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Abstract
Stereo vision allows machines to perceive their surroundings, with plane identification serving as a crucial aspect
of perception. The accuracy of identification constrains the applicability of stereo systems. Some stereo vision
cameras are cost-effective, compact, and user-friendly, resulting in widespread use in engineering applications.
However, identification errors limit their effectiveness in quantitative scenarios. While certain calibration methods
enhance identification accuracy using camera distortion models, they rely on specific models tailored to a camera’s
unique structure. This article presents a calibration method that is not dependent on any particular distortion model,
capable of correcting plane position and orientation identified by any algorithm, provided that the identification error
is biased. A high-precision mechanical calibration platform is designed to acquire accurate calibration data while
using the same detected material in real measurement scenarios. Experimental comparisons confirm the efficacy of
plane pose correction on PCL-RANSAC, with the average relative error of distance reduced by 5.4 times and the
average absolute error of angle decreasing by 41.2%.

1. Introduction
Identification of position and orientation parameters of specific objects is a crucial task in machine
vision. 3D cameras generate point clouds containing pose information of structured objects, with
measurement and character identification being the primary functions of 3D vision.

Stereo vision, a type of 3D imaging system, captures information simultaneously from different
views, containing 3D object information. Stereo vision styles include monocular vision [1–4], binocular
vision [5–9], and multiview stereo vision [10–12], the latter being a more complex binocular variant.

RGB-D cameras, typically based on binocular vision principles [13, 14], are widely used in robots
[15, 16], drones [17, 18], industrial production [19, 20] and more. Although their refresh rate is some-
times lower than LiDAR, RGB-D systems offer color information, providing additional scene details
while remaining low-cost and easy to set up.

Construction robots often encounter plane identification problems, such as those found in wall
painting robots [21], floor surface profiling robots [22], ground plane detection [23–25], and surface
reconstruction [26, 27]. Methods for plane extraction and parameter identification include random sam-
ple consensus (RANSAC) and its variants. PCL-RANSAC, a RANSAC-based method [28] offers a
mature and stable plane identification algorithm [26].

In quantitative applications, identification precision is of utmost importance. Some measurements of
RGB-D cameras are known to have biased errors [29–32], but a priori information can be adopted to
increase accuracy [33]. A priori information is obtained from other sources but not by current measuring
instruments.

Calibration methods collect a priori information for reducing the measurement error. Zhang [34]
reported a camera calibration method that models radial lens distortion. Darwish et al. [35] proposed
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a method to calibrate each error source of the RGB-D camera. Li et al. [36] introduced a calibration
method for plane fitting by constructing a plane fitting error model on an RGB-D system. Feng et al.
[37] proposed a high-precision method for identifying petroleum pipeline interfaces by using camera
calibration. Fuersattel et al. [38] presented a calibration algorithm based on the least squares method
to increase the plane fitting precision. However, these calibration methods rely on specific error models
and do not use the same detected objects in application, leading to potential discrepancies between
calibration and application environments that may cause unpredictable errors.

Interpolation methods can effectively fit unknown models if sample points are accurate. Mechanical
measurement methods are typically reliable and precise, with high-precision encoders ensuring platform
accuracy. However, these methods often depend on a particular camera distortion model to obtain suf-
ficiently accurate sample points. This article proposes an interpolation-based calibration method that is
independent of any specific distortion models, addressing exiting limitations. The method involves gath-
ering accurate pose mapping rules offline and then applying these relations for pose correction during
online use. Although initial pre-gathered relations are discrete in pose space, a continuous mapping rela-
tion is formed using interpolation. The method is ultimately applied to a construction robot to validate
its improved precision in brick placement on a wall.

2. Calibration method proposition
2.1. Overview of plane pose correction
Suppose there is a bad-plane-pose space, which includes low-precision plane poses identified by a gen-
eral algorithm from a stereo system, and a fine-plane-pose space, which includes all accurate poses of
the actual plane. The main idea of the proposed calibration method is to find a single mapping from
the bad-plane-pose space to the fine-plane-pose space. Furthermore, for generality, the method should
accommodate situations where pose errors are irregular. Here, the pose error represents the difference
between the plane pose in the bad-plane-pose space and its corresponding pose in the fine-plane-pose
space.

Errors can be approximately regular within local subspaces, while global errors are irregular.
Interpolation equations are derived within local subspaces to build the mapping from the initial plane
pose to the accurate plane pose. A segmentation strategy is proposed for the entire space to obtain a
group of subspaces.

