his definition is equivalent to
the definition above (see, [Ki, Lemma 3.4]).

In our setting, the dual actions α̂ω : Γ y OnoαωG are characterized by

α̂ωγ(Sµ f S∗ν ) = Sµσγ f S∗ν for µ, ν ∈Wn, f ∈ C0(Γ) and γ ∈ Γ.

Proposition 6.2 Let ω be an element of Γ
n. The strong Connes spectrum Γ̃(αω) of the

action αω is
⋂n

i=1 Ω{i}.

Proof First we consider the case that ω satisfies Condition 5.1. Since the correspon-
dence between ideals of OnoαωG and ω-invariant subsets of Γ is one-to-one by The-

orem 5.2, α̂ωγ(I) ⊂ I if and only if XI − γ ⊃ XI for an ideal I and γ ∈ Γ. For any
i ∈ {1, 2, . . . , n}, the set Ω{i} is an ω-invariant set satisfying {γ ∈ Γ | Ω{i} + γ ⊂

Ω{i}} = Ω{i}. Therefore Γ̃(αω) ⊂
⋂n

i=1 Ω{i}. We have X ⊃ X +
⋂n

i=1 Ω{i} for any
ω-invariant set X because for any x ∈ X there exists i with x + Ω{i} ⊂ X. We have

Γ̃(αω) ⊃
⋂n

i=1 Ω{i}. Thus Γ̃(αω) =
⋂n

i=1 Ω{i} in the case that ω satisfies Condi-
tion 5.1.

Next we consider the case that ω does not satisfy Condition 5.1. In this case, the
set

⋂n
i=1 Ω{i} coincides with Ω = {ωµ | µ ∈ Wn}. Since Ω is an ω-invariant subset

of Γ and {γ ∈ Γ | α̂ωγ(IΩ) ⊂ IΩ} = {γ ∈ Γ | Ω+γ ⊂ Ω} = Ω, we have Γ̃(αω) ⊂ Ω.
For any ω-invariant subset Y of Γ

′ × T, we have ([γ + ωµ], θ) ∈ Y for any µ ∈ Wn

and any ([γ], θ) ∈ Y . Since the correspondence between ideals of OnoαωG and ω-
invariant subsets of Γ

′ × T is one-to-one by Theorem 5.49, we have α̂ωγ(I) ⊂ I for
any ideal I of OnoαωG and for any γ ∈ Ω. Hence Γ̃(αω) ⊃ Ω. Therefore also in the
case that ω does not satisfy Condition 5.1, we have Γ̃(αω) =

⋂n
i=1 Ω{i}.

Remark 6.3 The inclusion Γ̃(αω) ⊂
⋂n

i=1 Ω{i} had been already proved by A. Kishi-
moto [Ki].

The crossed product OnoαωG is a Cuntz-Pimsner algebra. Let E = C0(Γ)n be a
right C0(Γ) module. The left C0(Γ) module structure of E is given by

f · ( f1, f2, . . . , fn) =
(
σω1

( f ) f1, σω2
( f ) f2, . . . , σωn

( f ) fn

)
∈ E

for f ∈ C0(Γ) and ( f1, f2, . . . , fn) ∈ E.

Proposition 6.4 The crossed product OnoαωG is isomorphic to the Cuntz-Pimsner

algebra OE.

Proof The inclusion C0(Γ) ↪→ OnoαωG and E 3 ( f1, f2, . . . , fn) 7→
∑n

i=1 Si fi ∈
OnoαωG satisfies the conditions in [Pi, Theorem 3.12] (for example, the condition
(4) is equivalent to saying that

∑n
i=1 Siσωi

( f )S∗i = f for any f ∈ C0(Γ)). Hence
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there exists a ∗-homomorphismϕ : OE → OnoαωG which is surjective since OnoαωG

is generated by {
∑n

i=1 Si fi | fi ∈ C0(Γ)}. One can show that ϕ is injective by using

Proposition 3.11. Thus OnoαωG is isomorphic to OE.

The ideal structures of Cuntz-Pimsner algebras were investigated in [KPW] when
Hilbert bimodules are finitely generated. Our Hilbert bimodule E is finitely generated

if and only if the group G is discrete. When G is discrete, we can know the detailed
structure of OnoαωG without using the result in [KPW] (see subsection 7.2). Thanks
to considering our algebra OnoαωG as a Cuntz-Pimsner algebra, we can compute the
K-groups of it by [Pi, Theorem 4.9].

