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1. Introduction

Let R be a (commutative Noetherian) local ring (with identity) having maximal ideal
m and dimension d^l. It is shown in [5,3.6] that the local cohomology module Hd

m(R)
may be described as a module of generalized fractions: if xu...,xd is a system of
parameters for R, then Hfn(R)^U(x)i~+i1R, where U(x)d+1 is the triangular subset
[4,2.1] of i?d + 1 given by

U(x)d +1 = {WS• • • ,x?, 1): there exists ; with O^j^d such that

a1,...,<xJ€N and aJ + 1 = --- = ad = 0}.

Now it is well known (see [1, Proposition 6.4(4)] or [2,2.2]) that Hd
m{R)j=0. Thus it is

possible to find a triangular subset U of Rd+i for which U~d~1R=f=0. It seems natural
to ask whether there is any upper bound for the set of positive integers n for which
there exists a triangular subset V of R" with V~"Rj=0. The purpose of this note is to
prove a theorem that relates Krull dimension and modules of generalized fractions, and
it will follow from the theorem that d + 1 is itself a bound of the specified type.

Our main result will not need any Noetherian hypothesis and so we shall work
throughout over a commutative ring A (with identity); M will denote an ^-module.
When M=/=0, dim M (or dim^M) will denote the dimension of M, that is the supremum
of lengths of chains of prime ideals of Supp(M) if this exists, and oo otherwise. For
p e Supp (M), the M-height of p, denoted htM p, is defined to be dim,, Mv.

We shall use the terminology and notation of [4,5] concerning modules of gen-
eralized fractions and related concepts.

2. Some technical results about generalized fractions

We shall need the fact that ordinary fraction formation "commutes", in a certain
sense, with formation of generalized fractions. This fact is mentioned in [3], where it is
obtained as a consequence of O'Carroll's elegant description of certain modules of
generalized fractions in terms of ordinary modules of fractions. However, O'Carroll
mentions that this fact was proved earlier by the second of the two present authors by
direct computation: the calculations are included here, as they are not completely
obvious and provide a short and unsophisticated proof of a basic fact.
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Proposition 2.1. Let U be a triangular subset of A" (where neN) and let S be a
multiplicatively closed subset of A. Let (f>:A->S~iA denote the natural ring homomorph-
ism, and set

Then Us is a triangular subset of(S~lA)" and there is an isomorphism of S~1 A-modules
tl/:S~1(U-"M)^(Us)'

n(S-1M) which is such that, for meM, {uu...,un)eU and seS,

Proof. It is routine to check that Us is a triangular subset of (S~1A)n and that there
is an S~M-epimorphism il/:S~1(U~"M)->(Us)~

n(S~1M) given by the formula in the
statement of the proposition: the only non-obvious matter is the proof that \p is
injective.

For U = [h^eDn{A), set 0(H) = [flfcy)], eDJ,S~1A). Note that | # H ) | = 0(|H|). Let
meM, (ul,...,un)e U and seS be such that

in (US)~"{S~1M). Thus there exist (vu...,vn)eU and l,eDn(S~iA) such that

and

|L|(m/s) e

Now there exist (wl 5 . . . , wn) e U and H, K s Dn(A) such that

Hence 0 (H)[^ M l ) . . . 0(«11)]
T = [0(w1) ... « w J ] r = ^K)W(»i) ••• <KvJ]T. Let D =

diag(w l J . . . ,wJ , so that </)(D) = diag(</)(w1),...,(/)(wn)). It is now easy to use [4,2.2 and 2.3]
to see that

6("l

It follows that, for some (e S,
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Since DHQ^ ... M J T = [w? ... w^]T (and (w\,...,wl)e U), we see from [4,(3.3)(ii)] that

tm

in [/""M. It follows that

- = 0

m

in S ' ^ l / ^ M ) . Hence i/f is an isomorphism.

We shall also need the following lemma about modules of generalized fractions.

Lemma 2.2. Let m,neN with m<n. Let U be a triangular subset of A" and let V be
the restriction [4,3.6] of Uxto Am. Let x e M , (uu ...,un)eU be such that x/(u1,...,un)^0
in U'-M. Then x/{u1,...,uJj=0 in V~mM.

Proof. Let U (respectively V) be the expansion [4,3.2] of U (respectively V). Since V
is the restriction of U to Am, it follows from [4,3.2] that we may assume that U (and
hence V) is expanded. Also, we may assume that m = n—l.

