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EDGECONVEX CIRCUITS AND THE TRAVELING 
SALESMAN PROBLEM 

K E N N E T H KALMANSON 

Introduction. This paper will continue certain investigations into the 
geometric nature of the well-known traveling salesman problem: that of 
determining the extreme Hamiltonian circuits (77-circuits) of a graph. 

Let G be a graph with distinct vertices Ptl, Pi2, . . . , Pin such that to each 
edge of G, PQ, there corresponds a real number PQ = QP, called the length 
of the edge. Let p = (Pi, P2 , . • . , Pn) be cyclic and symmetric notation for an 
i^-circuit, and let 

Up) = £ iVVi + ffi 

denote the length of p. In this paper inequalities are given which, when satis
fied, give a procedure for ordering the vertices of G so as to yield the maxima 
and minima of L(p) over all 77-circuits p of G. Geometric realizations are then 
provided which considerably extend the solution of the so-called convex case 
in the Euclidean plane. 

1. Summary of results. Let G be a complete undirected graph with n 
vertices Pu, P i 2 , . . . , Pin. We define an i7-circuit C = (P1P2 . . . Pn) to be 
edgeconvex i î l ^ i < j < k < r ^ n always implies PtP3- + PkPr ^ PiPk + 
P]P~r and P ^ + P^ ^ ï\F~j + ÏVPT. 

THEOREM 1. Let C = (P1P2 . . . Pn) be an edgeconvex circuit on G. Then L(C) 
is minimal over all H-circuits of G. 

THEOREM 2(a). Let C = (P1P3P5. . . P2ri_iP2P\P% . . . Pin-i) be an edgeconvex 
circuit on a graph G having 2n — 1 vertices. Then K = (P1P2 • • . Pin-i) ^as 

maximum length L(C) among the H-circuits of G. 

THEOREM 2(b). Let C = ( P ^ P i 2 . . . PinPin+1Pin+2 . . . Pi2*) denote an edge-
convex H-circuit on a graph G having 2n vertices. Then one of the n circuits 

C(i) —. ( p ip ip ip ip ip ip ip ip i \ 

has maximal length L(C) among all the H-circuits of G, where for each i = 1,2, 
. . . , n, starting with Pi* and traversing the circuit C in the given order, the con-
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EDGECONVEX CIRCUITS 1001 

secutive points of the graph are relabelled 

P i p i p i p i p i p i p i 

1 , -t 2 , J 3 , • • • , A ) -* 2w , -t 2 n - l > • • • » ^ B + 1 • 

iVote. The above theorem can be pictured by imagining n copies of a circular 
circuit C in which the subscript labellings have been ' 'shifted clockwise" by 
one each time. In Section 3 we will consider several geometric realizations of 
edgeconvex circuits. Among these we have the following: 

PROPOSITION 1. If the points Pi, P2, . • • ,Pn correspond to points of the Euclidean 
plane E2 (or, alternatively, the Euclidean 2-sphere, S2) which fall on the 
boundary of their convex hull in the given order, and PtPj is the distance measured 
by a planar norm (or the usual spherical distance) then the circuit C = (P\Pi.. .Pn) 
is edgeconvex. 

COROLLARY 1. If the points Pu P2, . . . Pn all lie on a great circle of S2, then 
the circuit (Pi, P2, . . . , Pn) is edgeconvex, where the pt are in cyclic order. 

COROLLARY 2. If the points Pi, P2, . . . , Pn are in cyclic order on a rectifiable 
Jordan curve K and PfPj is the length of a minor arc on K, then the circuit 
(Pi, P2, . . . , Pn) is edgeconvex. 

In Section 4 we shall continue an investigation (Kalmanson [1]) of polygons 
in Minkowski planes whose lengths equal tha t of the convex hull of their 
vertices as measured in the Minkowski plane metric. If, of these vertices, those 
taken on the boundary of their convex hull are in cyclic order then the polygon 
will be called a chain polygon, since it has been shown tha t the interior points 
will then form geodesic chains between adjacent boundary points. 

