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Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical

behaviours. Recent experimental advances have led to characterisations of these behaviours

in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the

fracture and fragmentation properties of biofilms. These properties are macroscale features

of biofilms; however, a previous work by our group has shown that heterogeneous microscale

features are critical in predicting biofilm rheology. In this paper, we use tools from statistical

physics to develop a generative statistical model of the positions of bacteria in biofilms.

Specifically, the model is a type of pairwise interaction model (PIM). We show through

simulation that the macroscopic mechanical properties of biofilms depend on the choice

of microscale spatial model. A key finding is that uniform and non-uniform sets of points

lead to differing mechanical properties. This distinction appears not to have been previously

considered in mathematical biofilm literature. We also found that realisations of a biologically

informed PIM have realistic in silico mechanical properties, and have statistical properties

that closely match experimental data. We also note that a Poisson spatial point process

of suitable number density also yields realistic mechanical properties, but that the spatial

distribution of points does not reflect those occurring in our experimentally observed biofilm.

Key words: Biofilms, Biomechanics, Nonparametric Density Estimation, Spatial Stochastic

Processes

1 Introduction

Biofilms are complex, multiorganism communities of bacteria. They are abundant in

nature and grow readily in many industrial systems, where they often cause maintenance

and safety issues. Measures to mitigate or remove biofilms, though costly, are often

necessary in the design and operation of many industrial systems [16,22]. The demand for

better biofilm control strategies and the causative role of biofilms in bacterial infections

has inspired the development of numerous mathematical biofilm models [17,22,25,31,43,

46, 50, 54–56]. Despite a 30-year history, it is only recently that the validation of models

by comparison with empirical data has become a focus in computational biofilm studies.

Recent works have shown agreement between experiment and simulation regarding the
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frequency dependent dynamic moduli [43], the ranges of certain spring constants [50], and

the rate of disinfection of biofilms in response to antimicrobial substances [56]. However,

this recent progress has also led to new questions.

Due to the complex behaviour of biofilms, even state-of-the-art models rely on many

assumptions. Material parameter values, biofilm morphology, and properties of a vis-

coelastic network of fibres that link bacteria together (known as the extracellular poly-

meric substance) are often specified heuristically. Furthermore, even when parameters are

informed by experimental results, there are difficulties. For instance, the experimental

measurements of biofilm properties may differ by orders of magnitude between studies

depending on the specifics of the conditions under which biofilms were grown and tested

[36].

The assumptions noted before involve microstructural properties. Although, some mi-

crostructural properties have been measured [13,42], little work has been done to elucidate

the influence of microstructural properties on macroscale behaviours. Along these lines,

there are two main goals to this paper. The first is to introduce a microstructural descrip-

tion of Staphylococcus epidermidis biofilms by estimating certain fundamental statistical

characteristics from experimental data. The second is to numerically demonstrate the

efficacy of first- and second-order summary statistics for generating data with similar

material properties as experimental data sets. The similarity of material properties is

tested through simulation using the heterogeneous rheology Immersed Boundary Method

(hrIBM) [25, 43].

1.1 Biofilm point data: Description and pre-processing

Here, we provide a summary of the techniques used to (1) obtain data on the locations

of bacteria in situ and (2) process such data to make it suitable for statistical analysis.

Detailed descriptions of these steps can be found in [42] and [36] and the references

therein.

Measuring properties of live biofilms is difficult due to the micrometer scale thickness

of biofilms and empirical observations that they deform upon removal from an aqueous

environment. In [42], high resolution confocal laser scanning microscopy (CLSM) is used

to image biofilms because it is nondestructive, can be applied to live biofilms, and resolves

the biofilm up to features of about 0.5 μm in size—small enough to capture individual

bacteria. With CLSM, a series of images, each vertically offset by a small amount from

the previous, are layered together to provide a three-dimensional (3-D) data set.

The raw CLSM data forms a 3-D grey-scale image of a biofilm. Using the image

analysis methods described in [10], the centroid of each individual bacteria can then be

obtained to very high accuracy compared to the size of a bacteria. We use the list of

bacteria centroids as the data for our model. An image of a biofilm point data set is

depicted in Figure 1.

This data set contains a list of 3-D coordinates of the centres of mass of about 4, 000

bacteria from live biofilms. Moving from z = 0 to z ≈ 10, takes us from the biofilm-

substrate interface to the biofilm-fluid interface. In this paper, results from this data set
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Figure 1. An experimental data set from a live biofilm. The data set is approximately 30 μm ×
30 μm × 10 μm in size and consists of the centres of mass of 3,981 live bacteria. This data was

obtained from high-resolution confocal microscopy images. The techniques used to obtain this data

are discussed in [42]. The colouring is for ease of viewing and simply corresponds to the z-coordinate

of each bacterium.

and three additional data sets obtained through the same techniques serve as a basis on

which our statistical analysis is conducted.

1.2 Overview of mathematical approach

To begin, we develop a point process model of the positions of bacteria in a biofilm

that is parametrised by quantities derived from the experimental data. In particular,

using estimators of the number density and pair correlation function (PCF), we used a

numerical method to solve an integral equation, known as the Ornstein–Zernike equation,

and employed an approximate relation known as the hypernetted-chain equation (HCE)

to obtain a pairwise potential energy function. This pair potential, along with an external

potential, whose derivation from an integral relation is discussed in Section 2.2, is used

to compute the value of an unnormalised probability density function associated with the

configuration of points. We then generated biofilm realisations by using a Metropolis–

Hastings (MH) algorithm with that is constructed to converge to a certain probability

distribution discussed in Section 2. Finally, in Section 6, we use the hrIBM to com-

pare material properties of the statistically generated biofilm samples to experimental data.

We also note that the overall procedure bears similarity to another recent article.

In [15], a statistical model of red blood cell cytoskeletal structure parametrised by

empirical data is introduced, and immersed boundary method simulations are used to

estimate biomechanical properties of the model, which are quantitatively compared to

experimental data.
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1.3 Organisation of the paper

In Section 2.1, we introduce the statistical model for the positions of bacteria in a biofilm.

The model, known as a pairwise interaction model (PIM), is designed to accurately

replicate first- and second-order spatial statistics. Similar types of models are frequently

studied in the statistical mechanics of fluids, and much of our discussion of the model

follows the classic texts [26, Section 5] and [33, Section 6].

In Section 3, we detail the non-parametric estimators of summary statistics of finite

point processes that are necessary for the computation of energy functions in the PIM

model. These estimators are based on those analysed in [29, 30, 33, 44, 45, 47]. In Section

4, we discuss the numerical solution of the integral equations used to obtain the energy

functions from estimable spatial statistics of the data.

From the PIM, an unnormalised probability density associated with the configuration

of bacteria in the biofilm is obtained and used in Markov Chain Monte Carlo (MCMC)

simulations to generate ‘artificial’ biofilms [33, 53]. Details can be found in Section 5.

Once realisations of the PIM have been obtained, the material properties of the artificial

biofilms generated by the PIM, along with some previous biofilm generation models

(e.g., [2, 46]), can be compared to those of the experimental data obtained through high

resolution CLSM. This comparison is achieved through simulations using the hrIBM to

estimate the dynamic moduli of the resulting biofilms. In Section 7, we discuss the results,

motivate some future research directions, and suggest potential improvements.

2 A pairwise interaction model of bacterial biofilms

In this section, we first introduce the statistical model and then discuss how parameters in

the model are obtained through the use of statistical estimators and the solution of certain

integral equations. In constructing a model of the positions of bacteria in a biofilm, we

require that the model is physically realistic. In particular, the model should be able to

accurately account for volume exclusion effects due to the finite size of bacteria, regularity,

and spatial coordination in the positions of bacteria, and possess statistical characteristics

that match those computed from the experimental data. Furthermore, since relatively few

attempts have been made to analyse such biofilm data, we require a model with parameters

that may be estimated empirically. Lastly, to enhance the clarity of this work, we have

compiled in Table 1 a list of definitions of all frequently used variables and functions.

A fairly general class of models that can account for these properties are the Markov

point process models [33, Section 6]. Among the various types of Markov point process

models, PIMs are an attractive choice for this application. They are among the simplest

Markov point process models, requiring only the specification of an external potential and

a pairwise potential, and there is a well-established theory for obtaining such potentials

empirically from the data with minimal assumptions.

The probability density associated with a point configuration of n points, denoted X ,

for a general PIM is of the form [26, Section 2]

f(n)(x1, . . . , xn) =
1

Zn

exp

⎡
⎣− n∑

i=1

φ(xi) −
n∑

i=1

n∑
j=i+1

v(xi, xj)

⎤
⎦ , (2.1)
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Table 1. Definitions of commonly used symbols

Symbol Definition

W Borel set containing experimental data

r, (x, y, z) Generic point in �3

x Point contained in a point process realisation

rn Collection of n points in �3

X Realisation of a point process

Φ Generic point process

ν(B) Lebesgue measure of a set, B

ρ(2)(r1, r2) Second-order factorial moment density

g(r1, r2) Second-order correlation function

h(r1, r2) Indirect correlation function, h(2) = g(2) − 1

f(n)(rn) nth order probability density

ρ(r) Number density (also known as the intensity), equivalent to ρ(1)(r)

q̂ Estimator for quantity q

q̃ Hankel transform of quantity q

�[q] Expectation of q

kb(r) Smoothing kernel with support of radius b

cb,W (z) Edge correction factor

c(r1, r2) Direct correlation function

φ(r) External potential

v(r1, r2) Pair potential

ex Unit vector in x-coordinate direction

Hk(r) Nearest-neighbour distribution function

The nth-order probability density when integrated over a product set, B1 × B2 × . . . Bn, with Bi ∩ Bj = ∅, gives

the probability that for each ri, there exists exactly one Bk such that ri ∈ Bk for i ∈ [1, n].

where φ is known as an external potential, v a pairwise potential1, and the

normalisation factor, Zn the canonical partition function. The probability density,

fn(x1, . . . , xn)dx1, . . . , dxn can be interpreted as the probability, given n distinct points

{x1, . . . , xn} of there being a single point in each of the regions of volume dxi centred at xi.