Suppose that x/(u1,...,un_1) = 0. Then there exist (vu...,vn-l)eV and HeDn.l(A)
such that H[uj .. . w n - i ] r = [«i .. . tfn-i]

T and |H|xe(/4i;1 + --- + i4«II_2)Af. Now
K[Ui . . . «„_! lY = [vx ... vn_y l ] r , where

and |K|x = |H|x€(/4t;1 + --- + v4i;n_1)M. Since U is expanded, we note that (u1,...,un^u 1),
(vu...,vn-ul)eU. Hence

= 0
( « ! , . . . , U n _ l 5

in U~"M. Hence unx/{u1,...,un-uun)=0, and so, by [5,2.1], x/(u1,...,un_1)un) = 0. This
contradiction completes the proof.

3. The results

The dimension of a non-zero A-module M and the M-height of a prime ideal
p 6 Supp (M) were defined in the Introduction. For a triangular subset U of A" (where
neW) and a qeSpec(/l), we shall write Uq instead of the UA\q of 2.1.

Theorem 3.1. Let U be a triangular subset of A" (where ne N). Then

Supp( l / -"M)<={peSupp(M):ht M p^n- l} .
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Proof. It is easy to see that Supp(l/~"M)cSupp(M). We prove the claim by
induction on n, there (now) being nothing to do when n= l . Thus we suppose that n>\
and that the result has been proved for triangular subsets of A"~l.

Let peSupp(t/~nM), so that there exist meM and (uu...,un)eU such that
p2ann(x), where x = m/(uu...,un). Let V be the restriction of U to A"'1, and let
y = m/(uu...,un_l) in V~n + 1M. By 2.2, ann(y)sann(x), and so, by the inductive
hypothesis, peSupp(M) and htMp^n —2. Suppose that htMp = n —2.

In view of the inductive hypothesis, this implies that SuppA((V~n+1M)p) = {pAp}.
Hence V(a n nx ()'/!)) = P\- N O W un-i eann(x)sp and so, by 2.1, there exists teN such
that

<KuH - lyHm/lJA^i), • • •, #«,-1))] = 0,

where (fr:A->Av denotes the natural ring homomorphism. We now use [5,2.1] and
Proposition 2.1 again to see that y/l = 0, a contradiction. Hence htMp^w —1.

This completes the inductive step and the theorem follows by induction.

Corollary 3.2. U~nM = 0 whenever U is a triangular subset of A" and the integer n
satisfies n>dimM + l. (We adopt the convention that the zero A -module has dimension
-1.)

If we combine the above with the remarks in the Introduction and use 2.1 again, we
can obtain the following.

Corollary 3.3. Suppose that A is (non-trivial and) Noetherian of finite dimension d.
Then d+l is the greatest integer i for which there exists a triangular subset U of A' such
that U-'A^O.

Results concerning heights of prime ideals tend to be of more interest when the ring is
Noetherian, and we shall assume that A is Noetherian henceforth. Let U be a triangular
subset of A", and let (uu...,un)eU. Consider the generalized fraction z = l/(u1,...,un) of
U~"A. The question of under what conditions z is non-zero is interesting. It follows
from a corollary [6,3.15] of the exactness theorem that z^=0 if U consists of poor A-
sequences and YJ=I Aut is a proper ideal; in these circumstances, YJ=I ^ui n a s height
n — 1. More generally, for certain choices of (A and) U, the question is related to the
Monomial Conjecture: see [5,4.1]. Note also that if S is a multiplicatively closed subset
of A and, for seS, l/s=/=0 in S~lA, then s is not nilpotent, and so there is a prime ideal
p of A (necessarily containing 0 and having ht p ^ 0) such that s £ p. We may use 3.1 to
obtain a generalization of the latter statement.

Corollary 3.4. Suppose that A is Noetherian, that neM, that U is a triangular subset
of A" and that (uu...,un)eU is such that \/{ul,...,u^i=0 in U~"A. Then, for each
i = 0,...,n—l there is a prime ideal p having h tp^ i such that

£ Aujcp but
7 = 1
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Notes.

(i) YJ= I Auj is to be interpreted as 0.
(ii) When A is a catenary domain the conclusion implies that, for each i = 0,...,n — 1,

there is a prime ideal p' of height i such that YJ=I Auj^p' but ui+i $p'.
(iii) The referee has pointed out that the conclusion of 3.4 is still valid even if the

hypothesis that A be Noetherian is deleted.

Proof. In view of 2.2, we may assume that i = n— 1. Let x = l/(u1,...,uB_1,u(I), ^ 0 .
Then, by 3.1 and [4,3.3(ii)],

f )
Supp(Ax)z<peSpec(A): £ / l u ,£p and htpSrn— 1 >.

I ;=i J
Suppose that «„ e p for every prime ideal p of A of height at least n — 1 that contains
Yj=i Auj. Then uneV(ann(x)), and so there exists teN such that u'nx = 0. Hence

= 0.

It follows from [5,2.1] that x = 0 . With this contradiction, the proof is complete.
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