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NILPOTENT IDEALS IN ALTERNATIVE RINGS

BY
MICHAEL RICH

1. Introduction. It is well known and immediate that in an associative ring a
nilpotent one-sided ideal generates a nilpotent two-sided ideal. The corres-
ponding open question for alternative rings was raised by M. Slater [6, p.
476]. Hitherto the question has been answered only in the case of a trivial
one-sided ideal J (i.e., in case J*>=0) [5]. In this note we solve the question in
its entirety by showing that a nilpotent one-sided ideal K of an alternative ring
generates a nilpotent two-sided ideal. In the process we find an upper bound
for the index of nilpotency of the ideal generated. The main theorem provides
another proof of the fact that a semiprime alternative ring contains no
nilpotent one-sided ideals. Finally we note the analogous result for locally
nilpotent one-sided ideals.

Recall that an alternative ring A is defined by the property (x,x,y)=
(y, x, x)=0 for all x, ye A where the associator (x, y, z) denotes (xy)z —x(yz).
The fundamental property that we shall use repeatedly is that
(X 1)> X2 Xa3y) = (880 0) (X4, X5, x3) for all x; in A, i=1,2,3, and o€ S; [4].
The nucleus, N(A), of A and the center, Z(A), of A are defined by N(A) =
{neA|(n a,,a,)=0Va,,a,,cA} and Z(A)={zeN(A)|za=azVaecA}.
For a € A the right multiplication map determined by a is given by R, : x — xa.
Similarly one defines L,:x+> ax. Let A, ={L, |ac A}, A,={R,|ae A}, and
M(A) be the subring of End A generated by A, and A,. We also denote by A’
the ring obtained after adjoining an identity element to A in the usual way.

In any non-associative ring R, R*® denotes the ring spanned by all monomials
of R of degree s (no matter how associated) and R is nilpotent if R* =0 for
some positive integer s. Finally, we define right powers of R inductively by
R™ =R, and R™*Y=RM™R. We say that R is right nilpotent if R™ =0 for
some positive integer n.

Throughout we shall assume that K denotes a left ideal. Similar results and
proofs apply to right ideals.

2. Main results. It is well known that if K is a left ideal of an alternative ring
A then the two-sided ideal generated by K is KA' = K+ KA. Thus, we shall be
interested in the effect on KA’ of the nilpotence of K. It should be noted that
K*® is not in general a left ideal of A for a positive integer s.
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Lemma 1. (M(A)K))NKA")< M(A)(K**?) for any positive integer s.

Proof. We shall show that (T, - - - T, T, (k,))(ky)e M(A'Y(K*"") for T=R
or L, k,e K*, ke K, t any non-negative integer and y, x; arbitrary elements of
A'fori=1,2,...,t The proof is by induction on t. Suppose ¢t =0. Then, since
(ks, k, y)=—(y, k, k;) we have:

ky(ky)= (kk)y —(k,, k, y)
(1) = (k,k)y +(y, k, k)
= (k;k)y + (yk)k, — y(kk).

It is easy to see that the right hand side of (1) is in M(A')(k**"). Thus, if t=0
we have our result.

Assume now that the result holds for t<n and consider an element of the
form u=(T,, --- T,T,(k))(ky) using the previous notation. Let k,=
T, , - T,T,(k). Then by the induction hypothesis we have k,(KA')c
M(A"YK**"). Now if T, =R, then
u = (kyx,)(ky) = ky[x, (ky)]+ (ky, x,, ky) = k[ x,(ky)]— (k,, ky, x,,)

= ki[x, (ky)]—[kq(ky)]x, + k:[(ky)x.].
Since k,(KA")< M(A’)(K**") the second term on the right is in M(A")(K**).
Since
X, (ky) = (x,k)y — (%, k, ¥) = (x,k)y + (x,., ¥, k) = (x,k)y + (x,y)k — x, (yk)

it follows that ky[x,(ky)le k(KA"Yc M(A'YK**"). Similarly (ky)x, =
k(yx,) = (x.y)k +x,(yk). Therefore

ki[(ky)x,]e ki(KA") € M(A)(K*™).

Thus, if T, =R, we have ue M(A')(K**"). On the other hand, if T, =L,
then

u = (x,k)(ky) = x.[ki(ky)]+ [k, (ky)]x, — k[(ky)x,].

As before, all three terms on the right are in M(A')(K**!) by the induction
hypothesis. Thus, in all cases we have

u=(T,, - T,T, (K))KA) € M(A}(K*"")
and the result follows by mathematical induction.

THEOREM 1. If the left ideal K of the alternative ring A is nilpotent of index n,
then the ideal KA'= K+ KA is right nilpotent of index n.

Proof. We prove by mathematical induction that (KA")* < M(A')(K*) for
all positive integers s. The case s =1 is obvious. Assume true in case s =t. Then
KA = (KA"NP(KA") < (M(A")K"))(KA') by the induction hypothesis. But
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by Lemma 1 (M(A")(K"))(KA")< M(A")(K'*") to complete the proof. Now if
s =n we have (KA"™ =0.
This enables us to prove our main result in short order.