Variations in the external potential are closely related to variations in the number

density of bacteria in various parts of the domain. For instance, given data in a bounded

region, outside of the bounded region, we could set φ(r) = ∞ so that f(n) tends to zero if

any points are outside the domain. This property will be useful in Section 5.

For our case, the domain, denoted W is the smallest rectangular solid containing all

data points. In particular, we set the minimum x-, y-, and z-coordinates to 0, and the

maximum coordinates correspond to the maximum of each coordinate over all data points

within the data sets. The assumption of W being a rectangular solid seems justified by

the fact that the data is relatively homogeneously distributed throughout W (although

there is some number density variation, see Section 3).

1 In the statistical physics community, it is customary to include a temperature dependence

on the energy as βv(r1, r2) for the pair potential (or external potential), where β is an inverse

temperature [26, Section 2]. In this paper, we are not concerned with thermal effects, so we redefine

v ← βv and φ ← βφ. Furthermore, without some assumption on the ‘temperature’ of the biofilm,

β and v or φ are not independently estimable quantities.
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The form of the pair potential is crucial to accurately modelling interactions between

bacteria. Since we do not know of previous studies on the statistical generation of biofilm

data, we take an empirical approach to obtaining a pair potential. Other possible choices

we could have made include Poisson point process models, Hard-Sphere models2, and

Strauss Process models. In this paper, we explore an empirical choice, and also provide

some comparison with a Poisson point process. We favour the empirical model over the

other models due to its ability to better match the PCF shown in Figure 4(a).

Empirical choice for potentials

The choice of φ(r) and v(r1, r2) has a profound influence on the resulting model. Since,

to the authors’ knowledge, this work is the first to propose a PIM-type model for

bacteria spatial positions, we have little intuition about the forms of φ and v, so would

like to estimate them from data. Unfortunately, estimating v(r1, r2), a function of six

coordinates, empirically requires a vast amount of data; beyond what is available to

us from experiment. Thus, we assume several conditions to reduce the dimension of

the problem. These assumptions will be described in Section 2.3. The result is that the

external potential becomes a function only of z, the coordinate that governs distance from

the biofilm-substrate and biofilm-fluid interfaces, and the pairwise potential reduces to a

function of z1, z2, and the planar separation |r1 − r2|xy ≡
√

(x1 − x2)2 + (y1 − y2)2). For a

nonnegative, measurable function, q(X ) of finite point configurations, the expected value

over all realisations of the PIM model, with an arbitrary number of points, can be written

in the form

� [q(X )] =
1

Ξ

∞∑
n=0

1

n!

∫
. . .

∫
︸ ︷︷ ︸

n

q(r1, . . . , rn)f
(n)(r1, . . . , rn)dr1, . . . , drn, (2.2)

where the normalisation constant, Ξ is known as the grand-canonical partition function

[7,26]. The Markov property of the PIM comes from the assumption of f(n)(·, . . . , ·) being

dependent on pairwise interactions between particles (or more generally on a Markov

function as shown through the Clifford–Hammersley theorem [33, 40]).

Poisson point processes

Point processes are point processes with v(r1, r2) = 0, in other words, there are no

interactions between pairs of points. An important property of a Poisson process is

that given two disjoint Borel sets, B1 and B2, the cardinalities of XB1
and XB2

are

independent, Poisson distributed random variables. Numerous characterisations of Poisson

point processes exist, and they are frequently used as models for a wide range of random

phenomena. The statistical properties of a Poisson point process do not agree with

statistical properties of biofilm data because Poisson point processes do not exhibit any

interactions between points. However, we will see in Section 6 that mechanical properties

2 Hard-Sphere processes are point processes that have a minimum radius whereby the set of point

configurations with a pair of points closer than the minimum radius is observed with probability 0.
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of data generated from a Poisson process with an average number density equal to that

of the biofilm data do match experimental values.

In the next three subsections, we discuss an important class of functions that arise in

the study of point processes, show how the external potential and pairwise potential can

be estimated from readily observable properties of the data, and provide more detail on

the assumptions introduced to reduce the dimensionality of the PIM potentials.

2.1 Factorial moment measures, product densities, and the pair correlation function

The theory of point processes [12, 33] provides a starting point from which to develop a

model of the locations of bacteria in biofilms. Point processes are defined as measurable

mappings from a probability space, to the space of locally finite point configurations. A

locally finite point configuration, X ≡ {x1, x2, . . . , }, is a countable collection of distinct

points in �3 such that for all bounded Borel sets, B ⊂ �3, the restriction,XB ≡ X ∩B is of

finite cardinality. Point processes are typically characterised in terms of their probability

distribution over locally finite point configurations [33, 45, Section 2] or as locally finite

random counting measures [12, Section 9].

In the analysis of point processes, a set of measures known as the factorial moment

measures (FMM) are of fundamental importance. For a general point process, under mild

restrictions (see [12, Section 9.2]), the FMMs can be written in terms of a density, known

as a product density, with respect to the Lebesgue measure. Given a point process Φ, the

first-order FMM is defined on a Borel set, B as

α(1)(B) = �

[∑
x∈X

1 (x ∈ B)

]
=

∫
1(r ∈ B)ρ(1)(r)dr,

i.e., the expectation, over all locally finite point configurations, X distributed according

to Φ (written X ∼ Φ henceforth), of the cardinality of XB . The second-order FMM is

defined by

α(2)(B1 × B2) = �

⎡
⎣∑

x∈X

∑
y∈X\x

1 (x ∈ B1) 1 (y ∈ B2)

⎤
⎦

=

∫ ∫
1(r1 ∈ B1)1(r2 ∈ B2)ρ

(2)(r1, r2)dr1dr2.

The first-order product density, ρ(1), is called the number density or intensity. In this work,

we favour the term number density over intensity since the raw experimental data has a

greyscale intensity that does not correspond to the definition of intensity typically used in

spatial point process literature. The density function, ρ(2) is called the second-order product

density.

The PCF, defined as

g(r1, r2) =
ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
,

is also of great interest. It provides a characterisation of the likelihood of two points r1

and r2 occurring simultaneously in a realisation of Φ relative to a Poisson process with
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number density ρ(1)(r). Estimates of g(r1, r2) are needed in Sections 4 and 6 to compare

the PIM model to solve certain integral equations and to compare the biofilm model to

experimental data.

For PIMs, the FMMs and product densities can be related through functional differ-

entiation techniques to Ξ , the grand canonical partition function.

2.2 Integral equations for the external and pair potentials

With pairwise interactions, the relation between ρ(1) and φ is complicated; thus, it is

convenient to define a new function, a(r) ≡ exp(−φ(r)) (known as the activity, i.e., z(r)

in [26]). From data, we can immediately estimate ρ(1) and g, but not φ and v. Thus, we

review how integral equations relating φ and v to ρ(1) and g are derived through functional

differentiation techniques. The discussion here summarises [26, Section 5], and numerical

approximations methods used to obtain φ and v from the data are described in Section 4.

Given an external potential and using the definition of the functional derivative3,

φ(r1 + s) = φ(s) +

∫
δφ(r1)

δρ(1)(r2)

(
ρ(1)(r2 + s) − ρ(1)(s)

)
dr2. (2.3)

To obtain δφ/δρ(1), it ends up being convenient to define a related function,

c(r1, r2) ≡
δ log

(
a(r1)/ρ

(1)(r1)
)

δρ(1)(r2)
,

known as the direct correlation function (DCF). From the definition of φ(r1),

δφ(r1)

δρ(1)(r2)
= −δ log a(r1)

δρ(1)(r2)
= − 1

ρ(1)(r1)
δ(r1 − r2) + c(r1, r2). (2.4)

Using this result in equation (2.3), and taking the limit as s → 0, an equation for φ is

obtained,

∇ log ρ(1)(r1) + ∇φ(r1) =

∫
c(r1, r2)∇r2

ρ(1)(r2)dr2. (2.5)

The integration is over all of space, thus, includes any regions, where ρ(1) may exhibit

a discontinuity due to domain boundaries [32]. Noting that the derivative of a jump

discontinuity in the distributional sense leads to a Dirac delta, we may expand equation

(2.5) as

∇ log ρ(1)(r1) + ∇φ(r1) =

∫
V

c(r1, r2)∇r2
ρ(1)(r2)dr2 +

∫
∂V

c(r1, r2)ρ
(1)(r2)dr2,

where V is the domain where ρ(1) is positive, and ∂V is the boundary of V . As noted

in [32], it is also possible to integrate by parts to eliminate the boundary terms; however,

3 Given a functional, Ψ (f), the functional derivative [9, ch. 4 Section 3] with respect to f(r) is

defined by the relation ∫
δΨ

δf
(r)q(r)dr =

d

dε
[Ψ (f(r) + εq(r))]ε=0 .
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this requires approximation of the gradient of c(r1, r2). However, such an approach is

more difficult numerically than approximating the number density derivative.

Now, we must derive an expression for c(r1, r2) in terms of computable quantities. To

solve for c(r1, r2), we use the functional differentiation identity∫
δφ(r1)

δρ(1)(r3)

δρ(1)(r3)

δφ(r2)
dr′ = δ(r1 − r2). (2.6)

Defining h(r1, r2) ≡ g(r1, r2) − 1, it is possible to show that

δρ(1)(r1)

δφ(r2)
=

δ2 logΞ

δa(r1)δa(r2)
= ρ(1)(r1)ρ

(1)(r2) − δ(r1 − r2)ρ
(1)(r1) − ρ(2)(r1, r2). (2.7)

= δ(r1 − r2)ρ
(1)(r1) − h(r1, r2).