Accurate interpolation points are required for building precise mapping relations. A high-precision
mechanical platform is designed for gathering accurate data, and its geometry is analyzed. Accurate
plane poses are obtained using a region-of-interest method that takes the geometry of the mechanical
platform into account.

The flowchart of applying the proposed method is shown in Fig. 1.
The method comprises two parts: offline calibration and online application, as shown in Fig. 1. In

offline calibration, the camera to be used in the online scenario is fixed on the calibration platform. The
platform can adjust the relative plane pose between the camera and the plane sample. By pairing initial
plane poses and accurate plane poses, mapping relations are formed as a result of the offline calibration.
In the online application, after obtaining the initial plane pose using conventional methods, the mapping
relations correct the pose to a high-precision one. The procedures to obtain the initial plane pose for
both offline and online identification should be the same.

2.2. Mapping from a bad-plane-pose space to the fine-plane-pose space
2.2.1. Plane pose mapping relations
In this article, the issue of plane detection is examined within the camera coordinate system, as illustrated
in Fig. 2. The camera coordinate system is constituted by a right-handed Cartesian coordinate system,
with its origin OC situated at the camera’s center. The z-axis extends from OC towards the scene, while
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Figure 1. Flowchart of using calibration methodology.

Figure 2. Camera coordinate system and the detected plane.

x-axis extends from OC to the right, parallel to the camera’s horizontal direction. The y-axis extends
from OC downwards, parallel to the camera’s vertical direction.

Suppose there is a point situated within the scene, and the vision system provides an estimation of this
point’s position. This estimation is inherently biased and contains a systematic error. Eq. (1) represents
the biased estimation for an arbitrary point.

Ep
(
p̂
)= p +�p (1)

where p signifies the point’s coordinates, p̂ represents an estimate of p, Ep(p̂) denotes the expected value
of the estimation of p̂. As the estimate is biased, the expectation is equivalent to the summation of the
true value and an offset �p.

Likewise, it is postulated that the estimate of the plane’s pose parameter is biased as well, as shown
in Eq. (2).

Ec
(
ĉ
)= c +�c (2)
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Figure 3. Mapping from the bad-plane-pose space to the fine-plane-pose space.

where c represents the plane’s coefficients vector, while ĉ denotes the vector’s estimation. The
calibration’s objective is to identify the offset �c to obtain an accurate estimation Ec(ĉ).

Figure 2 displays a plane within the camera coordinate system. The plane’s pose, encompassing both
position and orientation, is parameterized by the distance, d, and inclination angle θ . The distance d is
defined as the length between the camera’s center and the plane along the z-axis. The inclination angle
θ is defined as the angle between the plane’s normal vector and the z-axis.

Eq. (3) expresses the plane’s equation.

a1x + a2y + a3z + a4 = 0 (3)

The defined distance defined can be expressed by Eq. (4).

d = −a4

a3

(4)

The defined inclination angle can be expressed by Eq. (5)

θ = arccos

(
a3√

a2
1 + a2

2 + a2
3

)
(5)

The plane’s pose can be described by an ordered pair (θ , d), which corresponds to coordinates in a
two-dimensional orthogonal coordinate system. In this system, one dimension is the inclination angle
θ , and the other is the distance d. The calibration’s objective is to establish a function concerning the
plane’s pose, which can be expressed by Eq. (6).(

θ̂ , d̂
)

= f [(θ , d)] (6)

In Eq. (6), the pose coordinates (θ , d) indicate the initial pose in the bad-plane-pose space while (θ̂ , d̂)
represent the higher precision plane pose estimation in the fine-plane-pose space. The function f should
be an injective function, which means that for any f (θ1, d1) = f (θ2, d2), there is θ1 = θ2, d1 = d2.

To formulate the function f , one must gather sufficient discrete mapping relations and employ an
interpolation method to constitute a continuous mapping function from the bad-plane-pose space to the
fine-plane-pose space.

2.2.2. Interpolation method for establishing mapping relations
The gathered discrete mapping relations comprise a set of initial poses, {(θi, di)}, and a cor-
responding set of accurate poses {(θ ∗

i , d∗
i )}. Figure 3(a) shows four gathered initial poses,

A(θ1, d1) B(θ2, d2) C(θ3, d3) D(θ4, d4), alongside their respective accurate poses A′(θ ∗
1 , d∗

1

)
B′(θ ∗

2 , d∗
2

)
C′(θ ∗

3 , d∗
3

)
D′(θ ∗

4 , d∗
4

)
. The point P symbolizes the pose (θP, dP) acquired in real-time within a bad-plane-

pose space. The corrected pose estimation P′(θ̂P, d̂P

)
in the fine-plane-pose space can be determined as

follows.
The corrected pose P′(θ̂P, d̂P

)
and the initial pose P(θP, dP) are interconnected by the intermediate

variables, a and b. As depicted in Fig. 3(b), the points E, G lie on segments AD and BC, respectively,
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Figure 4. Entire pose space composing all mapped subspaces.