Proposition 6.5 Let ω be an element of Γ
n. The following sequence is exact:

K0

(
C0(Γ)

) id −
∑n

i=1(σωi
)∗

−−−−−−−−−→ K0

(
C0(Γ)

) ι∗−−−−→ K0(OnoαωG)
x

y

K1(OnoαωG)
ι∗←−−−− K1

(
C0(Γ)

) id −
∑n

i=1(σωi
)∗

←−−−−−−−−− K1

(
C0(Γ)

)
,

where ι is the embedding ι : C0(Γ) ↪→ OnoαωG.

Proof Let us denote by Tn the Cuntz-Toeplitz algebra, which is generated by n isome-
tries T1,T2, . . . ,Tn satisfying

∑n
i=1 TiT

∗
i < 1. There is a surjection π : Tn → On with

π(Ti) = Si for i = 1, 2, . . . , n. The kernel of π is isomorphic to K. If we define an

action ᾱω : G y Tn by ᾱωt (Ti) = 〈 t |ωi 〉Ti for t ∈ G and i = 1, 2, . . . , n, then the
kernel of π is invariant under this action and π ◦ ᾱωt = αωt ◦ π for any t ∈ G. Hence
there exists a short exact sequence

0→ K oᾱω G→ Tn oᾱω G→ OnoαωG→ 0.

One can see that Tnoᾱω G is isomorphic to TE in a similar way to Proposition 6.4. The

C∗-algebra K oᾱω G is isomorphic to K⊗C0(Γ). The subalgebra C1oᾱω G of Tn oᾱω G

is isomorphic to C0(Γ). The inclusion C0(Γ) ↪→ Tn oᾱω G induces a KK-equivalence
between C0(Γ) and Tn oᾱω G whose inverse is given by a Kasparov bimodule

(E+ ⊕ E+, π0 ⊕ π1,T) ∈ KK
(
Tn oᾱω G,C0(Γ)

)

where E+ =
⊕∞

k=0 E⊗k is a right C0(Γ)-module, π0 : Tn oᾱω G → L(E+) is the nat-
ural representation, π1 : Tn oᾱω G → L(

⊕∞
k=1 E⊗k) ⊂ L(E+) is the representation

obtained from the universal property of Tn oᾱω G and T ∈ L(E+ ⊕ E+) is the odd
operator defined by T(ξ ⊕ ζ) = ζ ⊕ ξ (for the detail, see Section 4 in [Pi]). To show

that the 6-term exact sequence obtained from the short exact sequence above is the
desired one, it suffices to see that the element

(
E+ ⊕ E+, (π0 ◦ ϕ) ⊕ (π1 ◦ ϕ),T

)
∈

KK
(

C0(Γ),C0(Γ)
)

coincides with id−
∑n

i=1(σωi
)∗ where ϕ : C0(Γ) → Tn oᾱω G

is given by ϕ( f ) = (1 −
∑n

i=1 TiT
∗
i ) f (note that 1 −

∑n
i=1 TiT

∗
i is a minimal pro-

jection of the kernel of π which is isomorphic to K). A routine computation shows
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that π0 ◦ ϕ vanishes on
⊕∞

k=1 E⊗k and π1 ◦ ϕ vanishes on
⊕∞

k=2 E⊗k and on E⊗0

(= C0(Γ)). Thus

(
E+ ⊕ E+, (π0 ◦ ϕ)⊕ (π1 ◦ ϕ),T

)
=

(
E+ ⊕ E+, (π0 ◦ ϕ)⊕ (π1 ◦ ϕ), 0

)

= (E+, π0 ◦ ϕ, 0)− (E+, π1 ◦ ϕ, 0)

=
(

C0(Γ), π0 ◦ ϕ, 0
)
− (E, π1 ◦ ϕ, 0)

=
(

C0(Γ), id, 0
)
−

n∑

i=1

(
C0(Γ), σωi

, 0
)

= id−

n∑

i=1

(σωi
)∗.

7 Examples and Remarks

7.1 When G is Compact

When G is compact, its dual group Γ becomes discrete. In this case, for any ω ∈ Γ
n

the crossed product OnoαωG becomes a graph algebra of some skew product graph
which is row-finite (see [KP]) and a part of our results here has been already proved
in [BPRS]. There are many graph algebras which are not isomorphic to OnoαωG,

and it should be interesting to determine the ideal structures of such algebras. Our
technique here may help. We may consider our C∗-algebras OnoαωG as a continuous
counterpart of graph algebras. It seems to be interesting to define and examine graph
algebras of continuous graphs (see [Ka3, Ka4, Ka5]).

7.2 When G is Discrete

When G is discrete, its dual group Γ becomes compact. Let us choose ω ∈ Γ
n and fix

it. Let us denote by Ω̄ a closed semigroup generated by ω1, ω2, . . . , ωn.

