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INVOLUTION NEAR-RINGS

by S. D. SCOTT
(Received 10th April 1978)

Throughout this paper all near-rings considered will be zero-symmetric and left
distributive. All groups will be written additively, but this does not imply commutativity.
The near-ring of all zero-fixing maps of a group V into itself will be denoted by Mo( V). If
TV is a near-ring with an identity and a ̂  1 is an element of TV such that a2 = 1, then a will
be called an involution of TV. Let V be a group. An involution a of Mo( V) will be called an
involution on V.

If S is a subset of a near-ring TV, then TV(S) will denote the subnear-ring of TV
generated by 5. If 5 consists of the single element y, we write TV(-y) for TV({-y}). We shall
call a near-ring TV with identity an involution near-ring, if TV contains an involution a
such that TV(a) = TV. We are now in a position to state our main theorem.

Theorem 1. // Vis a non-trivial finite group, then Mo( V) is an involution near-ring if,
and only if, V is neither an elementary abelian 2-group nor a cyclic group of order three.

To prove this theorem we will require certain lemmas, propositions and definitions.
Also we shall clarify and explain some notation.

If S is a set, then |5 | will denote the cardinal of S. We shall, on the whole, be concerned
only with finite sets. If K is a subset of S we write S \ i f for the complement of K in 5.

From now on all groups considered will be finite. Let G be a group. As for sets, \G\ is
the order of G. If S is a subset of G, then (S) will denote the subgroup of G generated by S
(if S is empty, (5) is taken as {0} and if 5 consists of the single element g, we write (g) for
({g}))• The order |(g)| of an element g of G will be denoted by \g\. The set of all g in G such
that |g| = 2 will be denoted by TJ(G). To avoid confusion the elements of TJ(G) will not be
referred to as involutions. We denote the set G \{0} by G*. A subgroup of G that will play
an important role in what follows is A(G), which is defined to be ( G * \ T J ( G ) ) . Thus A(G)
is the subgroup of G generated by all elements g of G such |g |>2. We define the
centraliser of a subgroup H of G in the normal manner. Thus CG(H) will denote the
subgroup of G consisting of all elements b of G such that —b + h + b = h for all h in H.

Proposition 2. / / G is a non-trivial group and A(G) = {0}, then G is an elementary
abelian 2-group.

Proposition 3. / / G is a group, then A(G) is a normal subgroup of G.

Proof. We shall in fact show that A (G) is characteristic in G. Assume A (G) ^ {0}. Let
g in G be such that \g\ > 2 and let /x be an automorphism of G. Then \gn\ = \g\ > 2. So fi
maps G * \ T J ( G ) into G * \ T J ( G ) and A(G) is characteristic in G.
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Lemma 4. Let G be a group and suppose {0} < A(G) < G. The following hold:
(i) G\A(G)Cr,(G);

(ii) // b is in G\A(G) and g in A(G), then -b+g + b = -g;
(iii) A(G) is abelian;
(iv) CG(A(G)) = A(G); and
(v) |G/A(G)| = 2.

Proof, (i) This is obvious.
(ii) Since b is in G \A(G)andg in A(G), b + g is in G\A(G). By (i) b + g + b + g = 0.

By (i) b = —b and (ii) follows.
(iii) Let b be in G\A(G) . By (ii) the inner automorphism induced by b maps every

element of A(G) to its inverse. This is an automorphism of A(G) only if A(G) is abelian.
(iv) Since A(G) is abelian, CC(A(G)) 3= A(G). Suppose CC(A(G)) > A(G) and let b be

an element of CG(A(G))\A(G) and g an element of A(G) such that \g\ * 2. But, by (ii), it
would then follow that -b + g + b = -g* g. Hence CG(A(G)) = A(G).

(v) If bx and b2 are in G \ A ( G ) and g in A(G), then

and

by (ii). Hence b, + b2 is in CC(A (G)) = A (G). Thus bx = -b2 mod A(G) and (v) follows. The
proof of the lemma is now complete.

Definition. Let G be a group and S a collection of subgroups of G. A bijection /3 of G
onto G will be said to confuse S, if for any H in 5, HfigH.

Lemma 5. Let Gbea non-zero group which is neither an elementary abelian 2-group
nor a group of order three. There exists an involution a on G which confuses proper
subgroups of G and is such that

(i) if \G\ is even, then a has a unique fixed element h^O.
(ii) if \G\ is odd, then a fixes only two non-zero elements bu b2 and b, + b2^0.