dividing the segments AD, BC with the same ratio a. Similarly, points F, H are situated on the segments
BA and CD, dividing these segments with the same ratio b. Segments EG and FH intersect at point P. By
performing the same operation within the quadrilateral A′B′C′D′ using the same ratios a and b, then the
intersection point P′ signifies the corrected pose. The intermediate variables, a and b, can be obtained
according to Eq. (7)

[
θP dP

]= [
1−a a

] [b 1 − b 0 0

0 0 1 − b b

]⎡⎢⎢⎢⎢⎣
θ1 d1

θ2 d2

θ3 d3

θ4 d4

⎤
⎥⎥⎥⎥⎦ (7)

Subsequently, substituting the ratios a and b into the Eq. (7) yields Eq. (8).

[
θ̂P d̂P

]= [
1−a a

] [b 1 − b 0 0

0 0 1 − b b

]
⎡
⎢⎢⎢⎢⎣
θ ∗

1 d∗
1

θ ∗
2 d∗

2

θ ∗
3 d∗

3

θ ∗
4 d∗

4

⎤
⎥⎥⎥⎥⎦ (8)

The estimation of parameter pair with enhanced precision
(
θ̂P, d̂P

)
is now ascertainable according to

the Eqs. (7) and (8).

2.2.3. Plane pose space partitioning strategy
According to Eqs. (7) and (8), a minimum of four pairs of gathered poses are necessary to establish a local
mapping, as illustrated in Fig. 3. The entire plane pose space comprises a number of local subspaces, as
demonstrated in Fig. 4.

Figure 4 presents the abstract diagram of the bad-plane-pose space, where solid points represent the
gathered initial pose data {(θi, di)}. By connecting neighbored points, a series of quadrilaterals is formed.
The distortion of quadrilateral reflects the irregular initial pose identification error. Each quadrilateral
corresponds to a single interpolation mapping function.

In Fig. 4, some subspaces are surrounded by less than four vertices and are denoted by regions marked
with numbers 1 and 2, referred to as corner subspaces and edge subspaces, respectively. Excluding edge
and corner subspaces, the remainder is designated as internal subspaces. The mapped functions of edge
and corner subspaces can be constituted by their nearest internal subspaces, represented by subspaces
marked with numbers 3 and 4 in Fig. 4.

Assuming the number of the gathered points matrix in the row is nd, and the number of the gathered
points matrix in the column is nθ . The entire θ − d space is divided into (nθ + 1) × (nd + 1) grids. This
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including four corner subspaces, 2 × (nθ − 1 + nd − 1)edge subspaces, and (nθ − 1) × (nd − 1) internal
subspaces.

The method for identifying the corresponding subspace containing the to-be-corrected pose P(θP, dP)

is as follows. Convert the initial pose P(θP, dP) into the homogeneous vector P = [ θp dp 1 ]T . A
judgment vector J = [ J1 J2 J3 J4 ]T is defined by Eq. (9)

J = QP (9)

where Q denotes a representive matrix for a quadrilateral, defined by Eq. (10).

Q =

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

⎤
⎥⎥⎦ (10)

Each row of the representive matrix Q in Eq. (10) signifies the coefficients of the line equation,
representing one edge of the corresponding quadrilateral subspace in the pose coordinate system, as
shown in Eq. (11).

aiθ + bid + ci = 0 (11)

The initial pose point P(θP, dP) is located within the quadrilateral subspace only when each element
of the judgment vector J is positive. Upon determining the inclusion relationship between an initial
pose P(θP, dP) and its corresponding subspace is obtained, the corrected pose estimation P′(θ̂P, d̂P

)
can

be ascertained according to Eqs. (7) and (8).

2.3. Calibration platform and geometry analysis
A high-precision mechanical calibration platform is designed to gather high-quality mapping relations.
The detected object sample and the camera device are affixed to the platform, which adjusts the relative
pose between the camera and the plane. A to-be-corrected relative pose estimated by the vision system
and an accurate relative pose supplied by the platform constitutes one pose mapping relation. The plat-
form alters the relative poses to encompass the entire range of relative poses as extensively as possible.