THEOREM 2. If the left ideal K of the alternative ring A is nilpotent of index n,
then the ideal KA’ is nilpotent of index =n>.

Proof. Let w be a monomial of (KA')". Then w is a product of n? terms of
the form k;a; with ;€ A’. By [2, Proposition 3] we may assume that w is a
linear combination of second-order monomials of degree n? in the ka,, i.e., w
is a sum of terms of the form wu=R, - ---R,R, (1) where z=
R, . inzRil(l) fori=1,2,...,r for some r, s and some choice of x; = k.a,
where the degree of u in the x; is n”. It then follows that either i.;,=n for
some i or r>n. Note that z € (KA. Therefore, if i;;;=n Theorem 1
provides that z; =0. Thus u=0. Suppose, on the other hand, that i,;,<n for
each i, and r>n. Now, by Lemma 1 (since M(A')(K)< KA') z; e M(A")(K) for
each i. Then by repeated use of Lemma 1 we have ue M(A')K")c
M(A")(K™)=0. Thus, any product of n? terms of KA’ reduces to zero and the
proof is completed.

We thus have another way at arriving at the following resuit.

CoROLLARY. A semiprime alternative ring contains no non-zero nilpotent
one-sided ideals.

RemMARks. Independent of our Theorem 2, the result of the corollary can be
obtained as an immediate consequence of a result of Slater [7, Prop. 11.6]. In
fact, it also follows from an earlier result of Kleinfeld. For he has shown that if
K is a left ideal of A then S(K)={ae K |aA c K} is a two-sided ideal of A
contained in K and (A, K, K)< S(K) [1]. Therefore, if K is nilpotent and
S(K)#0 we have the result while if S(K)=0 we have (A, K K)=0. In
particular, K" is a left ideal of A for each positive integer n. Therefore K* is a
trivial left ideal of A for some t and by [5, Lemma 3.3] the ideal of A
generated by K* is a trivial ideal of A. Moreover, in case A is 3-torsion free
then a stronger result than that of the corollary is known. Namely, a semiprime
3-torsion free alternative ring contains no one-sided ideals which are nil of
bounded index [3, 8].

We will now establish an analog of Theorem 2 with local nilpotence in place
of nilpotence. Recall that the Levitzki radical, £(A), of A is the locally
nilpotent ideal of A which contains every other locally nilpotent ideal of A and
that an ideal J is locally nilpotent if every finitely generated subring of J is
nilpotent. We shall also make use of the fact that L(A/¥£(A))=0. As a
preliminary result (and as an analog to the previous Corollary) we prove

LemMa 2. A Levitzki semisimple 3-torsion free alternative ring A contains no
locally nilpotent one-sided ideals.
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Proof. Let K be a left ideal of A, with £(A)=0. Then A is semiprime.
Hence, by [5, Corollary 7.7] either 3K = N(A) or KN Z(A) # 0. Suppose, then,
that K is a locally nilpotent left ideal. If 3K = N(A) then 3K is a non-zero left
ideal in N(A) so that the ideal generated by it, 3K +3KA, is a locally nilpotent
ideal just as in the case of associative rings. If 3K¢# N(A) let 0#ze KNZ(A)
such that z>=0. Then either zA or Iz (I =integers) forms a non-zero nilpotent
ideal. In either case, the existence of a non-zero locally nilpotent ideal
contradicts the assumption £(A)=0 to complete the proof.

LemMA 3. If an alternative ring A is n-torsion free then A = A/%(A) is also
n-torsion free.

Proof. Suppose that na =0 for some a € A. Then na € £(A). We show that
a € £(A). For if not then the ideal £, generated by £ and a properly contains
Z(A). Note that a typical element of &£, is of the form €+ m(a) for some
€ec ¥(A) and me M(A'). But this implies that £, is locally nilpotent. For if we
pick any finite set T={t, t,, ..., t,} of elements of £, then, since na € £(A),
the subring generated by nT ={nt,, nt,, . .., nt,} is nilpotent, say of index k.
Thus, if we consider any product t¢t ---f for ¢ €T it follows that
n*t.t_ -+t =0. But since A is n-torsion free this means that ¢, -+t =0.
Hence, the subring generated by T is nilpotent of index k and %, is locally
nilpotent. Since #(A) contains all locally nilpotent ideals it follows that
L. =%(A) or ac £(A). Thus, a=0 and A is n-torsion free.

TueoreM 3. If K is a locally nilpotent left ideal of the alternative ring A and
A is 3-torsion free, then the ideal KA' of A generated by K is also locally
nilpotent.

Proof. Let A = A/%(A). Then A is 3-torsion free by Lemma 3. Since A is
Levitzki semisimple and the image K of K in A is locally nilpotent it follows
from Lemma 2 that K =0. Therefore K < £(A). Since £(A) is an ideal of A
we have KA'c £(A). Thus, KA’ is locally nilpotent.

Note. The results beginning with Lemma 2 can be easily modified to apply
to local finiteness instead of local nilpotence.

I am indebted to the referee for his suggestions which aided in streamlining
the paper.
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