Substituting our results from equations (2.7) and (2.4) into relation (2.6), we obtain an

equation known as the Ornstein–Zernike equation [34]

h(r1, r2) = c(r1, r2) +

∫
ρ(1)(r3)c(r1, r3)h(r3, r2)dr3. (2.8)

This equation provides a definition for c(r1, r2) in terms of known quantities, and thus an

equation for the density variation can be solved once c(r1, r2) is found.

Next, we seek a relation between c(r1, r2), h(r1, r2), and v(r1, r2). This can be done using

the functional expansion technique described in [26, Section 5]. The strategy is to assume

a pairwise interaction system with a particle fixed at x = R. This particle induces a

potential of the form

φ(r) = v(r,R).

Expanding the function log(ρ(1)
φ (r)/aφ(r)) in terms of ρ

(1)
φ (r) about the reference number

density ρ
(1)
0 (r) (i.e., the number density with φ(r) = 0), we obtain

log

(
ρ

(1)
φ (r)

aφ(r)

)
= log

(
ρ

(1)
0 (r)

a0(r)

)

+

∫ [
δ

δρ(1)(r′)
log

(
ρ

(1)
φ (r)

aφ(r)

)]
φ=0

(
ρ

(1)
φ (r′) − ρ

(1)
0 (r′)

)
dr′

+ O
(∣∣∣ρ(1)

φ (r) − ρ
(1)
0 (r)

∣∣∣2) .

By noting that ρ
(1)
φ (r) = ρ

(1)
0 (r)g0(r,R) and aφ(r) = a0(r) exp(−φ(r)), the left-hand side

reduces to log g0(r,R) + v(r,R) + log
(
ρ

(1)
0 (r)/a0(r)

)
, and by ignoring higher-order terms,

the right-hand side is simplified using equation (2.8) to yield

v(r,R) = h(r,R) − c(r,R) − log g(r,R). (2.9)

This result is known as the HNC [26]. It relates the pair potential to the DCF and PCF.

It can be seen that the external potential and pair correlation can be found by first
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solving the the Ornstein–Zernike equation for c(r1, r2), then computing φ(r) from equation

(2.5), and finally, solving for v(r1, r2) in terms of c(r1, r2) and g(r1, r2) through equation

(2.9).

2.3 Simplifying assumptions

At the beginning of this Section 2.1, we mentioned that certain assumptions are made

to reduce the dimensionality of the integral equations. We now describe several concepts

that lead to the assumptions we make.

In [4], the concept of a second-order intensity reweighted stationary (SOIRS) point

process was introduced. They are defined for strictly positive number densities in terms

of the measure

M(B1 × B2) = �

⎡
⎣ ∑

x∈X∩B1

∑
y∈X∩B2

1

ρ(x)

1

ρ(y)

⎤
⎦ .

This measure is closely related to the second-order factorial moment measure, α(2)(B1×B2).

In particular,

M(B1 × B2) =

∫
B1

∫
B2

ρ(2)(r1, r2)

ρ(r1)ρ(r2)
dr1dr2 =

∫
B1

∫
B2

g(r1, r2)dr1dr2.

If M(B1×B2) is translation invariant, we say that the point process is SOIRS. This implies

that the PCF of a SOIRS point process is translation invariant. Thus, g(r1, r2) = g(r1−r2).

Our first assumption is that the biofilm data results from realisations of a SOIRS point

process.

The SOIRS assumption leads to a PCF dependent on a single 3-D variable representing

the vectorial difference between two points. However, the further assumption of isotropy,

or that only the magnitude of the distance, but not the angular orientation between the

pair of points matters, allows for the simplification, g(r1 − r2) = g(|r1 − r2|).
Second, we assume that the density varies only as a function of distance from the

substrate. We make this assumption due to symmetry considerations; the bacteria are

grown on a uniformly planar plate. Thus, we do not expect any difference in the number

density for any two points in space that are of equal distance from the plate.

We show in appendix that a number density that varies along one dimension, and an

isotropic, translation invariant PCF are consistent with a DCF (and pair potential) of the

form c(r1, r2) = c(|r1 − r2|, z1, z2). Defining rxy ≡ |r|xy =
√
x2 + y2, equation (2.5) reduces

to

d

dz1
(log ρ(z1) + φ(z1)) = 2π

∫ zmax

z0

(∫ ∞

0

c(rxy, z1, z2)rxydrxy

)
d

dz2
ρ(z2)dz2

+ 2π

[
ρ(0)

∫ ∞

0

c(rxy, z1, 0)rxydrxy

−ρ(zmax)

∫ ∞

0

c(rxy, z1, zmax)rxydrxy

]
.

(2.10)

Formulas of this type appear to have first been derived in the context of understanding
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fluid interfaces in [32]. Applying a transformation r′3 = r3 − r2, equation (2.8) reduces to

h(|r1 − r2|) = c(|r1 − r2|xy, z1, z2)

+

∫∫∫
ρ(z′3 + z2)h(|r′3|)c(|r1 − r2 − r′3|xy, z1, z

′
3 + z2)dx

′
3dy

′
3dz

′
3. (2.11)

Similarly, the HNC (equation (2.9)) becomes

v(|r1 − r2|xy, z1, z2) = h(|r1 − r2|) − c(|r1 − r2|xy, z1, z2) − log g(|r1 − r2|).

With these assumptions, the nth-order probability densities associated with the PIM are

of the form

f(n)(x1, . . . , xn) =
1

Zn

exp

⎛
⎝−

n∑
i=1

φ(zi) −
n∑

i=1

n∑
j>i

v(|xi − xj |, zi, zj)

⎞
⎠ .

To summarise, the assumptions are listed below

(1) The process is a SOIRS point process [4, 33].

(2) The PCF is isotropic.

(3) The number density is only dependent on the distance from the fluid-biofilm interface,

i.e., ρ(z) ≡ ρ(1)(r = (x, y, z)).

It remains to (i) estimate the number density and PCF, (ii) numerically solve the OZ

equation and density integral equation, and (iii) justify our model assumptions. These are

the subjects of the next two sections.

3 Estimation of summary statistics

In this section, we discuss the estimation of ρ(z) and g(r), and the nearest neighbour

distributions, defined in Section 3.3, denoted Hk(r). In the case of empirical data, without

prior intuition about the point process, non-parametric estimators are often the tool of

choice for the estimation of these characteristics. This is the approach we take since we

are not aware of any previous models of the spatial statistics of bacteria in biofilms. For

notation, we use a hat (i.e., ρ̂) to denote an estimator for a quantity.

In addition to being flexible, non-parametric estimates are often easy to implement and

versatile, yielding suitable intensity approximations for many classes of point processes.

However, a common source of concern with non-parametric estimates is the presence

of statistical bias [24, 38, 51]. For ρ, g, and Hk , non-parametric estimates are rarely

pointwise unbiased [38], but are often asymptotically unbiased. Heuristically, the bias is

due to inaccuracy in the numerical approximation of a Radon–Nikodym derivative [5]

and is analogous to the truncation error associated with finite difference approximations

of differentiable functions. Furthermore, as finite difference approximations depend on

a spatial increment, non-parametric number density estimators are parametrised4 by a

4 The term nonparametric refers to the absence of an underlying assumption about the functional

form of ρ(r), not the absence of any tuning parameters in the estimator. Aside from a few simple
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bandwidth, b. Smaller values of b reduce the bias, but increase the variance of the

estimator [35, 38, 51]. To ensure accurate estimators, careful selection of b is needed to

balance this tradeoff between bias and variance. Further discussion of this balancing of

bias and variance is included in the appendix.

3.1 Number density estimators

As discussed in Section 2.1, the number density of X ∼ Φ is defined through the relation

�

[∑
x∈X

1(x ∈ B)

]
=

∫
B

ρ(1)(r)dr.

Thus, we see that
∑

x∈X 1(x ∈ B) is an unbiased estimator for α(1)(B). However, ρ(1)(r)

cannot generally be estimated without bias, since it is defined as the average over an

infinitesimal region

ρ(1)(r) ≡ lim
r→0

α(1)(Br(r))

ν(Br(r))
,

where ν(·) is the Lebesgue measure and Br is a ball of radius r centred at r. We see that

this is also related to the Dirac delta distribution through the relation

ρ(1)(r) = lim
r→0

∫
B

1

4πr3
1(|r′ − r| � r)ρ(1)(r′)dr′ =

∫
δ(r − r′)ρ(1)(r′)dr′.

This motivates an approximation of the form

ρ(1)(r) ≈
∫

kb(r − r′)ρ(1)(r′)dr′ = �

[∑
x∈X

kb(r − x)

]

and an estimator

ρ̂(r) =
∑
x∈X

kb(r − x),

where kb(·) is known as a kernel density and b is the bandwidth. For data in �n,

kb(·) is typically a radially symmetric function of the form kb(·) = 1
bn
k1(·/b). There

exist many choices for kb(·); however, as long as
∫
k1(r)dr = 1 and k1(·) is compactly

supported, the resulting estimators are typically relatively insensitive to the choice of k1(·),
but highly sensitive to the choice of b. Last, because of the distributional convergence

of
∫
kb(r − r′)φ(r′)dr′ to

∫
δ(r − r′)φ(r′)dr′ in the limit as b → 0, we say that ρ̂(z)

is asymptotically unbiased. This estimator is similar to the number density estimator

discussed in [45, Section 4]. For what follows, we specify kb(z) as

kb(z) =

(
3

4b

)(
1 −

(
z/b

)2
)

1(|z| < b).