The calibration platform, as depicted in Fig. 5, is a three-degree-of-freedom platform with two trans-
lational degrees and one rotational degree. The rotation degree facilitates changing the detected plane’s
inclination angle θ while the horizontal translational degree adjusts the distance d between the detected
plane and the camera. The supplementary vertical translation degree is employed solely for adjusting
the camera’s height during initial platform assembly. High-precision encoders on the platform guarantee
the accuracy of the acquired relative poses, with the camera situated on the vertical slide.

To attain heightened calibration precision, the target plane’s pose must be precisely known. Ideally,
the sample had better be the actual detected object in the applied scenario. As shown in Fig. 5, a rect-
angular entity is positioned on the rotating table, with the center axis of the rotating table aligning with
the block’s center axis. The entity’s front surface serves as the plane to-be-detected.

Each calibration initiation begins with an initialization process to ensure calibration accuracy. The
platform propels the camera forward until its front surface aligns with the block’s surface. To verify the
alignment of the camera with the block’s surface, a fragile piece of paper is placed between the two
surfaces and the horizontal slider adjusted until the paper is neither too taut nor too slack.

Nonetheless, the distance value derived from the horizontal slide cannot directly represent the dis-
tance between the camera and the target plane. Due to camera’s optical origin offset and the block’s
thickness, the distance must be compensated. Figure 6 illustrates the geometry principle of the distance
compensation from a top view.

The distance dE represents the value read directly from the horizontal slide. The offset s signifies
the lateral offset between the camera’s optical origin and the symmetrical plane. The distance d1 and d2
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Figure 5. Prototype of mechanical calibration platform.

Figure 6. Distance compensation of calibration platform.

denote the compensation resulting from the block’s rotation and the lateral offset s. The final modified
distance can be expressed by Eq. (12).

d∗ = dE − d1 − d2 = dE − w

2

(
1

cos θ
− 1

)
− s tan θ (12)

The platform adjusts the relative poses according to the pre-defined distance list, {Dj|j = 1, 2, . . . , nD},
and angle list {θi|i = 1, 2, . . . , nθ}. Initially, the horizontal slide distance is set to D1, and the inclination
angle is set to each value within the angles list sequentially. Subsequently, the distance is set to the
remaining values in the distance list and the angle changes are repeated. Ultimately, nD × nθ mapping
relations are gathered from the calibration.
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Figure 7. Planar coordinate system arrangement of camera view.

2.4. Preprocessing of raw point cloud data
Typically, a stereo camera can directly generate point clouds through methods based on binocular dis-
parity or other principles. The random sample consensus (RANSAC) algorithm is an effective iterative
method to identify planes from point clouds.

Prior to plane identification, pre-filtering points that may belong to the plane point cloud can eliminate
numerous outlier points. If an excessive number of outliers exist beyond the target plane within the entire
point cloud, they might influence the plane identification outcome. The region-of-interest (ROI) method
is effective for filtering purposes.

A planar image coordinate system (refer to Fig. 7) is established to represent the ROI filter employed
on the calibration platform.

At a specific instant, there is one point, P(xp, yp, zp), lies within the camera coordinate system, and
belongs to the real-time point cloud. Its corresponding point, P(uP, vP), in the defined image coordinate
system is defined as

[
uP

vP

]
=

⎡
⎢⎢⎣

2

θh

arctan 0 0

0
2

θv

arctan 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

xP

zP

yP

zP

1

⎤
⎥⎥⎥⎥⎦ (13)

where θh denotes the horizontal field of view and θv signifies the vertical field of view. The operator
arctan indicates the arc tangent operation. If a point is visible in the view field, the value ranges of its
coordinates in the image coordinate system defined by Eq. (13) are uP ∈ [ − 1, 1] andvP ∈ [ − 1, 1].

Suppose four known vertices of ROI in the camera coordinate system are
V1(x1, y1, z1), V2(x2, y2, z2), V3(x3, y3, z3), and V4(x4, y4, z4).

[
u1 u2 u3 u4

v1 v2 v3 v4

]
=

⎡
⎢⎢⎣

2

θh

arctan 0 0

0
2

θv

arctan 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

z1

x2

z2

x3

z3

x4

z4

y1

z1

x2

z2

x3

z3

x4

z4

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦ (14)

In Eq. (14), V1(u1, v1), V2(u2, v2), V3(u3, v3), V4(u4, v4) are the corresponding coordinates in the defined
image coordinate system.