PROPOSITION 2. Chain polygons in any Minkowski plane correspond to edge-
convex circuits. 

While Proposition 2 extends what is known about chain polygons in the 
maximal case (cf. [7, 4]) , if there is an even number of vertices, 2n, then 
Theorem 2(b) only locates the maximum circuit in a class of n circuits. The 
following theorem of Fred Supnick bridges this gap in certain cases: 

T H E O R E M (Supnick'S Four Point Condition). Let Pu P2, . . . , Pn be distinct 
vertices such that for all i, j , k, and r,\ ^ i < j < k < r ^ n we have 

ï\P~+P)P~rè P~Pr
k + TfFr^¥^Fr + P~Fk 

then ( . . . i W W ^ - P e . . .) is minimal and (... P.P^P.P^iP^^^P^ . ..) 

is maximal in length L(C) in the class of H-circuit s on the vertex set. (See Supnick 

[8]). 

The condition (FPC) of the above theorem is neither implied by nor 
implies the "edgeconvexity" condition. In fact, while an interesting class of 
realizations of the F P C has been given in Lorentz space (see [5]), it is 
known tha t no non-collinear k points, for k ^ 8, satisfies the F P C in the 
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1002 KENNETH KALMANSON 

Euclidean plane. We can give a broad class of realizations in Minkowski planes, 
however. These will be called tracklike distr ibutions. 

2. Proof of T h e o r e m 1. Identify each vertex P z- of graph G with a unique 
point Qt on a Euclidean circle 0 so t ha t the points Qt are labelled in their 
natural cyclic order with respect to 0. Consider the complete rectilinear graphs 
C* on points Qu and let QtQj be the Euclidean length of segment QiQj. Define 
an arc-inversion by the symbol 

(PXP2 , . . . P , _ 1 ( P , . . . P ; - ) P , - + i . . . P J 

on a circuit 

( P i P 2 • • • P i - iP ' i • • • PjPj+i . . . Pn) 

producing 

( P l P 2 . . . P i - \P jP j - i . . . Pz+iPiPj+i . . . Pn)> 

Suppose tha t C0 = (P^P^ . . . Pin) ^ C, the given circuit. Then the points 
of Co* are not in their natural cyclic order on circle 0. Wi thou t loss of generality, 
we may assume either iY < i2 < ik+i < ik or ix < ik < i2 < ik+i. Hence, 
QnQit and QikQik+1 intersect a t an interior point of the circle. Therefore, 
Ci* = (Qn(Qi2 • • • Qtk)Qik+i • • • Qin) i s strictly shorter than C0*, where C? 
denotes the rectilinear circuit corresponding to Ct. Since C is edgeconvex, 
L{C\) S L(Co). Now suppose t ha t C0 is of minimum length. T h e a rgument 
given above shows tha t there exists an arc-inversion, as defined in the argu
ment, producing C\ such t ha t L(Co) ^ L(C\) and L(C0) > L(C\). If 6\ = C, 
we are done. If not, by the above, there is a sequence of circuits Cu and another 
of their rectilinear correspondents C*, such t ha t 

L(C0*) > L(Ci*) > . . . > L(C*), and 

P(Co) è L(d) è . . . è L ( C r ) , 

where C r = C, the edgeconvex circuit. 
The sequence of the C^*'s terminates in C* because, if C\* + C*, there is 

an arc-inversion which strictly decreases length, and, there are only finitely 
many circuits. Clearly, if P (C 0 ) is minimal, then so is L(C). 

