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1. Introduction

The theory described in this paper is directed towards obtaining a
general expression for the development of the free surface of a fluid, sub-
sequent to a given initial state and prescribed boundary conditions, as a
power series in g, the gravitational acceleration. In an earlier paper [4],
a result, applicable to the particular case of the entry of a thin wedge into
an incompressible fluid, was obtained and gave the shape of the free surface
as such a power series. This series was valid for values of the ratio ut\x < 1,
where u was the (constant) velocity of entry of the wedge; x the horizontal
distance from the vertex of the wedge; and t the time elapsed after entry.
This particular problem was first investigated by Mackie [6] who derived
an asymptotic solution.

Here, we consider the more general problem of the relationship between
the behaviour of the free surface, due to the development of two-dimen-
sional gravity waves on a semi-infinite body of liquid, and the horizontal
velocity U(y, t), on x = 0, of a vertical wave-making agency. A solution
of this problem, for a general velocity distribution U(y, t) was first obtained
by Mackie [5], The method of solution used by Mackie is the basis of the
theory in § 2 and his fundamental result is contained in that section. However,
our prime concern is with the derivation of a power series, in g, for the
shape of the free surface resulting from the onset of a velocity distribution
U(y, t) on x = 0.

2. Statement and formal solution of the problem

We consider only the motion of the fluid to the right of the wave-
maker, i.e. x > 0. Taking the y-axis vertically downwards and letting
tp(x, y, t) denote the velocity potential, i\(x, t) the free surface displacement,
and p the density of the liquid, we then have the following initial value
problem for the determination of r\:
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Let us take an even Fourier transform in x and a Laplace transform
in t and write

(6) ftk, y, P) = Jo°° dx cos (to) JJ0 <!* e - 7 ( x , y, 0-

Where applicable, we will use the notation

(7) f(k, y, t) = J" / (x , y, t) cos (to) <te

and

(8) f(x,y,p)=j"f(x,y,t)e->tdt.

Transforming equations (1), (2) and (4) by means of (6) we find

(9)

Following Mackie [5], (9) can be solved in terms of <p(k, o, p) when the
condition of boundedness at y = oo is used. The solution is

. y. P) = V&, o, p)e-k»+ |o°° V(x, p)G(k, x,

where G(k, en, y), a Green's function, is given by

G(k, a, y) = — e-"v sinh ka.jk (*<y),
= —e-

k<* sinh ky\k (a > y).
Thus,

(T\ = -*? (*' °> p)- r v ^ p) e

\dy/v=o Jo
The transformation of equation (3) by (6) yields
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This last equation, together with (10), gives

(11) ij(k,p) = - - £ - (*€(«, p)e-*>dx.

Equation (11) is the fundamental result of this paper in that the equa-
tion of the free surface r](x, t) can be recovered by inversion. The order,
in which the two inversions involved are performed, determines the form
of expression of the free surface profile.

It is easily seen that effecting the Laplace inversion first yields Mackie's
[5] basic result

(12) fj{k, t) = - Jo* U(k, T) COS Vgk (t-r)dT

where

(13) V(k, T) = Jo°° U(a, T) er*dx.

3. The surface profile as a power series in g

In the previous section, equation (12) was obtained from equation (11)
by Laplace inversion. In this section, however, we will consider the effect
of taking, first, the inverse Fourier transform of equation (11). This can be
obtained in terms of the Whittaker functions Mt/1(z) and Wk/1(z) (see, for
example, Erdelyi [la], pp. 264—267) and we find (Erdelyi' [2], p. 137)
for |arg />2| < n, Re a > 0,

p

If this last equation is written in the form

(15)
ng Jo

it is seen that, on using the convolution theorem of the Laplace transform,

(16) t](x, t) = -—( C U(x, t-x) i8F^' T)
 +F(<X, o)d(r)\ drdx,

ngJo Jo [or j

where <5(T) is the Dirac delta function.
Thus, we require a function ,F(a, t) where
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g

and fl* is the conjugate complex of /?. We find ([2], p. 215) that, for
Rep > 0, Re/3 > 0,

(18) F(a, t) = 4 T e ( " ' W M i . (

Now, F(a, £) may be written in terms of the error function, Erf (z), by means
of the relation ([la], pp. 264—266)

(19) ^i,i(z2) = izle-*^ Erf ( -« )

where
Erf (z) = f'oe-*dt.

Then, using the fact ([lb], p. 147) that

oo Z2n+1

(20) Erf (z) = e~>% 2 j ^ -

where (f)B = F(f+») / r ( f ) , we have, from (18), (19) and (20),

»-0 \2) n

where /3 is given by equation (17). Hence, from (16),

\nan />oo M1 °° (— i ) v n r00 /•*
. 0 = - - 5 W^T

^ " = 0 ^ 2 ^ n ^ • '0 ^ 0

H 1 drdoL.
(a—ix)71*1 (x+ix)n+1

Equation (22) determines, for a given velocity U(y, t) of the wave-
maker, the shape of the free surface as a power series in g.

4. Particular series

The following particular cases of (22) are readily determined,
i) If a thin wedge, of angle 2e, is suddenly plunged, with constant

speed u along the «/-axis, into the liquid at rest, then

(23) U(y, t) = eu{l—H(y—ut)}
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where H{y—ut) is the Heaviside step function. Substitution of (23) in (22)
gives

£ M2 oo ( — 1 ) » £ « ft i- I I -|

This agrees with a result obtained earlier (Low [4]) and allows r\{x,t) to
be evaluated as a series of hypergeometric functions,

ii) For an impulsive velocity at y = 0,

U(y,t)=ud(y)d(t)

and (22) becomes, for x > 0,

(24)

rj(x,t) = - - jm 2,fl (2

2M ~

This, in fact, is Lamb's result ([3]), p. 385) for the shape of the free surface
due to an initial elevation of the surface confined to the immediate neigh-
bourhood of the origin. In comparing equation (24) with Lamb's result,
it should be noted that the factor 2 appearing in (24) is explained by our
adoption of the convention that

iii) For harmonic oscillations of a wavemaker located at the origin
we have

(25) U(y, t) = e™'H(t)d(y),

where w is the angular frequency. Then, for x > 0, the profile of the free
surface is given by

2 °° ( — l ) n IP \2«+i t-t
/v TOntb ( 4 n + l ) • • • 5 - 3 - 1 \2x/ J o
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