Divide the quadrilateral ROI, V1V2V3V4, into two triangles �V1V2V3 and �V1V3V4. If a point situ-
ates within the ROI, it must lie in one of the triangles. The algorithm for determining whether point
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P(xp, yp, zp) is located within the triangle �V1V2V3 is expressed in Eq. (15).
⎡
⎢⎣

u1 tan(θh/2) u2 tan(θh/2) u3 tan(θh/2)

v1 tan(θv/2) v2 tan(θv/2) v3 tan(θv/2)

1 1 1

⎤
⎥⎦
⎡
⎢⎣

J1

J2

J3

⎤
⎥⎦ =

⎡
⎢⎣

xP

yP

zP

⎤
⎥⎦ (15)

where the vector [ J1 J2 J3 ]T represents the judgment vector. If each element of vector [ J1 J2 J3 ]T

is positive, the point P(xp, yp, zp) lies inside this triangle. If any element of the vector is negative, then
the other triangle of the ROI, �V1V3V4, should be examined.

For the proposed calibration platform, the ROI can be chosen as a rectangle affixed on the detected
surface. Along with the changing of relative distance and inclination angle, real-time coordinates of
vertices can be computed by using Eq. (16)

V∗
ROI = T2MT1V0

ROI (16)

In Eq. (16), V∗
ROI represents the real-time coordinates of ROI vertices, as defined by Eq. (17)

V∗
ROI =

[
V∗

1 V∗
2 V∗

3 V∗
4

]
(17)

In Eq. (16), V0
ROI signifies the coordinates of ROI vertices in the initial condition, as defined by

Eq. (18).

V0
ROI =

[
V0

1 V0
2 V0

3 V0
4

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− l1

2
− l1

2

l1

2

l1

2
l2

2
− l2

2
− l2

2

l2

2
c0 c0 c0 c0

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where l1 denotes the length of the rectangle and l2 represents the height of the rectangle. The initial state
of the platform is defined as the status θ = 0, d = 0. The symbol c0 denotes the displacement between
the camera’s optical origin and the front surface.

In Eq. (16), the matrix T1 represents a transformation matrix, as shown in Eq. (19)

T1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 −w

2
− c0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (19)

where w denotes the thickness of the sample entity.
In Eq. (16), the matrix M represents a transformation matrix, as depicted in Eq. (20)

M =

⎡
⎢⎢⎢⎢⎣

cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (20)

where θ denotes the relative inclination angle.
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In Eq. (16), the matrix T2 represents a transformation matrix, as shown in Eq. (21)

T2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 d∗ + w

2
+ c0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (21)

where d∗ denotes the modified distance defined by Eq. (12).

3. Experimental validation
3.1. Devices overview
Intel RealSenseTM D435i (abbreviated as D435i throughout this article) is a compact, low-cost,
consumer-grade, binocular stereo camera. RealSense series camera are popular in various applications.
Keselman et al. [39] discussed the performances and limitations of RealSense cameras. Zhu et al. [6]
employed the D435i for safety monitoring of solitary individuals. Huynh et al. [40] utilized D435i for
estimating robot poses. Rong et al. [41] used it for recognizing oyster mushrooms in auto-harvesting.

Most D435i applications are qualitative, such as morphology detection or color feature recognition.
The official document for the D435i states a relative error of 2% of the distance. Among the ten recently
published papers that mentioned D435i in their abstracts [29–32, 41–46], only four utilize the camera’s
measurement function. When measuring the length of the grape clusters [30], the error ranges from
around –20 to 20 mm. Neupane et al. [29] conducted an experiment measuring ceramics, PTFE, and
fruits, with measurement residuals for the D435i ranging from 5 to 240 mm with measurement distance
varying from 400 to 4000 mm. Measurements on the sewers [31] show errors from around 40 to 130 mm,
while fluid surface measurements [32] reveal errors from approximately 10 to 60 mm. These precision
values are appraised reading from the figure reported in the cited papers. Some cameras mentioned in
these papers are actually D435 model, which differs from D435i only in the presence of an inertial
measurement unit.

The experiment in this section utilizes D435i to demonstrate the extent to which precision can
be increased using the existing method. Improved precision enables the adoption of the D435i in
quantitative and high-precision-required scenarios.

The geometric parameters of D435i are as follows: the lateral offset of optical origin to the symmetri-
cal plane is s = 17.5 mm; the longitudinal offset of optical origin to the camera surface is c0 = 4.2 mm;
the horizontal field of view is θh = 86◦; the vertical field of view is θv = 57◦.

The encoders in the slides and the rotation joint of the calibration platform ensure accuracy during
the fine pose data gathering process. The linear translation stage employs a closed-loop stepper system.
The slide encoder’s resolution is 5 µm/pulse. And the absolute translation error is, at most, 0.03 mm
according to the slide’s official statement.

The resolution for the rotation motor’s encoder is 19 bits, corresponding to 524,288 counts per revolu-
tion or 0.00069◦ per count. Typically, the position error is larger than the numerical resolution. According
to the official statement, the motor’s maximum absolute position error is 0.05◦.

