
Canad. Math. Bull. Vol. 21 (1), 1978 

COEXISTENCE OF SOME B.I.B. DESIGNS 
BY 

K. N. MAJINDAR 

1. Summary. In this paper we have shown that the existence of some 
balanced incomplete block (b.i.b. for abbreviation) designs implies the exis
tence of some others in some cases. We have here established the following 
theorems. 

THEOREM 1. / / there exists a symmetric b.i.b. design with parameters 
v, b, r, k, k, (where v-b,r=k), then there exists a b.i.b. design with parameters, 

v' = v, *>'=(£), r' = r(v-r), k' = 2(r-\), 

À ' = ( r - À ) ( 2 r - 2 À - 1 ) . 

THEOREM 2. If there exists a symmetric b.i.b. design with parameters 
v, b, r, k, À, (where v = b, r = k), then there exists a b.i.b. design with parameters, 

THEOREM 3. If there are two b.i.b. designs, one with parameters v, b, r, k, \, 
and the other with parameters v' = k, b', r', k', À', then there exists a b.i.b. design 
with parameters, 

v" = v, bf, = bb', r" = rr', k" = k', À" = ÀÀ'. 

THEOREM. 4. / / there exists a b.i.b. design with parameters v, b, r, k, À, then 
there exists a b.i.b. design with parameters, 

V» = V9 b"=bk, r"=r(k-l), fc"=fc(À-l), À" = À(fc-2). 

THEOREM 5. / / there exists a resolvable b.i.b. design with parameters 
v, b, r, k, À, (where v = a multiple of k, say nk and then b = nr) and a resolvable 
b.i.b. design with parameters v',b',r',k',\', (where v' =k = n'k'), then there 
exists a resolvable b.i.b. design with parameters 

v» = Vy b" = bb', r" = rr', k"=k', À" = ÀÀ'. 
THEOREM 6. / / there exists a resolvable b.i.b. design with parameters 

v, b, r, k, À, where k is even and ^ 4 , then there exists a resolvable b.i.b. design 
with parameters 

Received by the editors May 10,1976. 
73 

https://doi.org/10.4153/CMB-1978-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1978-011-9


74 K. N. MAJINDAR [March 

2. B.i.b. designs associated with a symmetric b.i.b. design. Given a symmet
ric b.i.b. design with parameters v, b, r, fc, À, (where v = b, r = k). It was shown 
by Bose that associated with this design are two b.i.b. designs ("the residual 
designs") with parameters 

v' = k, b' = b-l, r' = r - l , fc' = A, A' = A - 1 

and 

vu=v-k, 6 " = 6 - l , r"=r, fc"=fc-A, A" = A. 

Recently Vanstone [1] has proved the following theorem. 

THEOREM (Vanstone). Given a symmetric b.i.b. design with parameters 
v, b, r, fc, A, (where v = b, r = fc). Then there exists a b.i.b. design with parameters 

Theorems 1, 2 are similar to Vanstone's Theorem. 

These two theorems will be proved with the aid of a u x I 1 matrix A of 

zeros and ones. Denote the v varieties of the symmetric b.i.b. design by 

1, 2 , . . . , v. Label its blocks as Bl9 B2,..., Bv. Denote the ( J columns of A 

by the ( J pairs (ij), i<j and i, j = 1, 2 , . . . , v. The position of A at the 

intersection of its pth row and (f/)th column will be called the (p, ((/)) position 
of A. 

Proof of Theorem 1. We shall construct an incidence matrix A of the second 
b.i.b. design in Theorem 1. 

Let the entry of A in its (p, (ij)) position be 1 if the block Bp contains one 

and only one of the varieties i,j and 0 otherwise. We get a v x ( I matrix A 

with 0,1 as entries. 
Consider the (y)th column of A. In the symmetric b.i.b. design there are 

r — A blocks each of which contains variety i but not variety 7. Similarly there 
are r - A other blocks each of which contains variety j but not variety i. The 
rest of the blocks either contain both the varieties i, j or neither. So the sum of 
the entries in the (//)th column of A is 2(r —A). 

Consider the pth and qth rows of A, p^q. The two entries at the (p, (ij)) and 
(<?> (ij)) positions of A are both 1 in the following cases: (i) Block Bp contains 
one of the varieties i, j and the block Bq contains the other, (ii) One of the 
varieties i, j occurs in both Bp and Bq and the other does not occur in Bp and 
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Next, there are r-k varieties which occur in Bp, none of which occurs in Bq. 
Similarly there are r-k other varieties which occur in Bq, none of which occurs 
in Bp. So corresponding to case (i), there are (r-k)2 columns, the intersections 
of each of which with the pth and qth rows of A have 1 as entries. 

There are À varieties common to both Bp and Bq and v—2(r-k) + k 
varieties, none of which occurs in Bp or Bq. So corresponding to case (ii), we 
have k{v — 2r + À), columns, intersections of each of which with the pth and qth 
rows have respectively entries 0, 0 or 0,1 or 1, 0. 

It follows that the scalar product of the pth and qth rows of A is ( r - A)2 + 
À(i>-2r + À) = ( r - À ) ( 2 r - 2 À - l ) because of the relation A(u-1) = r ( r - l ) . 

From a known result, it follows that the row sums of A are constant. This 
constant is 

o 2(r-k)/v = (v-l)(r-k) = r(v-r). 

Consequently A is an incidence matrix of the second b.i.b. design given in 
the theorem. Q.E.D. 