Proof of Theorem 2. It will greatly simplify the present discussion to refer to 
proofs of the theorems in [7] and [4] which the present theorem generalizes. 
Once again, let the vertices in question correspond to points Qt on a Euclidean 
circle 0 , which are in their na tura l cyclic order on 0. I t is shown in [7] and [4] 
t ha t if a rectilinear circuit Co* is not in the given class (of maxima) , then there 
exists an arc-inversion producing a strictly longer circuit Ci*. The arc-inver
sion merely exchanges two non-intersecting edges for two other edges which 
do intersect. This , in turn, re-orders the four points ( tha t is, the endpoints) of 
these edges so t ha t they no longer conform to the ordering of the edgeconvex 
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circuit C in the statement of the theorem. Hence, L(Co) ^ L(C\). If C() is 
maximal, we can, using arc-inversions, produce a sequence of circuits Co, 
Ci, . . . , Cr where C, is a circuit in the relevant class, and L(Co) S L(C\) ^ 
. . . ^L(Cr). 

COROLLARY 3. Let C denote an edgeconvex H-circuit on a graph G. Then if C\ 
and C2 are any two minimal H-circuits on the vertices of C, there exists a finite 
sequence of arc-inversion s and a corresponding sequence of minimal H-circuits, 
beginning with C\ and ending with C2. If G has an odd number of vertices, the 
analogous statement holds for the maximal H-circuits of G. 

Proof. There exist the relevant sequences from Ci and C2 to C, as in the 
proofs of Theorems 1 and 2 (a). Arc-inversions are clearly reversible. Join 
the sequence from C\ to C with that from C to C2. 

3. Proof of Proposition 1. The proof for the ordinary Euclidean planar 
metric and the Euclidean two-sphere is given in Quintas & Supnick [6], so 
that we only need concern ourselves with general planar norm metrics. The 
proposition will follow if we can show that whenever three points in the plane, 
A, B, and C are such that e(A, C) + e(C, B) = e(A, B), then we must have 
m (A, C) + m(C, B) = m (A, B), where "e" and "m" denote the Euclidean 
metric and an arbitrary norm metric, respectively. Since A, B, and C are 
collinear, there exists a "/" such that 0 ^ / ^ 1 and c = tA + (1 — t)B. 
Letting m (A, B) = \\A — B\\ where "|| ||" is the norm corresponding to m, 
we may write 

m(A, C) + m(C, B) = \\A - ((1 - t)B + tA)\\ 

+ \\B- (tA - (1 - 02011 = . . . = |1 -t\\\A -B\\ 
+ \t\\\A -B\\ = (1 -t)\\A -B\\+t\\A -B\\ 

= \\A - B\\ = m(A,B). 

Proof of Corollary 1. For each / i n (0, 1), we may construct a sequence of 
points iY , P2\ . . . , Pn

l such that (a) Cl - (Pi'_JV, . . . , P / ) is edgeconvex 
and, (b) as / approaches one, P^Pj1 approaches P\P*j uniformly for i, j = 1,2, 
. . . , n. This can be done by taking P / as the intersection of the geodesic arc 
containing P^ and a fixed north pole TV of C*, and a circle of lattitude / units 
north of C*. Since each of the sets Px\ P2\ . . . , Pn

l are on the boundary of 
their convex hull and in cyclic order, by Proposition 1, Cl is edgeconvex. 
Taking the limits as t approaches one in 

FTP? + WP? S P7P? + ÏW7, and FTP? + PTP? S P?P? + P?P7 

we obtain the corresponding inequalities for circuit C. 

Proof of Corollary 2. If curve K has length L, associate points Pt with the 
points Qt on a great circle of length L such thatPjP^ = QiQj. Apply Corollary 1. 
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PROPOSITION 3. Let A, B, C, and D be any vertices having any set of six 
"distances" between them. Then it is possible to relabel them Pi, P 2 , P3, PA SO that 
the circuit (Pi, P 2 , P3, P4) is edgeconvex. 

Proof. One of the following inequalities holds: 
(a) ÂB + CD ^ AC + BC ^ ÂD + BC, 
(b) AC + BD ^ AD + BC ^ AC + BD, 
(c) AC + BD ^ AB + CD ^ AD + BC, 
(d) AC + BD ^ AD + BC ^ AB + CD, 
(e) AD + BC ^ AB + CD S AC + BD, 
(f) AD + BC ^ AC + BD ^ AB + CD. 