This kernel is known as the Epanechnikov kernel [14], a commonly used density estimation

kernel.

examples, non-parametric estimators almost always have some sort of bandwidth parameter that

must be chosen based on the length scales over which variations are seen in the data.
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Due to the limited size of a data set, we consider the dependence of the intensity on

x-, y-, and z-coordinates separately (for instance, assume that ρ(r) only depends on x,

independent of y and z). Given the restriction XW , this leads to estimators of the form

ρ̂(z) =
∑

x′=(x′ ,y′ ,z′)∈XW

kb(z − z′)

cb,W (z)
. (3.1)

Defining A as the area of a cross-section perpendicular to the z-axis and W to be a set in

�3 containing the data, the denominator, cb,W (z) in equation (3.1), is an edge correction

factor defined as

cb,W (z) = A

∫ min(z+b,zmax)

z−b

kb(z
′ − z)dz′, (3.2)

where zmax is the largest value of the z-coordinate of points in W . We see that for

zmax − z < b given a differentiable number density

A

∫ zmax

z−b

kb(z − z′)ρ(1)(z′)dz′ − Aρ(1)(z)

= Aρ(1)(z)

(∫ zmax

z−b

kb(z − z′)dz′ − 1

)
+ O

(
Ab

d

dz
ρ(1)(z)

)
.

Thus, if we choose cb,W (z) as in equation (3.2), the dominant, zeroth-order error term is

eliminated.

Upon computation, we found that although the bacteria locations are 3-D coordinates,

the number density only varies significantly along the z-axis, with changes in the distance

from the fluid-biofilm interface. This justifies Assumption 1 of Section 2.3. As depicted

in Figure 2(a), it appears as though bacteria near the fluid-biofilm interface stratify into

layers and pack more closely together than cells further interior. In Figure 2(b), this

phenomenon is clearly seen as bumps in the number density.

The number density estimates obtained from data sets #1–4 exhibit some variation

near the biofilm-fluid interface; thus, in each simulation of Section 6, we parametrise our

model on the number density from one of the data sets (e.g., from data sets #1–4). In

Section 6, we separate the comparisons between model data and experimental data by

data set. (see Figure 8(a) and (b)).

We also found that the precise form of the number density variation near the top of

the biofilm did not have a substantial impact on the simulations conducted in Section 6.

The sensitivity of those simulations to variability in the number density was examined

by solving the integral equations of Section 2 with a constant number density (set to the

number of points in W divided by Vol(W )), and then conducting simulations equivalent

to those in Section 6. We found that the dynamic moduli (discussed in Section 6) were very

close to those of the variable density data. We expect that with more extreme variation

in the number density, the similarity would disappear.

As previously mentioned, the value of the bandwidth, b, has a significant impact on

the resulting number density estimate and should be carefully chosen to balance variance

and bias. If b is too small, the estimate will be noisy, whereas if b is too large, key

features of the data will be blurred. The estimation of a one-dimensional (1-D) intensity

function is quite similar to the non-parametric estimation of a probability density up to the

https://doi.org/10.1017/S0956792518000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000220


1154 J. A. Stotsky et al.

Figure 2. (a) The projection of one of the data sets into the xz-plane is shown. The number

density variation near the top of the domain can clearly be observed and some oscillatory intensity

variation is discernible. (b) The height dependent intensity, ρ(y), from the same experimental data

set is depicted. We used a bandwidth, b = 0.2 for all four data sets.

normalisation condition required of probability densities. This motivates the adaptation

of the Least Squares Cross-Validation (LSCV) technique, a common optimisation strategy

for non-parametric probability density estimators [51], to optimise our choice for b in

equation (3.1). We found that although the LSCV gave a reasonable estimate of b, the

result could be improved upon by adapting the Bayesian technique in [18] with a prior

centred about the value of b estimated by LSCV. We refer the interested reader to appendix

for a discussion of LSCV bandwidth selection and the Bayesian approach of [18].

In addition to the number density, equation (2.5) depends on the gradient of the number

density. In order to compute this quantity, we adhere to the strategy discussed in [51] and

use the differentiable, triweight kernel density estimator, defined as

Tb(z) =
35

32b
(1 − (z/b)2)31{|z|�b].

Similar to the Epanechnikov kernel, the triweight kernel is a symmetric probability

density function. However, it is more useful for density derivative estimation since it is

twice differentiable, whereas the Epanechnikov kernel is not differentiable. The number

density derivative, ρ′, is approximated by

ρ̂′(z) =
1

A

∑
x′∈XW

∂Tb(z − z′)

∂z
.

As derivatives are more sensitive to noisy data, optimal balancing of variance and bias in

number density derivative estimation tends to yield a larger value of b than that used in

number density estimation [27]. By inspection of the resulting estimators, we found that

a value of b = 0.5 seemed to give the best result. In particular, at b = 0.5, we found that

ρ̂′ was not overly noisy, and agreed well with finite difference estimates of the derivative
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of ρ̂. However, in contrast to a finite difference estimate, it is very straightforward to

compute ρ̂′ for any value of z. To correct for bias near the boundaries of the domain,

adjustments to the kernel constructed by the technique in [28, equation (8.2)] were used.

3.2 Pair correlation function estimates

Since the PCF is assumed to be stationary, and isotropic, g(r1, r2), generally a function

of six coordinates, is simplified to become g(|r1 − r2|), a function of one coordinate. The

advantages of this simplification for non-parametric estimation is substantial. Following

[4, 20], an asymptotically unbiased estimator of the stationary PCF for a SOIRS point

process with known ρ(r) observed in a set, W ⊂ �3 is

ĝ1(r) =
1

4πr2γ̄W (r)

∑
x∈XW

∑
y∈XW\x

kb(r − |x − y|)
ρ(x · êz)ρ(y · êz)

, (3.3)

where γ̄W (r) is the isotropised set covariance of W [45], defined by

γ̄W (r) =

∫
ν(W ∩Wt)dt

with integration occurring over the surface of a sphere of radius r in �3. We also note

that discussions of alternative choices for PCF estimates can be found in [29, 30, 44, 47].

We chose the estimator in equation (3.5), since it yields a continuous estimate of g(r),

and because it is relatively easy to implement (although the choice of b presents some

difficulty).

Following [44], the expectation of ĝ(r) is of the form:

� [ĝ1(r)] =

∫
g(|r′|)kb(|r′| − r)dr′. (3.4)

Taking the limit as b → 0 in equation (3.4) shows that, under a few restraints on kb(r),

ĝ1(r) → g(r) at every point of continuity of g(r). Thus, ĝ1(r) is asymptotically pointwise

unbiased for continuous PCFs5.

Since ρ(r) is not known in our application, we use an estimator of the form

ĝ(r) =
1

4πr2γ̄W (r)

∑
x∈XW

∑
y∈XW\x

kb(r − |x − y|)
ρ̂(x · êz)ρ̂(y · êz)

. (3.5)

Unlike ĝ1(r), the use of an approximate number density causes ĝ(r) to fail to be asymp-

totically unbiased.

Equation (3.3) is valid for isotropic SOIRS point processes only. An estimator of the

form

ĝa(r) =
1

4πr2ν(W ∩Wr)

∑
x∈XW

∑
y∈XW\x

kb(|r − (x − y)|)
ρ̂(x · êz)ρ̂(y · êz)

, (3.6)

can be used to obtain an anisotropic PCF estimate.

5 For discontinuous PCFs, such as those arising from hard-sphere processes, the estimate is not

asymptotically pointwise unbiased at the point of discontinuity, but is asymptotically convergent to

g(r) in the least squares sense.
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Figure 3. Both images are of PCFs averaged over the four experimental data sets. In (a) isosur-

faces of the anisotropic pair correlation function at g(2)(r) = 0 (inner isosurface), 0.5 (middle),

and 1.25 (outer) are depicted, and (b) contains slice plots and contours of the anisotropic pair

correlation function. The anisotropic PCF is related to the isotropic PCF through the integral

g(r) = 1
4π

∫ ∫
ga(r, φ, θ) sin θdθdφ. The anisotropic pair correlation function shows some vertical

anisotropy, however, most of the variation appears as a radially symmetric function.

In Figure 3(a) and (b), ĝa(r), averaged over four data sets, is depicted. We display the

averaged estimate since the anisotropic estimator is subject to higher variance. Data set

averaging is employed as a variance reduction technique.

It can be seen that, although there is some anisotropy, the isosurfaces of ĝa(r) are

roughly spherical. Thus, we believe that the isotropic approximation of g(r) is reasonable.

In light of this result, we will assume in what follows that g is isotropic. In Figure 4, the

SOIRS radially symmetric PCF estimator defined in (3.3), computed from one data set,

is depicted.

An intriguing property of the biofilm data is the presence of two prominent peaks in

the PCF. It has been suggested that the first, smaller peak in Figure 4 is indicative of

bacteria undergoing cell division at the time their position was measured [41]. The second

peak occurs near the average diameter of a non-dividing bacterium. The third peak at

r = 2.330 μm is indicative of local regularity in the positions of bacteria [26, Section 5].

Last, we also applied the mode detection test described in [39] to rule out the likelihood of

further maxima in the interval [0, 2.5]. We found that for the bandwidth’s deemed suitable

by the LSCV procedure described in appendix, further peaks in the PCF are unlikely.

Recall from Figure 2 that there is evidence of variability in the number density along

the z-axis. This motivated our assumption of a SOIRS process in analysing the data.