3.2. Calibration data acquisition
A RANSAC-based method implemented in PCL Library (PCL-RANSAC) [28] serves as the experi-
mented plane identification method to be calibrated. The PCL Library is an open project for point cloud
processing and is widely used in research [26, 47, 48]. In the experiments, PCL-RANSAC threshold is
set to 0.005 m.
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Figure 8. Calibration data of initial poses in bad-plane-pose space.

A list of standard distances and angles in calibration can be found in Appendix A. At each set of
distance and inclination angle values, 20 sets of point cloud are captured. As random error cannot be
ignored in single measurement, averaging 20 measurements to reduce random errors.

Following the previously introduced calibration processes, the calibration data of initial poses in
bad-plane-pose space is shown in Fig. 8.

In Fig. 8, each solid point represents an initially detected pose obtained by the stereo system, with
the distribution of the points appearing distorted.

To display the difference between initial pose points and the accurate ones, segments connecting each
initial pose point to its corresponding accurate pose point are shown in Fig. 9.

Each segment in Fig. 9 represents a mapping relation from the initial pose to the accurate pose. Then,
using the interpolation method represented in Section 2, any online detected initial pose can be corrected
to a more precise one.

3.3. Validation on correcting the pose identified by PCL-RANSAC
Comparisons are made between the poses identified by PCL-RANSAC and the results after correcting
by using the proposed method.

First, a comparison of distance identification is made. The inclination of the plane angle is fixed at
θ = 0 in this comparison experiment. Tested distance values are randomly chosen every 10 mm from
260 to 700 mm.

Figure 10 displays the comparison of the identified distances before and after the calibration mapping.
The red polylines represent the initial data from PCL-RANSAC. Random errors cause fluctuation around
an approximate linear increasing trend. The identification error increases with the detected distance.
After calibrating the initial distance, errors are reduced to a much lower level, represented by the blue
polyline shown in Fig. 10.

Figure 11 displays the relationship between the ratio of error and distance, illustrating the cor-
relation between the error and distance. The results show that the ratio increases along with the
distance increasing before calibration. However, after calibration, the ratio does not exhibit significant
changes.
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Figure 9. Mapping relations from initial poses to corrected poses.

Figure 10. Comparison before and after calibration with varied plane distances.

Data points with errors ten percent larger than the observed distance are considered outliers and
ignored. The results of the distance correction experiment are shown in Table B1, Appendix B.

In addition to distance experiments, a comparison on both distance and inclination angle identifica-
tion is conducted. Distances are chosen randomly every 10 mm, from 200 to 800 mm. The inclination
angles are chosen randomly every 10◦ from –45◦ to 45◦.

Figure 12 shows the comparison between calibrated and non-calibrated poses in the θ − d coordinate
system.
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Figure 11. The relationship between the ratio of error to observing distance and observing distance.

Figure 12. Comparison before and after calibration with varied distances and angles.

In Fig. 12, red segments connect the accurate pose points to the non-calibrated pose points, while
black segments connect the accurate pose points to the calibrated ones. For clarity, Fig. 13 illustrates
the calibrated segments only.

From Figs. 12 and 13, the comparison clearly shows a significant reduction in errors. However, in
Fig. 13, some segments are still noticeable compared to others. These segments, which are nearly parallel
to the θ axis, indicate that the angle errors of these points do not achieve good results. Nonetheless,
compared to Fig. 12, the original data for these samples are already unformatted compared to the other
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Table I. Results of distance and angle correction experiment.

/ Mean absolute error
of distance (mm)

Mean relative error
of distance (%)

Mean absolute
error of angle (◦)

PCL-RANSAC 7.350 1.292 0.4299
After calibration 0.9091 0.2378 0.2530

Figure 13. Lines connected accurate pose points and calibrated pose points.

data. These unusual error samples are likely caused by random noises and fluctuations in the point cloud.
Most samples are calibrated to a low-error value, even including a few abnormal samples.

The results of the distance and angle correction experiment are shown in Table I. The mean absolute
error of distances, the mean relative error of distances, and the mean absolute error of angle are listed.
Before calculating the averages, absolute operations are performed on each original value.

According to the results in Table I, this calibration significantly improves the precision of distance
and angle identification over PCL-RANSAC.

4. Application to construction robotics
A construction robot discussed herein, a mobile manipulator, comprises a 6-degree-of-freedom robotic
arm, an elevation mechanism, and a wheeled chassis, endowing it with redundant mobility capabilities
suitable for construction tasks. The robotic arm is responsible for carrying and positioning bricks, while
the wheeled chassis ensures ample workspace for the construction robot.

