A NOTE ON A RESULT OF MAHLER'S

INDAR S. LUTHAR

(Received 4 November 1965)

In a recent paper, Mahler [2] proved that for any algebraic number field K of degree n and discriminant d there exists a constant C depending only on n and d such that for any ceiling $\lambda(p)$ of K there exists a basis $\alpha_{1}, \cdots, \alpha_{n}$ of the corresponding ideal a_{λ} such that

$$
\begin{gathered}
C^{-(n-1)} \lambda(\mathfrak{q}) \leqq\left|\alpha_{k}\right| q \leqq C \lambda(q) \text { for all } \mathfrak{q}, \\
C^{-n} \lambda(\mathfrak{r}) \leqq\left|\alpha_{k}\right| \mathfrak{r} \leqq \lambda(\mathfrak{r}) \quad \text { for all } \mathfrak{r} ; \\
(k=1,2, \cdots, n) .
\end{gathered}
$$

Moreover, if $p_{\mathfrak{r}}$ denotes the rational prime below \mathfrak{r}, then

$$
\left|\alpha_{k}\right| \mathfrak{r}=\lambda(\mathfrak{r})
$$

for all \mathfrak{r} for which $p_{r}>C^{n^{2}}$.
For notations and definitions we refer the reader to the above-mentioned paper of Mahler.

The object of this note is to prove the same result with a constant C, which differs from Mahler's constant by a factor which approaches zero exponentially as n approaches infinity. We remark that for small n, Mahler's constant is better than ours.

Let $\beta_{1}, \cdots, \beta_{n}$ be a basis of a_{λ} and let

$$
F(x)=F\left(x_{1}, \cdots, x_{n}\right)=\sum_{q} \lambda(q)^{-1}\left|\beta_{1} x_{1}+\cdots+\beta_{n} x_{n}\right| q .
$$

Then $F(x)$ is a symmetric convex distance function and the volume V of the convex body

$$
F(x) \leqq 1
$$

is given by the formula:

$$
V=\frac{2^{n} \pi^{r_{3}}}{n!|\sqrt{ } d|} .
$$

We now use a theorem of Mahler [1] and Hermann Weyl [3] to obtain a unimodular matrix ($g_{i j}$) such that

$$
\prod_{n=1}^{n} F\left(g_{n 1}, \ldots, g_{n n}\right) \leqq \frac{\gamma_{n}}{V}
$$

where γ_{n} is a certain constant depending only on n. If we write

$$
\left\{\begin{array}{l}
\alpha_{1}=g_{11} \beta_{1}+\cdots+g_{1 n} \beta_{n} \tag{1}\\
\alpha_{n}=g_{n 1} \beta_{1}+\cdots+g_{n n} \beta_{n}
\end{array}\right.
$$

and

$$
\begin{equation*}
m_{h}=F\left(g_{h 1}, \cdots, g_{h n}\right)=\sum_{q} \lambda(q)^{-1}\left|\alpha_{h}\right|_{q} \tag{2}
\end{equation*}
$$

then $\alpha_{1}, \cdots, \alpha_{n}$ is a basis of \mathfrak{a}_{λ} and

$$
\begin{equation*}
\prod_{n=1}^{n} m_{n} \leqq \gamma_{n} V^{-1}=n!\gamma_{n} 2^{-n} \pi^{-r_{2}}|\sqrt{ } d| \tag{3}
\end{equation*}
$$

By the inequality on arithmetic and geometric means we get

$$
\frac{1}{n} m_{h}=\frac{1}{n} \sum_{q} \lambda(q)^{-1}\left|\alpha_{h}\right| q \geqq\left[4^{-r z} \prod_{q} \lambda(q)^{-n(q)} \cdot\left|N\left(\alpha_{h}\right)\right|\right]^{1 / n}
$$

i.e.,

$$
N\left(\mathfrak{a}_{\lambda}\right)^{-1}\left|N\left(\alpha_{h}\right)\right| \leqq 4^{r_{1}}\left(\frac{m_{h}}{n}\right)^{n} .
$$

Since $\alpha_{h} \in \mathfrak{a}_{\lambda}$, therefore $N\left(\mathfrak{a}_{\lambda}\right) \leqq\left|N\left(\alpha_{h}\right)\right|$ and the above inequality gives

$$
\begin{equation*}
m_{h} \geqq n \cdot 4^{-r_{2} / n} \tag{4}
\end{equation*}
$$

Using (2), (3), and (4) we obtain
with

$$
\left|\alpha_{h}\right|_{q} \leqq \lambda(q) m_{h}=\lambda(q) \frac{\prod_{i=1}^{n}}{\prod_{i \neq h}^{m_{i}}} \leqq \lambda(q) C
$$

$$
C=n!\gamma_{n} n^{1-n} \pi^{-r_{1}} 2^{-\left(r_{1}+\left(2 r_{2} / n\right)\right)}|\sqrt{ } d|
$$

The remaining assertions of Mahler's theorem with this C now follow from his lemmas 1 and 2.

We remark finally that the ratio of Mahler's constant to the constant obtained here is

$$
\frac{2^{-r_{2} / n} n^{\frac{1}{2}(1-n)} \gamma_{n} \pi^{-\frac{1}{2} n} \Gamma\left(\frac{n}{2}+1\right)|\sqrt{ } d|}{n!\gamma_{n} n^{1-n} \pi^{-r_{2}} 2^{-\left(r_{1}+2 r_{2} / n\right)}|\sqrt{ } d|} \sim \frac{\sqrt{ } n}{2 \sqrt{ } 2} 2^{r_{2} / n}\left(\frac{4}{\pi}\right)^{\frac{1}{2} r_{1}}\left(\frac{e}{2}\right)^{\frac{1}{2} n}
$$

References

[1] K. Mahler, Acta Mathematica 68 (1937), 109-144.
[2] K. Mahler, J. Austr. Math. Soc. 4 (1964), 425 - 448.
[3] H. Weyl, Proc. London Math. Soc. 47 (1942), 268-289.

University of Illinois
Urbana, Illinois