However, we have not provided any evidence against an alternative hypothesis: that the

PCF is not translation invariant. To make a convincing argument in favour of the SOIRS

assumption (or at least that it is reasonable), it is necessary to estimate the magnitude of

the variability of the pair correlation

To test for variability in the PCF, its estimator, ĝ(r) is calculated for various subsets

of the full data set, XW . In particular, we compute ĝ(r) over sets of the form Vz =

[z − Δz, z + Δz] ∩ W with z ∈ (min(zi),max(zi)), where zi are the z-coordinates of the

bacteria, and Δz = 1 μm. Computing ĝ(r) on Vz as a function of z, we found only small
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Figure 4. (a) Comparison between experimental and simulated data of the SOIRS estimator for a

radially symmetric pair correlation function. The radially symmetric pair correlation exhibits peaks

at r = 0.525, r = 1.185, and r = 2.330 μm. The relative heights of the first two peaks is an interesting

finding, and has been observed in biofilm data in a previous study [42]. The first, smaller peak is

likely due to a small number of bacteria that were undergoing cellular division at the time the data

set was recorded although the possibility of some experimental error cannot be definitively ruled

out [41]. (b) Comparison of number density between experimental data and simulated data. The

simulation method used to generate data is discussed in Section 4. (c) Projection of the simulated

data set into the xz-plane. (d) Image of a simulated biofilm generated form Algorithm 1.

variations in the resulting PCF. To fully utilise the available data in these computations,

we use an altered estimator of g(r), denoted ĝVz
(r)

ĝVz
(r) =

1

4πr2γ̄Vz ,W (r)

∑
x∈XVz

∑
y∈XW\x

kb(r − |x − y|)
ρ̂(x · êz)ρ̂(y · êz)

with

γ̄Vz ,W (r) =
1

4πr2

∫
ν(W ∩ Vz,t)dt.

The integration is carried out over the surface of a sphere of radius r in �3. This altered

estimator is used since it takes into account data that is in W but not Vz in the inner
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summation. This reduces the truncation errors that could occur if we used the estimator

in equation (3.3). It is in essence a generalisation of our standard PCF estimator to allow

for the case that ri and rj correspond to different types of points (or points in different

subdomains).

Upon computation, we note that the mean square error 6 over z remained less than

0.05 for r ∈ (0, 2). We do observe some variation with z in the PCF, however, it seems to

be a minor effect. In particular, we note that in some of the data sets, the height of the

first peak in ĝVz
(r) decreases from the bottom to the top of W . Although it would be ideal

to compute a non-stationary estimate for g(r1, r2), in practice, we found our calculations

for such an estimator to be noisy, and unreliable for small values of |r1 − r2| given the

amount of data available. Thus, we have approximated the variable PCF with a SOIRS

form of ĝ(r) for use in our computations.

As a final note, alternative approaches for estimating g(r) by maximum likelihood

estimation and Takacs–Fiksel estimation have been explored in several papers [3,4,33,37].

With maximum likelihood estimation, the pair potential is assumed to be a member of

a predetermined class of functions that differ through some set of parameters that can

be optimised to fit the data. We did not proceed with this approach due to the unusual

structure of the PCF. With Takacs–Fiksel estimation, g(r) is assumed to be a piecewise

function (i.e., piecewise polynomial). The weights of the coefficients in the piecewise

approximant are found by maximising a non-linear system of equations. Possible issues

with such an approach here are the computational cost to accurately resolve g(r) over a

range of r and the attainment of a continuous (not just piecewise continuous) result.

3.3 Nearest neighbour distributions

Although not used in the PIM, the nearest neighbour distributions are useful for justifying

assumptions made in the development of the PIM. As discussed in Section 2.2, the PIM

is parametrised by first- and second-order statistics of the data (through ρ(1)(z) and g(r)).

Thus, we would expect that the PCF and number density of the PIM will closely match

those of the experimental data. However, it remains to be justified that such statistics

provide a useful characterisation of the data; it could be the case that higher-order

statistics or clustering phenomena are crucial.

It is in general difficult to explicitly demonstrate that many body interactions are neg-

ligible since the estimation of higher-order interaction functions, plagued by the curse

of dimensionality, requires vast quantities of data. However, the validity of a pairwise

interaction assumption may be evidenced by comparisons of lower-order summary stat-

istics that depend on many body interactions. In this capacity, the k-nearest neighbour

distributions are useful.

The kth-nearest neighbour distribution is defined as the probability density function of

distances between a point x ∈ XW and the kth closest point y ∈ XW\x. Following [48,49],

the nearest neighbour density (NND), is defined as the conditional probability7 probability

6 The mean square error is defined as E =
∫ r1
r0

(ĝVz (r)− ĝ(r))2dr. It is approximated by a trapezoid

rule quadrature.
7 For the point processes, we consider, ∀x ∈ W , �[x ∈ XW ] = 0 since XW is finite and W , being

a continuum, is uncountable. The nearest neighbour distribution is defined rigorously through the
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over X ∼ Φ, given x ∈ X ,

Hk(r) = lim
Δr→0

�
[
∃{y1, . . . , yk} ∈ X such that r � max[1,...,k] |x − yk| � r + Δr|x ∈ X

]
Δr

.

Along with the intensity and PCF, we use the NNDs as a means of comparing experimental

data to realisations of point processes generated through simulation. As shown in [48,49],

Hk(r) depends on the product density, ρ(k+1)(r1, . . . , rk+1), and not lower-order densities.

Although equivalence in NNDs does not guarantee equivalence of two point processes in

probability, if two point processes are equal in probability, they must have the same nearest

neighbour distributions. In practice, testing for equivalence in probability of a general

point process is computationally infeasible, and would require an inordinate amount of

data; however, the nearest neighbour distributions are a useful summary statistic due to

their low dimensionality, and the ease with which they can be estimated.

Two disadvantages of nearest neighbour distributions as a means of comparing point

processes are their lack of directional information, and that, as defined here, they are

spatially homogeneous. Thus, the NNDs we compute are best understood as homogenised

variants of a more general nearest neighbour distribution that may depend on location.

Since only four data sets are available, the computation of a spatially variable NND

would be a formidable difficulty, and subject to greater variance than the homogenised

NND.

To estimate the nearest neighbour distributions, we use minus sampling [45]. Minus

sampling is the technique of constructing estimators that ‘leave out’ points near the edges

of the domain to mitigate edge effects. Minus sampling estimators are less efficient than

other estimators because they do not utilise all available data. However, for statistics

that are strongly influenced by edge effects, the benefit in reducing edge effects can

be well worth the inefficient use of data. Using the symbol, �, to denote Minkowski

subtraction [45, Section 1], the nearest neighbour distribution is estimated as

ĤP (r) =
1

Φ
(
W � Brc(0)

) ∑
x∈XW�Brc (0)

kb

(
r −

∣∣∣∣∣x − arg min
y∈XW\x

|y − x|
∣∣∣∣∣
)
.

Minus sampling is suitable in our application since the box-shaped geometry of the

domain dictates that most of the data is located away from the edges. Thus, the loss of

data due to minus sampling is not severe. Even though there is a variation in number

density near the top of the domain, we found that computations of the NNDs that left

out this portion of the data did not have a pronounced effect on the resulting estimate.

Because Hk(r) is a 1-D probability density, kernel density estimation methods of

choosing b based on the cardinality of XW are used [35, 38]. In particular, we use

the ksdensity function in Matlab to compute Hk(r) once rc is known. To specify rc, we first

compute a preliminary estimate, ĤP ,0(r), without minus sampling (e.g., assuming rc = 0),

use of Palm distribution theory [7, 45]. Roughly speaking, �
[
·|x ∈ XW

]
is the Palm distribution of

Φ with respect to the constraint x ∈ XW .
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Figure 5. Comparison of nearest neighbour density functions between a simulated biofilm, and

the experimental data. The bimodal behaviour in the first neighbour distribution is not completely

captured by the model; however, higher NNDFs (2 and 8 depicted here) are very accurately matched

by the model.

and then take rc equal to the supremum

rc = arg sup
r

{
ĤP ,0(r) > 0

}
.

This choice ensures that, with high probability, the nearest neighbour of each point

of ΦW � Brc(0) is contained in ΦW . Specifically, the expected error is the probability

Pr[minrj∈Φ |ri − rj | > rc, ri ∈ Φ � Brc(0)]. Since each data set contains ∼ 4, 000 bacteria

locations, this probability should be on the order of 10−3. A second bias term arises from

the use of non-parametric density estimators that have finite support for nonzero b. We

expect this source of bias to be small since the asymptotic bias of kernel smoothing is

typically O(n−4/5) [35], where n is size of the data set (∼4,000 for each biofilm data set).

For k > 1, analogous estimators are used with rc replaced by r(k)c = arg sup
r

{
Ĥ

(k)
P ,0(r) > 0

}
.

For larger values of k, the minus sampling technique is expected to become inaccurate as

the subset of W from which points may be chosen shrinks. However, we found that r(k)c

does not rapidly increase with k, and at least for k � 20, the amount of data that must be

disregarded due to minus sampling is small compared to the amount of data in each data
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set. In Figure 5, we show the nearest neighbour functions computed for the experimental

data (from data set #1) and a realisation of the PIM model of Section (2).

4 Numerical solution of integral equations

After obtaining estimates for h(|r1−r2|) and ρ(z) using the methods of Section 3, equations

(2.11) and (2.10) must be solved numerically. In the homogeneous case, the integral term

in the OZ equation becomes a convolution that can be efficiently and accurately handled

by Fourier transform methods. However, due to the inhomogeneous number density, the

integral over z is not a convolution in this present application. In fact, with a variable

number density, the OZ equation implies that the pair correlation and DCFs cannot both

simultaneously be translation invariant. A proof of this fact is straightforward and shown

in the appendix. Since the standard Fourier transform methods for convolutional integrals

will not apply to our application, we use a two-dimensional (2-D) Hankel transform in

the radial direction. To quantify variation in z and z′ variation in the DCF, we solve a

Fredholm integral equation of the second kind.