The edgeconvexity condition will hold for ( a ) - ( f ) if the following orderings are 
taken: (a) ABDC; (b) ABDC; (c) ACDB; (d) ACBD; (e) ADCB; (f) ADBC. 

4. In order to prove Proposition 2, it will be necessary for us to develop some 
background material . Given a Minkowski plane with uni t circle U, a 2n-gon, 
label the n radial diameters of U\ 1, 2, . . . , n in some fixed cyclic order. A line 
through point P parallel to the r th diameter (or coincident with it) will be 
denoted Cr(P). Let 0 designate the origin, and designate as positive one ray of 
Ci(0) by Ci + (0 ) , thereby inducing in a clockwise sense, a positive orientat ion 
the first n rays, writing Ci + (0) , C 2

+ (0) , . . . , Cn
+(0), and a negative orienta

tion on the last n rays, writing Ci~(0), C2~(0), . . . , Cn~(0). Fur ther , note t ha t 
for any point P, C r

± ( P ) will denote the appropr ia te ray through P parallel to 
C r

± (0 ) . Next, the positive angular region bounded by Cr
+(P) and Cr+i+(P) 

will be writ ten C r > r + i + (P) (where r < n); similarly for C r > r + i~(P) . We will 
write 

Cr,r+1(P) = Cr,r+i+(P) \J C r , r + 1 - ( P ) . 

We will say tha t the points Px, Pi, . . . , Pk are cogeodesic in the Minkowski 
plane M if 

k-\ 

P\Pk = Z^t PiPi+i. 

I t has been shown (Kalmanson [2]) t ha t Pi, P 2 , . . . , Pk are cogeodesic in M if 
and only if there exists an r = 1, 2, . . . , n such t ha t 

C ? , r + 1 ± ( P 0 3 C r , r + 1 ±(P 2 ) 2 . . . 2 C r , r + 1±(P*) . 

In this case we say tha t we have an r-chain in M, and t ha t the line segments 
are positively (or with reverse inclusions, negatively) oriented r-like edges. I t has 
likewise been shown [2] t ha t a finite set of points, S, of M has a minimal 
circuit whose length equals t h a t of the perimeter (as measured in M) of the 
convex hull of S if and only if it has such an 77-circuit in which the boundary 
points appear in their na tura l cyclic order. 
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LEMMA 1. Chain polygons in any Minkowski plane M* with a 2n-gon unit 
circle correspond to edgeconvex H-circuits. 

Proposition 2 follows from Lemma 1 in the following way: The unit circle U 
of M, being the boundary of a centrally symmetric convex body in the plane, 
may be approximated by a centrally symmetric 2n-gon U*, such tha t the 
linear segments of U coincide with certain sides of U*. Then, U* defines a 
Minkowski plane M* whose distances approximate those of M (uniformly for 
any preassigned finite set of points in M). Hence, chain polygons in M are also 
chain polygons in M*. The inequalities defining edgeconvexity being satisfied 
in M, the proposition follows by continuity. 

We now transform the unit circle, U, of M so tha t C\+(0) and Ci~(0) have 
their slopes minus and plus one, respectively. Hence, positive orientations are 
" u p " and " t o the r ight" as usual. This procedure puts a chain polygon into a 
convenient form of four sections of chains (of the vertices in the order given 
by the polygon) having their endpoints on the boundary of the convex hull of 
the vertices. We may designate these as a leftmost and a r ightmost chain L 
and R together with an upper and lower section "U" and "D" of r-like chains, 
r = 2, 3, . . . , n occuring sequentially. (Some rt may be skipped, bu t not 
repeated in any section.) If we further assume tha t no two vertices of the 
polygon lie on the same Cr(P) line, then we may assert t ha t this representation 
is unambiguous, and in this way we will avoid certain complications of proof. 
This will result in no real loss of generality, since we can give a proof in this 
restricted case and appeal to continuity in the general case. 