Proof. Let Au... ,An be the distinct non-zero cyclic subgroups of G of order
greater than two, and let g,- generate A; for l=s i«n . Set S = {#,, -gu ... ,gn, -gn}.
Clearly g,-^ -g , as |g,| > 2. If \G\ is even, let au... ,a2*+i, be the elements of r)(G) (note
that |TJ(G)|, the number of subgroups of G of order two, is odd by the Sylow Theorems).
By (i) of Lemma 4 we may assume that if A(G) < G, then a2k+\ is in G\A(G).

Finally partition the elements of G\{S U TJ(G)} = T by {g, -g}. Define a by:
a interchanges g, and -g,+i for 1 « i «s n - 1 (vacuous if n = 1), and a interchanges g

and —g for g in T.
(a) if |G| is odd an n > 1, a fixes -gt and gn,
(a)' if \G\ is odd and n = 1, then \G\ is a prime p greater than three and thus

G* = {au ..., ap-\}, where we may assume that ap_i 5* — ap-2. Let a fix ap-t and ap_2 and
interchange the rest in pairs.

https://doi.org/10.1017/S0013091500016400 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016400


INVOLUTION NEAR-RINGS 243

(b)if \G\ is even, let a interchange a2k+] and -gu ar,-\ and a2i for 1 ^ i *£ k (vacuous if
k = 0), and fix gn.

Then a^ 1, a2 = 1 and a is an involution. Let H be a non-zero subgroup of G such
that Ha C H.U H contains an element of order greater than two, then some g, is in H.
Thus -gi is in H and, by the definition of a, H D {gt,... ,gn}. If |G| is odd and n > 1, then
H = G. If |G| is odd and n = 1, then H = G anyway. If |G| is even, then A(G) *= / / and by
the definition of a, a2k+\ is in H. Thus H = G since, if G > A(G), then A(G) is a maximal
subgroup of G by Lemma 4.

We may therefore assume that Ha C H and H* C TJ(G). Clearly a2t+i is not in H,
otherwise g\ is in H. By the definition of a, a2i is in H if, and only if, a2l_i is in //. Thus \H*\
is even. However, H is an elementary abelian 2-group and \H*\ = \H\— 1 is odd. This
contradiction completes the proof.

The question remains as to whether or not elementary abelian 2-groups are a genuine
exception to Lemma 5.

Proposition 6. // A is an elementary abelian 2-group and a an involution on A, then
there exists a proper subgroup H of A such that Ha C H.

Proof. As a cyclic group of order two has no involutions we may assume that | A\ s= 4.
Let S be the set of all b in A* such that ba = b. Since A * \ 5 is partitioned by two element
subsets of the form {g, ga} where G is in A * \ S , it follows that | A * \ S | is even. Since \A*\
is odd, \S\ is odd. Thus S is non-empty. Let h be in S. We have ha =h and h^O. Let
H = (h). Clearly H is a proper subgroup of A and Ha C H. The proposition is now
proved.

There remains the case of a cyclic group of order three.

Proposition 7. / / G is a group of order three, then there exists a unique involution a on
G and a is an automorphism.

Proof. Let h{ and h2 be the non-zero elements of G. Since an involution a on G is
such that 0a = 0 and distinct from 1, it is clear that h\a = h2 and h2a = ht. Thus a is the
unique involution on G. Also h2 = -h\ and ha = —h for all h in G. Thus a is an
automorphism.

If G is a non-trivial group which is not an elementary abelian 2-group, it follows from
Lemma 5 that there exists an involution a on G that confuses proper subgroups,
provided \G\ ^ 3. In the case where \G\ = 3 the involution a of Proposition 7 may be
considered to confuse proper subgroups. Proposition 6 tells us that this is an "if, and only
if" result. Thus we have:

Theorem 8. A non-zero group G has an involution a on G that confuses proper
subgroups if, and only if, G is not an elementary abelian 2-group.

We are now in a position to prove Theorem 1.
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Proof of Theorem 1. Let V be a non-zero group and /3 an involution of Mo( V) that
confuses proper subgroups of V. Set N = M0(V). We make three straightforward
observations:

(a) V is a unitary N(j8)-group;
(b) N(P) is 2-primitive on V (see (2, 4.2, p. 103)); and
(c) if /3 is distributive in JV(/3), then /3 is an automorphism of V.

Firstly, we prove these results. Clearly A/(/3) =s A/ and, since the identity of N is in
JV(/3), V is a unitary N(/?)-group. Thus (a) holds. If H is an N(/3)-subgroup of V, then
H N(P) C //. However /3 confuses proper subgroups of V and thus / / = {0} or H = V.
Hence (b) holds. If v is a non-zero element of V, then vN((3) is an NX/3)-subgroup of V.
Also vN(P) is non-zero by (a) and vN((3) = V by (b). Let u, and t;2 be two elements of V.
We have u, = u-y,, i = 1,2, where y, is in N(/3). Thus

(», + v2)(3 =

v2(3.