As discussed in the Section 2.3, to simplify equation (2.8), we assume that the xy

dependence of the pair correlation and DCFs is homogeneous with regard to within-

plane translations and is radially symmetric. This assumption makes the xy integration in

equation (2.11), a 2-D radially symmetric convolution. The radially symmetric convolution

of two functions can be found through use of the 2-D Hankel transform, denoted H[·],
defined as the involutory transform

F(k) = H[f(r)] = 2π

∫ ∞

0

J0(2πkr)f(r)rdr,

where J0(kr) is the zeroth-order Bessel J-function and k ∈ [0,∞). The 2-D Hankel

transform can be applied to the OZ equation to obtain

H[h](k, z1, z2) = H[c](k, z1, z2) +

∫
ρ(z3)H[h](k, z1, z2)H[c](k, z1, z3)dz3.

In the discrete analog, we discretise z, r, and k by setting zm = mΔz, m = 1, . . . ,M,

r� = �Δr, � ∈ 1, . . . , K and k� = j
(0)
� R/j

(0)
K+1, where j

(0)
� is the �th root of the zeroth-order

Bessel J function, and R is the maximum value at which the estimator, ĥ from equation

(3.3) is computed. We set R = 3μm since beyond this distance, the radially symmetric

PCF showed little variation. We found that setting the discretisation parameters, M = 100

and K = 256 yielded a sufficiently fine discretisation. A discrete analogue of the Hankel

transform is numerically computed in Matlab using the algorithm devised in [23] for each

pair of zm and zn with m, n ∈ [1,M].

Approximating the z-integral with the trapezoid method, the discrete approximation,

Ck�,zm,zn of H[c](k�, zm, zn) for each fixed value of k� and zm, is found by solving

Hk�,zm,zn = Ck�,zm,zn +

M∑
n′=1

ρ̂(n′Δz)Hk�,zn,zn′Ck�,zm,zn′wn′Δz. (4.1)

The symbol wn′ are the trapezoid rule quadrature weights (i.e., wn = 1 for n = 2, . . . ,M−1
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and w1 = wM = 1/2). Defining I as the M ×M identity matrix, and the matrix M by

[Mk]i,j ≡ ρ̂(iΔz)Hk,zi,zjΔz, i, j ∈ [1 : M].

Equation (4.1) can be written as a set of matrix equations

Hk�,zm,zn = (I + Mk�)C k�,zm,zn ∀k�,∀zm. (4.2)

These matrix equations were solved using LU-decomposition implemented in Matlab. In

principle, the matrix I + M could be ill-conditioned. However, in the simulations we

conducted, the condition number of I + M ranges only from 1 to 100. We also note

that the trapezoid rule approximation is second-order accurate, although this does not

imply second-order accuracy of the solution since it does not account for errors in the

estimation of h by ĥ8.

Finally, after solving (4.2) for each value of � and m, the Hankel transform can be

applied to obtain cr�,zm,zn , the discrete approximation of c(r�, zm, zn). If there are K radial

nodes, and M vertical nodes, KM equations must be solved, and 2M2 transforms and

inverse transforms must be computed. Although this leads to poor scaling, since we only

need to compute the DCF once, and can then store its value, the cost is not prohibitive,

and, for the values of K and M we use, can be found in under a minute. In fact, the

computation of ĝ(r) is, by a substantial amount, the most time consuming step, followed

by the discrete Hankel transformations of h and c for each zm, zn pair. The resulting pair

potential for data set #3 is shown in Figure 6.

After computing c, a discrete approximation of the singlet energy now can be obtained.

Discretising equation (2.5) with the trapezoid rule, and using the estimate, cr�,zm,zn , we

arrive at a forward Euler approximation of φ(z)

(
φzn + log ρ̂(zn)

)
−

(
φzn−1

+ log ρ̂(zn−1)
)

Δz
= 2π

(
M∑
m=1

(
K∑
�=1

cr�,zm,znΔr�

)
ρ̂z(mΔz)wmΔz

)
,

with trapezoid rule weights, wm defined as, wm = 1 for 2 � m � M − 1 and wm = 0.5 for

m = 1 and m = M. It turns out that the initial value, φ(z0) is arbitrary, so is set to 0.

Given ρ̂′(z), the discretisation should be second-order accurate in Δz and Δr�. As with

the estimation of c(|r1 − r2|xy, z1, z2), a rigorous error derivation must take into account

error terms due to approximations used in estimating ρ(z) by ρ̂(z) and c(|r1−r2|xy, z1, z2) by

cr�,zm,zn . For the approximation of φ(z), there is no advantage to using Hankel transforms

for the radial integral since the real-space computation is explicit in φ(z). This differs

from the pair energy computation where the real-space integral equation is a 3-D integral

equation but, the transformed equation is a set of decoupled 1-D integral equations. In

that case, transforming in the r-coordinate is highly beneficial. We also note that other

numerical quadrature methods could be applied to compute the values of the integrals;

however, we expect that the dominant error source is from the approximation of the

8 The matrix norm used here is the 2-norm. This norm is also used in the computation of the

condition number.
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Figure 6. The potential, v(rxy, z1, z2) as it is computed from the hypernetted-chain equation. The

three subfigures show v(rxy, z1, z2) for three different values of z2. Although the pair potential at

all values is similar, they are not equivalent; the peaks and valleys in the pair correlation in (a)

are slightly more pronounced than in (b) and (c). The differences in the pair potential at different

heights influences the height-dependent number density trends we observed in the biofilm data.

PCF and spatially variable number density. Thus, we do not expect significant differences

resulting from different quadrature choices.

5 A Metropolis–Hastings algorithm for generating biofilm realisations

The pair energy function and singlet potential form the basis for a MH algorithm to

generate ‘artificial’ biofilms. The practical aspect of MH (and more generally MCMC)

algorithms that makes them so useful is that they rely only on unnormalised probability

densities. Given two realisations of the PIM, denoted X 1 and X 2, each containing n points

in W , and an unnormalised probability density, q(n)(X 1) ∝ f(n)(X 1), the ratio

q(n)(X 1)

q(n)(X 2)
=

f(n)(X 1)

f(n)(X 2)
=

exp
[
−

∑
i φ(z(1)

i ) −
∑

i<j v(|r
(1)
i − r(1)

j |, zi, zj)
]

exp
[
−

∑
i φ(z(2)

i ) −
∑

i<j v(|r
(2)
i − r(2)

j |, zi, zj)
] (5.1)

can be computed efficiently in comparison to evaluating or approximating the probability

density, f(n)(X ). If X 2 differs from X 1 by the location of only one point such that

X 1 = X 2\{r} ∪ r′, then the quantity in equation (5.1) simplifies and can be computed in

O(n) operations as

f(n)(X 1)

f(n)(X 2)
= exp

[
−(φ(z′) − φ(z)) −

n∑
i=1

v(|ri − r|xy, zi, z) +

n∑
i=1

v(|ri − r′|xy, zi, z′)
]
. (5.2)

Equation (5.2) can be used to generate realisations of the PIM conditional on there

being n points in the domain. Such realisations would belong to the so-called canonical

ensemble. However, in practice, it is often more favourable to generate realisations that

are not conditional on n. Such a method samples from the grand-canonical ensemble. A

MH algorithm with both move, and birth–death steps [19, 33] is a practical method of
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Algorithm 1 MH algorithm for generating realisations of a point process with spatial

characteristics similar to those of the experimental data in a domain W , of finite size. As

a convergence criterion, we compute the norm of the difference in the PCF of X k and the

experimental data.

Generate n0 randomly placed points in a window, W . Denote this set of points X 0.

Generate a random number q ∼ Uniform([0, 1])

if q < 0.5 then

Displace one point, xi ∈ X k , chosen at random, by a uniformly random displacement,

δx and set

X̃ =
{(

X k\{xi}
)
∪ {xi + δx}

}
.

Compute

αm = min

(
f(n)(X̃ )

f(n)(X k)
, 1

)
according to equation (5.2) using interpolation as needed.

if X̃ ⊂ W then

With probability αm, set X k+1 = X̃ .

end if

else

Generate a random number p ∼ Uniform([0, 1])

if p < 0.8 then

Generate a point ξ ∼ Uniform(WX k
) in region WX k

= {ξ|min |ξ − X k| > 0.35}
Compute

αb = min

(
f(n+1)(X k ∪ ξ)

f(n)(X k)

∫
ρ(1)(r)dr

n + 1
, 1

)
With probability αb, X k+1 = X k ∪ ξ

else

Choose a number m ∼ Uniform([1 : n])

Compute

αd = min

(
f(n−1)(X k\{xm})

f(n)(X k)

n∫
ρ(1)(r)dr

, 1

)
With probability αd, set X k+1 = X k\{xm}.

end if

end if

Set k ← k + 1 and repeat steps 2–4 unless a convergence criterion has been reached. If

a convergence criterion has been reached, output X k+1 and exit.

obtaining such realisations. Given q(n) (or f(n)), the MH algorithm proceeds with the steps

detailed in Algorithm 1.

Because φ(z) and v(|r1 − r2|xy, z1, z2) are computed using the methods of Section 4 on a

grid and are not known analytically, interpolation is used to approximate their values at

the points, ri ∈ Φ, which are arbitrary points in space. Linear interpolation was the chosen

interpolation method because it is computationally inexpensive and accurate in our case

since the grid of points on which the energy is computed on in the previous section has
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Figure 7. Convergence of the Metropolis–Hastings algorithm described in Algorithm 1.The con-

vergence diagnostic used was the norm of the difference in the pair correlation computed from X k

and the data set. This diagnostic was computed every 1000th iteration. Even after the burn-in phase,

there is still variability in the energy between iterations, but there is no downward trend diagnostic.

a small spatial step. Potential improvements could apply the ideas in [8] obtain Markov

chains such that have reduced dependence on the choice of interpolation method. For

boundary conditions, we imposed periodicity in the two horizontal directions, and an

impenetrable boundary at the top and bottom of the domain, by setting φ(z) = ∞ for

points when a proposed move sets a point outside of W .