Let us now observe tha t (Pi , P^ . . . , Pn) is edgeconvex if and only if every 
circuit (Pn, Pi2J Pi3, Pu) where i\ ^ ii ^ i% ^ i4, is edgeconvex and ij (E 
{1, 2, . . . , « } . In order to prove Lemma 1, we will show tha t in every case of 
four points in natural order on the given chain polygon, one of the following 
three lemmas apply (we will interchange the terms ' 'polygon" and "circui t" 
where there is no danger of confusion): 

LEMMA 2. If (PQRS) is a convex polygon, then it is edgeconvex. 

LEMMA 3. If (PQRS) has a pair of opposite sides r-like with opposite r-orien
tation, then it is edgeconvex. 

Proof. Lemma 3 reduces to Lemma 2 by an arc-inversion interchanging two 
diagonals for opposite sides whose sum has equal length. 

LEMMA 4. / / (PQRS) is such that P, Q, and R, or, Q, R, and S, or, R, S, and P, 
or S, P, and Qform an r-chain, then it is edgeconvex. 

Proof. Suppose tha t P, Q, and R form an r-chain (we will write P — Q — R 
in such cases). Then PQ + QR_= PÏLjSut PR + ^R = PQ + QS'+ QS ^ 
PQ + RS, and we also have PQ + QR + QS ^ QR + PS, by the triangle 
inequality. The other cases are similar. 
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In analyzing the various positions t ha t four points in natura l clockwise 
order ( " I N O " ) on a chain polygon can assume the following lemmas are useful. 
We leave their proofs for the reader. (They can be found in [3].) 

LEMMA 5. Suppose that PS and QR are r-like and s-like, respectively, r, s > 1, 
and both are positively (or both negatively) oriented. Then, slope PS > slope QR 
implies that r g; s. 

LEMMA 6. Every vertex Q of a chain polygon K is either within or on the same 
side of Cr<r+i(P), where P is a vertex in an r-chain of K, except for possibly those 
Q in a different r-chain. 

LEMMA 7. / / P, Q, and R are three points in natural order in a chain polygon 
such that P belongs to 0 or L, Q belongs to V, and R belongs to Û or R, while PQ 
and QR are r-like and s-like, respectively, then s = 1 or s ^ r. 

L E M M A 8. If P, Q, and R are as in Lemma 7, and PQR is a convex arc, then 
P - Q - R . 

LEMMA 9. / / P, Q, R, and S are INO such that P is in 0 or R, S is in 0 or L 
R and Q are in 0, PQ and RS are not 1-like, then either (PQRS) is convex, or 
P - Q - R, or Q - R - S. 

LEMMA 10. (a) If P is the "highest" point in L, then Clt2(P) H UPr = 0. 
(b) For all Q in 0, for all P* in L, Q is not in d > 2

_ ( P * ) . 
(c) If P*Q is not l-like, then the intersection of Ci j 2(P*) and the points of V 

to the right of Q is the empty set. 
(d) If P*Q is 1-like, then the original chain polygon minus all points INO from 

P* to Q is another chain polygon, where P*Q is a 1-like edge in L. 

A proof of Lemma 2 can now be given by lett ing P, Q, R, and 5 be vertices 
I N O on a chain polygon K, and considering the various cases as follows: 

I. If any three of these points is in the same chain or (PQRS) is convex, 
then Lemmas 2 and 4 apply. 

I I . We suppose tha t exactly two vertices P and Q are in the same chain (L) 
and tha t (PQRS) is not convex. 
(A) If the other two vertices are in R, use Lemma 3. 
(B) Suppose a t least one of the remaining two is in Û ov L ( a s s u m e d Ç 0 — R). 
(1) Suppose further tha t 5 belongs to V. Then (PQRS) not convex implies 
t ha t QRS is a convex arc. Hence, Lemmas 9 and 4 apply. 
(2) Suppose tha t , instead, 5 belongs to R. 