Proposition 7.1 When G is discrete, we have−ωi ∈ Ω̄ for i = 1, 2, . . . , n.

Proof Let us take i ∈ {1, 2, . . . , n}. Since Γ is compact, a sequence {kωi}
∞
k=1 has

a subsequence {klωi}
∞
l=1 which converges to some element in Γ. For any l, we have

(kl+1− kl− 1)ωi ∈ Ω because kl+1 > kl. Hence−ωi = liml→∞(kl+1− kl− 1)ωi ∈ Ω̄.

The following are easy consequences of above proposition.

Corollary 7.2 Any ω ∈ Γ
n satisfies Condition 5.1.
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Corollary 7.3 The set Ω̄ becomes a closed subgroup of Γ and the set of all ω-invariant

subsets of Γ is one-to-one correspondent to the set of all closed subset of Γ/Ω̄.

By two corollaries above, the set of all ideals of OnoαωG is one-to-one correspon-
dence to the set of all closed subset of Γ/Ω̄. In fact, we can examine the ideal struc-
tures of OnoαωG directly and more structures of the crossed product. Let G ′ be a
quotient of G by the closed subgroup

{t ∈ G | αωt = id} = {t ∈ G | 〈 t |ωi 〉 = 1 for i = 1, 2, . . . , n}

= {t ∈ G | 〈 t | γ 〉 = 1 for any γ ∈ Ω̄}.

Then the dual group of G ′ is naturally isomorphic to Ω̄. Since ω ∈ Ω̄
n, we can define

an action αω : G ′ y On. The crossed product OnoαωG ′ is simple by Theorem 4.8
and purely infinite (see [KK2] or [Ka1]). The crossed product OnoαωG becomes

a continuous field over the space Γ/Ω̄ whose fiber of any point is isomorphic to
OnoαωG ′ (see [OP2]).

7.3 When G = R

When G is the real group R, its dual group Γ is also R. We define three types for
elements of R

n.

Definition 7.4 Let ω = (ω1, ω2, . . . , ωn) ∈ R
n. The element ω is said to be of type

(+) if ωi > 0 for all i or ωi < 0 for all i, and to be of type (−) if there exist i, j such

that ωi < 0 < ω j . Otherwise, the element ω is said to be of type (0).

Namely ω is of type (0) if and only if there exists i ∈ {1, 2, . . . , n} such that ωi = 0
and all the other ωi ’s have the same sign. When ω is of type (+) or (−), the set Ω{i}

coincides with the closed group generated by ω1, ω2, . . . , ωn for any i = 1, 2, . . . , n.

An element ω ∈ R
n is called aperiodic if the closed group generated by ω1, ω2, . . . , ωn

is R. By Theorem 4.8, we have the following.

Proposition 7.5 For ω ∈ R
n, the crossed product OnoαωR is simple if and only if ω is

aperiodic and of type (+) or (−).

When ω is of type (+) or (−) and not aperiodic, the crossed product OnoαωR is

isomorphic to a mapping torus whose fiber is the simple C∗-algebra Onoαω ′ T where
ω ′

= (ω1/K, ω2/K, . . . , ωn/K) ∈ Z
n and K is the (positive) generator of the closed

group generated by ω1, ω2, . . . , ωn which is isomorphic to Z. Hence in this case,
Prim(OnoαωR) ∼= T and the set of ideals of Onoαω R corresponds to the set of closed

sets of T. The case that ω is of type (0) is more complicated. When ω is of type (0),
the set Ω = {ωµ | µ ∈ Wn} is closed and a closed set X ⊂ R is ω-invariant if and
only if X + Ω ⊂ X. We can prove the proposition below in a similar way to the proof
of Proposition 5.33.
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Proposition 7.6 Let ω ∈ R
n be of type (0) with ω 6= (0, 0, . . . , 0) and X be an ω-

invariant set. Set X ′
=

⋃
ωi 6=0(X + ωi). Any closed set X1 with X ′ ⊂ X1 ⊂ X is

ω-invariant, and IX1
/IX
∼= K⊗C0(X \X1)⊗Ok where k is the number of i with ωi = 0

and O1 = C(T).

One can easily see that an element ω ∈ R
n does not satisfy Condition 5.1 if and

only if ω is of type (0) and the number of i with ωi = 0 is 1.

Remark 7.7 When ω is of type (+), the crossed product Onoαω R becomes sta-
ble and projectionless [KK1]. In the forthcoming paper [Ka1], we will show that
OnoαωR is AF-embeddable in this case. More generally, we will give one sufficient

condition for crossed product OnoαωG becomes AF-embeddable in [Ka1]. As a con-
sequence of it, we will show that OnoαωG is either AF-embeddable or purely infinite
when it is simple.
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