•»© Proof of Theorem 2. As above, we construct a v x I J incidence matrix A 

as follows. This time the entry at the (p, (i/)) position of A is 1 if neither variety 
i nor variety / occurs in the block Bp. 

It is easily seen that there are v — 2(r-k) + k blocks not containing any of 
the varieties /,/. So each column sum of A is v-2r + k. 

Easily there are v-2r + k varieties, none of which occurs in Bp or Bq. So 
(v-2r-k\ 

there are I I columns each of whose intersections with the pth 

and qth rows of A contain 1. In all other columns, the entries in the pth and 
qth rows are respectively 0,0 or 0,1 or 1, 0. So the scalar product of the pth 

and qth rows of A is ( j and hence of any two rows of A. 

We now infer that the sum of entries in any row of A is ( \{v-2r + k)lv = 

(v-l)(v-2r + k)l2=(V J by virtue of the relation k(v-l) = r ( r - l ) . 
\ 2 / 

Thus A is an incidence matrix of the second b.i.b. design in Theorem 
2. Q.E.D. 

The incidence matrix A of the second b.i.b. design in Vanstone's Theorem 
has in its (p, (ij)) position 1 if both the varieties, /, / occur in the block Bp and 0 
otherwise. 
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3. B.i.b. designs obtainable from two b.i.b. designs. In some cases it is 
possible to construct a new b.i.b. design from two b.i.b. designs provided their 
parameters satisfy certain conditions. 

As before, designate the varieties by 1, 2 etc. and number the block 1, 2 etc. 
Let A = (aiy) be an incidence matrix of the first b.i.b. design in Theorem 3 so 
that atj = 1 of 0 according as variety i appears in the /th block of this design or 
not. 

Similarly let B be an incidence matrix of the second b.i.b. design in the 
theorem. Note that B is a k x b' matrix of zeros and ones. Let j8l5 j 8 2 , . . . , j3fc 

be the row vectors of B. Then ^ + j32 + • • • + 0k = (k\ k', . . . , k') = a row 
vector with V components. 

We shall now construct a vxbb' matrix C with 0 and 1 as entries which will 
be an incidence matrix of the third b.i.b. design in Theorem 3. 

In each column of A, replace the k ones by the k vectors j81? / 3 2 , . . . , /3k 

respectively and v — k zeros by fr'-vectors ( 0 , 0 , . . . , 0) respectively. The v x bb' 
matrix so obtained is the desired matrix C 

For, it is easily seen that the sum of the entries in any column of C is k'. The 
scalar product of any two rows of C is À'. Then the sum of the entries in any 
row of C is independent of the row and is bb'k'lv = bkr'k'l(vk,) = rr'. As a 
consequence, C is an incidence matrix of the third b.i.b. design in Theorem 3 
and this completes the proof of this theorem. 

Given a positive integer fc>2. There exists a trivial b.i.b. design with 
parameters v' = k, b' = k, fc' = fc-l, r' = fc-l, A' = fc-2. Using this b.i.b. 
design as the second b.i.b. design in Theorem 3 we get the second b.i.b. design 
in Theorem 4. This proves Theorem 4. 

Theorem 4 was proved by Das and Kulshreshtha [2] under the redundant 
restriction that the first design is obtained by the method of difference. 

We now prove Theorem 5. Its proof is based on the same ideas as in the proof 
of Theorem 4. 

Let A = (atj) be an incidence matrix of the first resolvable b.i.b. design in the 
theorem so that atj -1 or 0 according as variety i appears in the /"th block of 
the design or not. We may suppose that the first set of n blocks of this design 
contain one complete replication of the v varieties, the second set of n blocks 
contain a complete replication and so on. 

Similarly let B = (btj) be an incidence matrix of the second resolvable b.i.b. 
design in the theorem. Again we suppose that the first set of n' blocks of this 
design contain a complete replication of its k varieties, the second set of n' 
blocks contain another complete replication and so on. Let @u / 3 2 , . . . , j3k be 
the row vectors of B. 

In each column of A, replace the k ones by j81? 0 2 , . . . , |3k respectively and 
the v-k zeroes by v-k fe'-vectors (0, 0 , . . . , 0). We thus get a u x t e ' matrix C 
of zeros and ones. 
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If we add the v rows of C, we get the ftb'-vector (fc', fc',..., fc') since 
0i + ft> + * * * + Pk = ^'-vector (fc', fc', . . . , fc'). As the scalar product of 
ft, ft, i^h is ^ ' a n d the scalar product of any two rows of A is À, it easily 
follows that the scalar product of any two rows of C is ÀÀ' and then any row 
sum of C is k'bb'lv = k'vrb'l(kv) = rr'. 

We note that the first nn' column vectors of C, on addition, gives a column 
nk-vector (i.e. u-vector) of ones. The same holds for the second set of nn' 
columns vectors and so on. We infer that C is an incidence matrix of a 
resolvable b.i.b. design—the third resolvable b.i.b. design in Theorem 5. This 
proves Theorem 5. 

If k is an even integer > 4, one can easily construct a trivial resolvable b.i.b. 
design with parameters 

One merely chooses all possible sets of fe/2 varieties from a set of fc varieties. 
Then one pairs the sets—one containing half the varieties and the other 
containing the rest of the fc/2 varieties. A moment's consideration shows that 
we have constructed a resolvable b.i.b. with the above parameters. Using this 
resolvable b.i.b. design as the second resolvable b.i.b. design in Theorem 5, we 
get the second resolvable design in Theorem 6. This completes the proof of 
Theorem 6. 
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