(a) If R is in dr2
+(S), then by the fact t h a t PQ and RS are r-like with 

opposite r-orientations, we can apply Lemma 6. 
(b) If R is not in Cit2

+(S), then by Lemma 10, R is not in Cit2~(S). So, QRS is 
a convex arc, as in (1), above. 
(3) Suppose t ha t R is in D bu t neither in R nor in L. 
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(a) If R is in Ci)2
+(<2) or 5 is in Cit2~~(p) then we have either P — Q — R or 

Q — R — 5, respectively. Therefore, Lemma 4, applies. 
(b) Suppose that (a) is false, and, without loss of generality, that R is not 

to the right of S. Also, let QR be r-like and PS be s-like respectively. 
(i) If S is in Crir+i+(R) we have Q — R — S and apply Lemma 4. 
(ii) If 5 were below CTtr+i+(R) then arc PQRS would be concave and 

(PQRS) would be a convex polygon—a contradiction. 
(iii) Finally, assume 5 is above C r i r+i+(P). If we had s < r, then we note 

that the highest point of V is below the lowest point of the same set—a contra
diction. But since we have P below Q, then a ^ r. Hence, s = r. Since PS and 
QR have the same r-orientation, Lemma 3 applies. 

III. If R and 5 are in R, then Lemma 3 again applies. 
IV. Suppose now that no two of P , Q, R, and 5 are in the same chain, and 

that (PQRS) is not a convex polygon. Without loss of generality, assume that P 
is in L and Q is in V. Then one can show that the various subcases either reduce 
to one of those above (using Lemma 10), or we distinguish three cogeodesic 
points, or Lemma 5 applies, (for the details, see Kalmanson [3]). 

It is well known that any minimal iJ-circuit on a finite set of points in the 
Euclidean plane must have the points on the boundary of the convex hull of 
the set in cyclic order. If a particular class of point sets is known to have an 
edgeconvex iJ-circuit in the Euclidean plane, then this circuit must belong to 
the former class. Hence, in order to find a maximal 77-circuit on this point set, 
one could try to find an edgeconvex polygon in this class, and reorder the 
vertices according to Theorem 2. The problem with this is that if there are a 
total of r points in the set, k of which are on the boundary of their convex hull, 
then there are precisely (r — l)\/(k — 1)! H-circuits on the points of the set 
which have the boundary vertices in cyclic order (Supnick [9]). 

5. Tracklike distributions and Supnick's FPC. Let us begin by observing 
that edgeconvexity does not subsume the FPC. We have already shown the 
converse. An appropriate counterexample is given by the five symbols 
Pi, P2, . . . , P5 as vertices with distances P5Pi = 2, and PfPj = 1 for all other 
pairs. Then (P1P2P4P5P3) satisfies the four point ordering of FPC. But this 
circuit is not edgeconvex, since 

PJ\ + PJ\ < F\PÏ + PJPl. 

Let Sn = (5, En) be the metric space defined by the metric 

s(PyQ) = max \pt - qt\ 
1 = 1 , 2 , . . . , n 

for all P , Q in En. A line segment PQ in En will be called i-like if s(P, Q) = 
\pt — qt\. A distribution D of points in En will be called tracklike if there 
exists io, jo = 1, 2, . . . , n such that for each point P in D we have PQ i0-like 

https://doi.org/10.4153/CJM-1975-104-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-104-6


1008 KENNETH KALMANSON 

for all Q in D, except possibly one point Qp depending upon P . In tha t case, 
PQP mus t be j0- l ike. 

PROPOSITION 3. Tracklike distributions in Sn satisfy the FPC if labelled in their 
i, j lexicographic order. 

Let M be a Minkowski plane with a 2n-gon uni t circle. Using the ideas of 
Section 4 we will say t h a t a distr ibution of points is tracklike in M if there is 
a n i = 1, 2, . . . , n such tha t for each P in D, PQ is i-like in M with the possible 
exception of a single point Qp in D where Qv depends on P. 

PROPOSITION 4. Tracklike distributions in Minkowski planes satisfy the FPC. 