The birth-step we employ is somewhat unconventional, but still well defined in the

context of MH algorithms. We found that the mean number of points in realisations

of the algorithm depend strongly on p. Setting p = 0.82 and generating points in the

region greater than 0.35 μm away from points in X (due to the hard-sphere property of

v(·, ·)) lead to point processes with mean approximately equal to the number of points

in the experimental data set. The factor (n + 1)/
∫
ρ(1)(r)dr is the ratio of probabilities of

there being n + 1 to n points in a Poisson point process. For PIM processes, this factor

is intractable; thus, we use the easily computable Poisson probability ratio in its place.

Note that although we simulate in the grand canonical ensemble, we still assume a fixed

volume based on the experimental data.

In step 17 of Algorithm 1, a halting criterion must be used to determine whether to

continue finding X k+1 or to exit. Such criteria are usually based on easily computable

quantities such as the total unnormalised density, q(n)(X ), or, a characteristic such as

the empirical PCF [33, Section 8]. In our case, we observed that, with an update step

drawn from a uniform distribution, δX ∝ U([−0.5, 0.5]3), the total energy levelled off

after O(105) iterations, and the average number of acceptances was approximately 1/2 of

the number of attempts. The computed value of g(r) for each sample also stabilised by

this point in each case. Thus, as a halting criterion, we compute the total energy of the

sample every 10,000 iterations and stop after it has levelled off. In practice, this lead to

convergence within 500,000 iterations in each simulation that we conducted.

The convergence in total energy of one particular realisation is shown in Figure 7.

There is a clearly distinguishable initial period of decreasing energy followed by a valley

where the energy remains within a small range.
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6 Comparison of material properties

Although experimental results on biofilms often range drastically between different studies,

it is generally agreed that over short time scales and moderate mechanical stresses, biofilms

behave as viscoelastic materials [36]. One way to characterise biofilm rheology is through

measurement of the dynamic moduli discussed below.

Under mild restrictions [6], the stress, σ in a linear viscoelastic material undergoing

small-amplitude oscillatory shear strain deformation at frequency, ω and amplitude, ε0

can be written as

σ(ω, t) = ε0G
∗(ω)eiωt.

The symbol G∗ is known as the complex modulus. The storage and loss moduli (collectively

known as the dynamic moduli), G′(ω) and G′′(ω) are the real and imaginary parts:

G∗(ω) = G′(ω) + iG′′(ω).

Writing σ(ω) = σ0(ω)eiωt−iδ(ω), where the δ(ω) is the phase lag between the stress and

strain, we arrive at

G′(ω) =
σ0(ω)

ε0
cos(δ(ω)) G′′(ω) =

σ0(ω)

ε0
sin (δ(ω)) .

Given X ∼ PIM(φ, v), the stress and strain in a biofilm undergoing oscillatory shear

deformation [36] can be measured as functions of time using the hrIBM discussed

in [25, 43]. This method yields a finite difference approximation of the velocity field, and

an approximation of the forces exerted by a biofilm. The strain can be estimated by

considering the motion of tracer particles in the fluid, and the stress is measured by

averaging the forces over the top part of the biofilm, and then dividing by the area of the

top of the biofilm. The phase lag is approximated by observing when the maxima in the

stress and strain occur in time

δ(ω) = arg max
t∈[0,2π/ω]

σ(ω, t) − arg max
t∈[0,2π/ω]

ε(ω, t).

In Figure 8, we depict the dynamic moduli, for four different types of point processes

and the experimental data. Since we have four experimental data sets available to us,

we repeat the comparison for each data set. The ‘random’ data sets are realisations of a

Poisson process of constant number density, equal to the average number density of the

experimental data sets. The ‘model’ data is based on realisations of the model in Section 4,

the grid-aligned data use a regular grid of points in simulation, and the grid-aligned plus

perturbation uses the same grid-aligned data with an added perturbation drawn from a

normal distribution of mean 0 and variance 0.2 μm added to each point.

We see that the Poisson point process and PIM models yield dynamic moduli in closer

agreement to the experimental data than a grid aligned approximation, although some

amount of improvement is seen when the grid aligned data is randomly perturbed. In

each case, the comparisons are made between point processes with approximately the

same number of points as the experimental data. (In the uniformly random, and model

based simulations, the number of points is exactly the same as the experimental data.)
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Figure 8. Comparison of material properties between experimental data and simulated data sets.

Panel (a) shows the comparison between the statistical models and the experimental data for G′,

and panel (b) shows the the comparison for G′′. Both figures are from simulations at ω = 62.83 Hz.

For the grid aligned data, the data falls on regular grid of the form X = (ih, jh, kh), for i, j, k

being integers. For the Poisson point process data (e.g., random data) and PCF Model, each entry

corresponds to the average of five samples containing the same number of points and domain as

each of four experimental data sets. For the grid aligned plus perturbation, the results are from

five trials with the grid aligned data and a perturbation drawn from a normal distribution of mean

0 and variance of 0.2 μm. The x-axis numbering corresponds to each of the four data sets the

statistical models were designed to compare with. Error bars in this figure are 95% confidence

intervals of the posterior distribution of dynamic moduli observed from each point process model.

These are computed using Matlab’s normfit function.

To estimate the variability in the dynamic moduli for each of the point processes we

have mentioned, the dynamic moduli are computed for five different realisations of each

point process. Although it would be beneficial to observe a larger number of trials over a
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range of frequencies, the computational cost of such an endeavour is currently prohibitive.

Each hrIBM simulation on a computer with an Intel i7-7600U CPU with clock rate 2.8

GHz and 16 GB of RAM takes 6–8 hr.

7 Discussion

In [2,25,43,52], systems of points immersed in a viscous fluid and connected by a network

of viscoelastic fibres are used as models of complex microbiological fluids. The points in

each application are distributed according to different procedures. By placing such point

distributions in the context of point process theory, we strive to elucidate the effect that

the positions of points have on the rheology of the resulting system. In particular, in this

work, we show that for biofilms (i) empirical data yields biofilms that are exhibit larger

dynamic moduli than biofilms artificially generated through simple point process models,

(ii) the empirically informed PIM leads to realisations with statistical characteristics that

strongly match empirical data, and dynamic moduli that closely match data, and (iii) the

Poisson point process model leads to close agreement with empirical dynamic moduli, but

fails to match statistical characteristics of the empirical data.

In contrast to our results showing variation in the dynamic moduli depending on the

point process model, we note that in a intriguing article [52], the network topology of

an immersed boundary method model was not observed to have strong effects on bulk

viscoelastic properties of the system. We believe that this difference with our findings

is due to the magnitude of the number density of the point process being simulated

and how it compares to the average connectivity of each point. In our simulations, a

bacterium is, on average, connected to approximately 9 other bacteria through viscoelastic

linkages, whereas [52] used 2 regular networks of points with 14 and 27 linkages per

point, respectively. We conjecture that for high-connectivity networks, the rheological

properties of the material are less sensitive to the spatial positioning of points, whereas

lower connectivity networks exhibit more sensitivity. In a future work, we plan to further

study this idea.

Another future avenue of research would be to integrate a model for the network

topology (i.e., given bacteria at x1 and x2, what is the chance that there is a viscoelastic

linkage connecting them?) into the point process model. The bacteria in a biofilm are

typically interconnected through a complicated network of viscoelastic linkages whose

properties effect the bulk material properties of the biofilm. Currently, to model this

network, we use a deterministic rule specifying that if a pair of bacteria is separated

by a distance less than a cutoff radius, rc they are linked, and those separated by more

than rc are not linked. This network topology was originally proposed in [2], and was

again used in [25, 43]. Although simple, it yields realistic results when combined with

appropriate viscoelastic models of the linkages [43]. The reason that we do not introduce

a statistical model for the network topology is that current state-of-the-art experiments

allow for determination of bacteria locations, but to the extent of our knowledge, there is

no data on the connectivity of bacteria in a biofilm. We are very interested in analysing

connectivity statistics should such data become available.

The results in Section 6 show how different models of the positions of bacteria in a

biofilm can influence the mechanical properties of the simulated biofilm. It was found

https://doi.org/10.1017/S0956792518000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000220


A point process model of biofilm microstructure 1169

that the Poisson process model, and grid-aligned model do not yield results that are

consistent with statistical characteristics (e.g., Figure 4(a) and (b)) of the experimental

data. However, we were surprised to find that despite this difference from the experimental

data, the Poisson model yields biofilms with similar dynamic moduli, performing as well

as the PIM in terms of recreating the mechanical properties of a biofilm. In contrast, the

grid-aligned model, as shown in Figure 8 is not a close match. These findings indicate

that nonuniformity can lead to stronger biofilms in comparison to the grid-aligned case.

We also show that the model introduced in Section 4, with first- and second-order

characteristics informed by experimental data, yields agreement in the material properties

and agreement in statistical properties of the data.

Although the Poisson point process model exhibits similar dynamic moduli as experi-

mental data, from a physical interpretation, it is clear that the bacteria positions cannot

conform to a Poisson process. The lack of correlations between point locations, a defining

feature of Poisson processes, implies that for any radius, r, there is a non-zero probability

that within a given realisation, two points of the process are separated by a distance

less than r. In contrast, bacteria have finite radii and are impenetrable; thus, the centres

of mass of two bacteria cannot be separated by less than some hard-sphere radius. The

hard-sphere property of the experimental data is readily apparent upon computation of

the nearest neighbour distribution and the PCF. However, we note that the presence of

an initial low magnitude peak in the PCF is not typical of hard-sphere processes, and

requires a more complicated model such as the empirically informed PIM model we have

proposed.