The aforementioned calibration method for plane parameter identification is utilized during brick
wall construction processes. The primary objective is to accurately position each brick.

Assuming a brick wall comprises n1 layers and n2 bricks per layer. The pose information for a
brick is denoted by vector bij = [xij, yij, zij, aij, bij, cij]T . The first three components represent the spatial
coordinates of the brick’s center, and the remaining three signify the front surface’s normal vector.

Matrix B∗, the target matrix, encapsulates the construction task and contains the desired pose for each
brick, as articulated in Eq. (22).

B∗ =
⎡
⎣ b∗

11 . . . b∗
1n2

. . . . . . . . .

b∗
n11 . . . b∗

n1n2

⎤
⎦ (22)
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Figure 14. Brick’s position and orientation.

Figure 15. Construct the brick wall with a mobile manipulator. (a) overall view of the robot system. (b)
prototype experiment.

The construction of an autonomous robot involves iteratively retrieving bricks from storage and
accurately positioning them in the designated area until all bricks have been placed.

Accurate pose detections are performed for bricks on the wall, as illustrated in Fig. 14. All bricks share
uniform dimensions, l, d, and h correspond to length, width, and the height. Brick’s pose is expressed
through yaw(ψ), pitch(θ ), and roll(φ). Given that the brick’s bottom surface rests atop the foundation
wall, it remains approximately parallel to the ground. Consequently, yaw is emphasized during pose
detection, while pitch and roll are comparatively negligible, as they are constrained by the alignment
of the bottom and upper surfaces. Similarly, the displacements �x and �y are prioritized over �z, as
demonstrated in Fig. 14.

A multi-camera stereo system is then established to reduce constructing error. Three cameras, posi-
tioned on the robot as shown in Fig. 15, ensure the placing precision. Camera 1, mounted on the robot’s
gripper, detects the side planes of existing bricks, while the other two cameras, situated at the robot’s
front, monitor the caught brick’s outer surface and brick wall’s outer surface. The robot identifies the
foundation wall’s pose while placing each brick, thus ensuring precise placement.

The proposed calibration method is applied to automate brick wall construction using the robot,
achieving a flatness performance below 4 mm.

5. Results and discussion
The calibration process may be perceived as a rectification procedure for any plane poses identification
algorithm. Subsequent to plane pose correction, precision is enhanced relative to the initial plane pose.
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Validations are conducted employing a widely used plane pose identification algorithm, PCL-RANSAC.
As indicated by the experimental outcomes in Table I, the mean absolute distance error diminishes
from 7.350 to 0.9091 mm. The mean relative error of distance declines from 1.292 to 0.2378%. The
mean absolute angle error decreases from 0.4299◦ to 0.2530◦. The angle identification error has no
notable correlation to the true pose angle. Thus, the mean relative angle error is not enumerated in
Table I.

The experimental results validate that the proposed calibration method and mechanical platform can
augment the precision. Relative to the method reported in ref. [35], the proposed calibration method
demonstrates superior performance at short detected distances. The relative error reported in ref. [35]
is 0.867% at 0.8 m, –1.346% at 0.802 m, –0.520% at 0.947 m, and 0.298% at 1.110 m. Moreover, the
relative error reported in ref. [36] is 0.49% at 1.23 m. Conversely, our results reveal a mean relative
distance error of 0.2378% within 1 m.

No specific camera distortion model is required in our calibration method, unlike the method pro-
posed in refs. [35] and [36]. The bilinear interpolation method can fit any camera distortion model,
provided the system error of plane pose identification remains continuous at varying distances and
angles.

Additionally, the mechanical platform shows crucial for enhanced calibration. The interpolation-
based method demands extensive data collection to better fit the error functions. The mechanical
platform can swiftly move and accurately position itself, facilitating calibration completion in a minimal
timeframe.

As depicted in Fig. 10, a biased residual of approximately 2 mm persists after calibration. This may be
attributable to suboptimal initial calibration data collection. As demonstrated in Fig. 9, the original cali-
bration data points are unevenly distributed. Moreover, despite the mechanism resolution sufficiency for
precise pose calculation, installation errors of components and the detected plane sample’s nonideality
may engender errors.