A feasible labelling for the distr ibutions in Proposition 4 can be found by 
first mapping the Euclidean plane onto itself using an affinity such t ha t the 
side i of the uni t circle U of M maps onto any side PQ of the uni t circle of 5 2 . 
Then use a lexicographic ordering of the transformed points, as one would for 
points in S2, where one proceeds by considering various cases. The following 
useful facts are not difficult to prove: 

LEMMA 11 (a) . Let D be a set of points Pi, P2, . . . , Pm in Sn, n ^ 2. Suppose 
that there exist i and j , i ^ j , such that for all P and Q in D, PQ is either i-like 
or j-like. Then the perpendicular projection of D onto the i — j coordinate plane 
is one-to-one and Sn distance preserving. 

(b) If i = j in (a) , then the points of D lie on an Sn geodesic. 
(c) / / the segments PkPk+1, k = 1, 2, . . . , m — 1 are i-like and in their in

creasing (or decreasing) order, then the points of D are cogeodesic and 

?n=l 

s(Pi,Pa) = Z s(Pk,Pk+1). 

(d) If P1P2 and PiP% are i-like and the i-th coordinates of Pi, Pi, P3 are mono
tone, then PiPz is i-like. 

We refer the interested reader to Kalmanson [2] for the proof of this lemma. 

Proposition 3 is now proved for S2 as follows: Let i = 1 and l e t P ^ , Pi.,, Pu 

and Pu denote four distinct points of D such tha t i\ < i2 < iz < i\\ wi thout 
loss of generality let i\ = 1, i2 = 2, etc. Consider all possible segments deter
mined by these four points, PtPj. Our first assertion is t ha t only the segment 
P1P2 may not be 1-like; tha t is, all other segments must be 1-like. For example, 
if P1P3 is not 1-like, then both P i P 2 and P2P3 are 1-like. By our labelling pro
cedure, this contradicts Lemma 11(d) , above. Hence, we need only consider 
the following cases: 

Case 1: Each of P1P2, P3P4, and P2P3 are 1-like. By our labelling procedure 
and Lemma 11(c), Pi,P2PzP\ lie on an ^-geodesic and are labelled in their 
geodesic order. 
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Case 2: Exactly one of P1P2, PiPz, PzP\ are not 1-like. As all the cases are 
similar, we will consider only the cases where just P1P2 is not 1-like. By Lemma 
11(c), 

Ï\F3 + ÏV% = ï\Pt, and 
PiPz ~\~ P3P4 = P%P\> 

The triangle inequality yields 

Ï\P~2 S ï\Pz + PW2. 

Hence, 

PÏF2 + ÏW+ = KK + (P^PA - RFz) = {P^P* - P^PZ) + W 
S PJ\ + T\P~A = . . . (KF, - KF4) + (P^Pz + ?7F4) 

= T.P, + P i ? 4 , 
as required. 

Case 3: Suppose tha t both P\P2 and PzP\ are not 1-like. (Note tha t by the 
definition of a tracklike distribution, this is the only remaining case.) Then, 
P i , P 2 , P 3 , and P 4 are the vertices of a convex quadrilateral in E2 with P\P2 

and P3P4 as opposite sides. Moreover, 

PJ\ + P^FA = PJ^± + Î V \ 

since all of the segments in question are 1-like, as well as the segments PtQ, 
i = 1, . . . , 4 where Q is the point of intersection of the diagonals of the 
quadrilateral . Since the diagonals give the greatest sum with any norm, we 
are done. 

The proofs of Propositions 3 and 4 are completed as follows: For a distribu
tion D in Sn, map D into points of the i — j S2 plane via a projection. If the 
distribution D is taken in a Minkowski plane with polygonal unit circle U, 
map the points of D into the plane via an affine transformation taking the tth 
sides of U onto a pair of parallel sides of the unit square, tha t is, the unit 
circle of S2. Both of these mappings preserve t-like chains of points and, hence, 
preserve the relevant metric inequalities and equations of the preceeding proof. 
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