Since /J is a bijection on V, it is an automorphism of V and (c) holds.
We now assume that V is not an elementary abelian 2-group and |V| is even. By

Lemma 5 there exists an involution a on V, that confuses proper subgroups of V and is
such that ha = h for some unique non-zero element h of V. By (b) N(a) is 2-primitive on
V. If N(a) is a ring, then a is an automorphism of V by (c), and all v in V such that va = v
form a subgroup of V. Thus {0, h} is a subgroup of V such that {0, fc}a = {0, h}. Hence
{0, h} = V. But, since V is not an elementary abelian 2-group, this cannot happen. Hence
N(a) is not a ring. Let /x be an N(a)-automorphism of V. By (2,4.61, p. 132) we need only
show that n is the identity. If fi ^ 1, it acts fixed point freely on V. Since ha = A, it follows
that hyua = hfi and, by the uniqueness of h, hfj. = h. Thus fi = 1 and N(a) = TV in this
case.

Assume | V| is odd and | V| > 3. By Lemma 5 there exists an involution a on V, that
confuses proper subgroups of V and is such that bta = bt and b2a = b2 for a unique
non-zero pair of elements bx and b2 of K Furthermore we may assume that b, ^ -b2.
Now N(a) is 2-primitive on V by (b). If N(a) is a ring, then by (c) we have the set of all v
in V such that va = v is a subgroup of V. It would then follow that {0, bu b2} is a subgroup
of V fixed by a and this in turn implies that {0,b{, b2} = V. Since | V| ̂  3, we conclude that
N(a) is not a ring. Let fi be an N(a)-automorphism of V. Again by (2, 4.61, p. 132) we
need only show that /J. is the identity. Now b\a = b\ and thus b\^a = fci/x. If /x^ l,then it
is fixed point free on V and b,fi = b2. Similarly b2fj. = b\. Thus bxix

2 = b\ and it follows
that / A 2 = 1 . By (1, 1.4, p. 336) b^ = -bx^b2. This contradiction establishes that
N(a) = N.

Conversely, if V is an elementary abelian 2-group and a an involution of
M0(V)(= N), then by Proposition 6 Ha C H for some proper subgroup H of V. Thus
HN(a) C H and N(a) is not 2-primitive on V as is N. Hence N(a) ^ N. Finally, if V is a
cyclic group of order three and a an involution of Mo( V), then by Proposition 7, a is an
automorphism of V. Since V is abelian, N(a) is a ring. However, N = M0(V) is a
non-ring. The proof is complete and Theorem 1 is established.
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Corollary. A finite non trivial near-ring N may be embedded in the involution
near-ring M0((N, +) © C3 ( = N') where C3 is a cyclic group of order three.

Proof. By (2,1.86, p. 33) N can be embedded in M'. By Theorem 1 N' is an involution
near-ring.

Let V be a group satisfying the conditions of Theorem 1. It is natural to ask how many
involutions a in Mo( V)(= N) exist such that N(a) = JV? It is not difficult to show that if a
is such an involution and ft an automorphism of V, then 0 = p,~'a/u. is an involution of N
distinct from a and such that JV(/3) = N. From this we conclude that the number of such
involutions is at least \A\, where A is the automorphism group of V.

Another question is whether or not the above corollary holds for infinite near-rings. In
fact it does not hold. Indeed, let N] be the near-ring with identity generated by a single
element a and where the only defining relationship is a2 = 1. Let N be any near-ring^uch
that |JV| > \Ni\. The near-ring N cannot be embedded in an involution near-ring.

Also, what can be said about a near-ring generated by an involution which is
distributive? Such near-rings may have a surprisingly complex structure. There are, for
example, an infinite number of such near-rings which are finite, O-primitive but not
2-primitive (3). In particular such a finite near-ring N may have a non-nilpotent radical
(UN)).

Yet another question that arises naturally from Theorem 1 is the following:
If n is a fixed integer, then which of the near-rings M0(V) (V a finite group) are

generated by a single element a such that a" = 1? Theorem 1 answers this question for
n = 2. Even for n = 3, this question seems difficult. If, for example, V is the symmetric
group on three letters, then Mo( V) is not generated by such an a as, in this case, V has
four proper subgroups intersecting in zero and /3 can permute at most three elements of
V.

The author wishes to thank the referee for his comments which helped condense the
proof of Theorem 1.
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