6. Conclusions
This article presents a calibration method that does not rely on particular camera distortion models
for plane identification. A high-precision, three-degree-of-freedom mechanical calibration platform
is devised to perform high-precision calibration data gathering tasks. The platform gathers mapping
relations between low-precision plane poses derived from the stereo system and accurate plane poses
obtained from the platform. By employing the interpolation method, any real-time acquired plane pose
can be rectified to a more precise one by utilizing pre-gathered mapping relations. Experimental compar-
isons validate the plane pose correction’s efficacy on PCL-RANSAC. The mean absolute distance error
reduces from 7.350 to 0.9091 mm, the mean relative distance error diminishes from 1.292 to 0.2378%,
and the mean absolute error of angle reduces from 0.4299◦ to 0.2530◦. This calibration method can be
applied to any plane parameters identification algorithm, as long as the initially identified pose exhibits
a biased error. Simultaneously, this method can be employed in other plane detection scenarios except
for the plane pose detection of brick surfaces.
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Appendix A
During the calibration data collection process by a mechanical platform, distance values are designated
at 200 mm, 210 mm, 220 mm, 230 mm, 240 mm, 250 mm, 260 mm, 270 mm, 280 mm, 290 mm, 300mm,
310 mm, 320 mm, 330 mm, 340 mm, 350 mm, 360 mm, 370 mm, 380 mm, 390 mm, 400mm, 410 mm,
420 mm, 430 mm, 440 mm, 450 mm, 460 mm, 470 mm, 480 mm, 490 mm, 500 mm, 520mm, 540 mm,
560 mm, 580 mm, 600 mm, 620 mm, 640 mm, 660 mm, 680 mm, 700 mm, 740 mm, 780mm, 820 mm,
860 mm, and 900 mm. Inclination angle values are designated at –45◦, –40◦, –35◦, –30◦, –25◦, –20◦,
–15◦, –10◦, –5◦, 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, and 45◦.

Appendix B
Table B1 enumerates the results of the distance correction experiment.
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Table B1. Results of distance correction experiment.

PCL-RANSAC After calibration

Absolute Relative Absolute Relative
NO. True distances (mm) error (mm) error (%) error (mm) error (%)
1 260.00 1.28 0.491 0.008 0.003
2 265.62 1.62 0.609 1.014 0.382
3 270.32 1.38 0.509 1.033 0.382
4 280.24 1.47 0.526 0.539 0.192
5 296.42 2.68 0.905 1.396 0.471
6 300.39 2.41 0.803 1.321 0.440
7 311.77 2.25 0.720 0.528 0.169
8 323.32 2.36 0.729 0.174 0.054
9 337.97 3.36 0.995 1.144 0.338
10 340.11 3.40 1.001 1.124 0.330
11 353.79 2.92 0.825 0.205 0.058
12 360.26 3.08 0.854 0.227 0.063
13 377.82 4.31 1.140 1.188 0.314
14 382.75 4.43 1.158 1.119 0.292
15 394.01 4.16 1.057 0.672 0.171
16 405.82 4.72 1.163 0.971 0.239
17 413.07 5.61 1.357 1.602 0.388
18 427.58 5.54 1.295 1.335 0.312
19 436.48 5.38 1.233 0.857 0.196
20 448.62 6.60 1.472 1.965 0.438
21 454.76 5.59 1.229 0.688 0.151
22 462.80 5.78 1.250 0.720 0.156
23 477.88 7.09 1.483 1.479 0.309
24 484.84 6.06 1.250 0.280 0.058
25 491.18 7.87 1.603 1.942 0.395
26 500.72 8.17 1.631 2.025 0.404
27 512.98 8.60 1.676 1.940 0.378
28 525.09 8.65 1.647 1.499 0.286
29 531.57 8.47 1.593 1.079 0.203
30 542.97 9.41 1.733 1.634 0.301
31 559.40 9.37 1.675 1.259 0.225
32 568.73 11.24 1.977 2.594 0.456
33 578.59 9.42 1.628 0.361 0.062
34 589.72 10.95 1.857 1.286 0.218
35 598.98 10.47 1.748 0.432 0.072
36 605.01 11.87 1.962 1.325 0.219
37 610.11 10.83 1.775 0.042 0.007
38 620.75 13.38 2.156 1.974 0.318
39 638.33 14.23 2.229 2.799 0.439
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Table B1. Continued.

PCL-RANSAC After calibration

Absolute Relative Absolute Relative
NO. True distances (mm) error (mm) error (%) error (mm) error (%)
40 648.08 12.74 1.965 0.512 0.079
41 650.86 12.21 1.876 0.226 0.035
42 662.11 15.15 2.288 1.791 0.270
43 678.34 16.51 2.434 3.236 0.477
44 688.68 14.95 2.171 1.225 0.178
45 694.86 14.23 2.048 0.203 0.029
Avg. 474.75 7.38 1.416 1.133 0.244
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