Although not the focus of our work, an interesting result that arose in the course of

this study was the observation of variations in the number density of bacteria near the

fluid-biofilm interface. It would be interesting to discover whether this phenomenon is

a passive effect due to fluid motion at the biofilm-fluid surface or other experimental

conditions, or whether it is a strategy employed by biofilm forming bacteria to improve

the biological fitness of a given biofilm.
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Appendix

A.1 Bandwidth selection for the estimation of the number density

In Section 4, it was necessary to estimate the number density of biofilms samples. In order

complete this task, we used a kernel density based estimator of the form

ρ̂(z; b) =
1

A

∑
ri∈Φ∩W

kb(z − êz · ri)

c(z; b)
.

As is typical with kernel density estimation, a choice of the bandwidth, b, must be made.

Several typical techniques are discussed in [51]. The general idea is to minimise the mean

integrated square error (MISE),

MISE (ρ̂(z; b)) =

∫
(ρ̂(z; b) − ρ(z))2 dz.

The difficulty is of course the lack of knowledge of ρ(z). Although the choice of b is

partly intuitive, (e.g., too large a value leads to an overly smooth estimate, and too small

a value leads to an overly jagged estimate), it is difficult to judge the best value among

reasonable values of b by mere qualitative observation. Although there are numerous

methods of bandwidth selection, we choose to use the LSCV method described in [21]

as a first estimate. We also found that by visual examination values of b in the range

(0.13, 0.3) seem to provide reasonable results, and thus expect any optimisation method

to yield a value in this range. From [21], we optimise

LSCV (b) =

∫
W

ρ̂(z; b)2dz − 2
∑

ri∈Φ∩W

ρ̂(zi; b) − k(0; b)/(Ac(zi; b))

=
1

A2

∑
ri∈Φ∩W

∑
rj∈Φ∩W

∫
W

kh(z − zi)kh(z − zj)

cb(z)2
dz − 2

A

∑
ri∈Φ∩W

∑
rj∈Φ∩W\ri

kb(zi − zj)

cb(zi)
.
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Figure A.1. The least squares cross validation value for selected values of b over four data sets.

With the Epanechnikov kernel, and ignoring edge effects for simplicity

I(zi; b) ≡
∫
W

kb(z − zi)kb(z)dz =

{
3

160b

(
32 − 40(zi/b)

2 + 20|zi/b|3 − |zi/b|5
)

0

|zi| � 2b

|zi| > 2b

LSCV (b) =
1

A

⎛
⎝ 3

5b
Φ(W ) +

∑
ri 	=rj

I(zi − zj; b)

⎞
⎠− 2

A

∑
ri 	=rj

kb(zi − zj).

A plot of LSCV (b) versus b is shown in Figure A.1. It can be seen that there exists

several minima in each case, and the question is how to choose the ‘best’ minima. In

each case, the first minima, which is also the global minimum, is clearly too small leading

to density estimates with unacceptably high variance. We found that the shallow local

minimum at b ≈ 0.21 worked best in practice. We additionally implemented the log-

likelihood estimator described in [11] and found very similar results. It is unclear if there

exists a method that possess a unique minimum in our case. There is also some evidence

that spurious local minimisers of LSCV functionals tend to occur at smaller values than

the optimal b; thus, choosing the largest local minimiser seems a suitable strategy [24].

To augment the LSCV estimation, we use the fact that over a finite domain, the number

density is a multiple of a probability density function, and adapt the Bayesian estimation

technique discussed in [18]. To estimate the bandwidth, they choose a prior distribution

π(b), and compute the posterior distribution,

π(b| {z1, . . . , zn} , z) =
ρ̂b(z)π(b)∫ ∞

b=0
ρ̂b′ (z)π(b′)db′

.

This estimator has the property of being optimised for each particular value of z over

which we evaluate ρ̂b(z). To determine b,

�
[
b|{z1, . . . , zn}, z

]
=

∫ ∞

0

bπ
(
b| {z1, . . . , zn} , z

)
db,
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Figure A.1. Results of the bandwidth estimation technique [18] applied to number density estima-

tion. On the left, the variability of b(z) over the domain. On the right, the posterior distribution for

b for a particular value of z.

is computed. An important ambiguity in this method is the choice of prior, π(b). We

choose to use a log-normal distribution of the form

π(b) =
1

bσ
√

2π
e−(log b−μ)2/(2σ2),

with σ = 0.5, and μ = −1.5. Although these choices are clearly somewhat arbitrary, they

yield a distribution π(h) that has mass where we expect b to be located and tends towards

zero rapidly away from that region.

We found that, although the Bayesian estimate seems to do a good job of adapting b

for various choices of x, it has a strong tendency to oversmooth if some sort of informed

prior estimate for b is absent.

A.2 Bandwidth selection for estimation of the pair correlation function

Similar to the estimation of a number density, the estimation of a PCF bandwidth has an

important effect upon the resulting estimator. From a theoretical perspective, it is easiest

to analyse estimators of the form

ĝ(r) =
1

4πr2γ̄W (r)ρ2

∑
ri∈Φ∩W

∑
rj∈Φ∩W\{ri}

kb(r − |ri − rj |),

where γ̄W (r) is known as the isotropised set covariance [44,45]. It can be computed as the

following integral over t ∈
{

s ∈ �3| |s| = r
}

γ̄W (r) =
1

4πr2

∫
ν(W ∩Wt)dt.
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Although generally intractable to integrate analytically, for boxes, the integral can be

computed

γ̄W (r) =
1

4π

∫ ∫
ν(W∩Wt=(r,θ,φ))sin θdφdθ

=
2

π

∫ π/2

0

∫ π/2

0

(l − r sinφ cos θ)(w − r sinφ sin θ)(h− r cosφ) sin θ dθdφ

=hlw − 1

2
(hl + lw + wh)r +

2

3π
(h + l + w)r2 − 1

4π
r3,

for r < min(h, l, w). Then, following [37] and [44]

Var(ĝ(r)) ≈ 0.6g(r)

4πbρ2r2γ̄W (r)
.

It is noted in [44, Section 5] that this approximation is particularly accurate for hard-core

processes. The bias can be computed as

Bias(ĝ(r)) =

(∫
kb(r − r′)g(r′)dr′ − g(r)

)2

.

Since the PCF may exhibit a jump discontinuity near the hard-sphere radius, it is helpful

to examine the integrated bias∫
Bias(ĝ(r))dr =

∫ (∫
kb(r − r′)g(r′)dr′ − g(r)

)2

dr,

where g(r) is twice differentiable, the bias and variance can be combined to obtain an

approximation for the mean square error as a function of r and b

�
[
(g(r) − ĝ(r; b))2

]
=

0.6g(r)

4πbρ2r2γ̄W (r)
+

∫
kb(r − r′)r′2dr′g′′(r).

Assuming r > b since the hard-sphere diameter of bacteria is fairly large in comparison

to the range over which we compute g(r)

�
[
(g(r) − ĝ(r; b))2

]
=

0.6g(r)

4πbρ2r2γ̄W (r)
+

1

5
(b2 + r2)g′′(r). (A1)

Equation (A1) can be minimised for each value of r to yield an analogous result to those

typically derived in the case of probability density estimators (cf. [35, 38]),

b(r) =

(
3

8

g(r)

ρ2r2γ̄W (r)g′′(r)

)1/3

.

As is the case with density estimation, this expression is of limited usefulness since

it depends on the unknown quantities, g(r) and g′′(r). However, bandwidth selection

methods, such as LSCV, and biased cross validation (BCV) [21, 51] can be applied to the

integrated MSE to estimate an optimal value of b across the entire interval. For instance,

the LSCV estimator for g(r) can be formulated as in [20, equation 4]. In addition, to
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the minimisation method introduced in [20], we also employ a ‘binning’ technique to

estimate optimal values of b over disjoint portions of the overall interval of computation.

The motivation for this adaptation is that the behaviour of g(r) is quite different near

the hard-sphere radius in comparison to the asymptotic behaviour for g(r) as r grows.

It seems sensible that different bandwidths should be applied in these different regimes.

Thus, we employ LSCV functionals of the form

LSCV (h; [r0, r1]) = 4π

∫ r1

r0

ĝ(r; b)2r2dr − 2
∑ 	=

r0�|ri−rj |�r1

ĝ−(ri ,rj )(|ri − rj |; h)
γ̄W (|ri − rj |)ρ(ri)ρ(rj)

. (A2)

The symbol ĝ−(r1 ,rj )(r; h) indicates the computation of the PCF with points ri and rj
ignored. The expectation of the summation in equation (A2) is shown in [20] to converge

in the limit of a large domain to ∫
ĝ(r; h)g(r; h)4πr2dr.

One can see from this the similarity to classical LSCV estimation of bandwidth for kernel

density estimation [51].

In practice, we found that the summation of ĝ−(r1 ,r2)(r1, r2) was too expensive, leading

to extremely lengthy computations. To alleviate this issue, we approximated ĝ−(r1 ,r2)(r1, r2)

as

ĝ−(r1 ,r2)(|r12|) ≈ Iĝ(|r12|) −
2

4π|r12|2γ̄(|r12|)
∑

ri 	={r1 ,r2}

(
kb(|r12| − |r1i|) + kb(|r12| − |r2i|)

)
,

where Iĝ(·) is the linear interpolant of ĝ(·) to some value (i.e., |r12|). The factor of 2 in

the numerator of the second term is due arises since the terms involving r1i,r2i, ri1, and

ri2 must be subtracted from ĝ(r). However, since |rji| = |rij |, there are only Φ(W ) unique

terms in the sum. With this fix, once ĝ(r) is known, ĝ−(r1 ,r2)(|r12|) can be approximated in

O(Φ(W )) computations as opposed to O(Φ(W )2) computations. As long as ĝ(·) is initially

computed on a sufficiently dense set of points, the interpolant will be quite accurate.

The resulting optimal values of b for different ranges of r are shown in Table A.1. In

practice, the value of b(r) is assumed to be piecewise linear in r taking on the reported

value in A.1 at the midpoint of each interval. This prevents artificial discontinuous at

the end points of the intervals over which b was estimated. Of course, if the estimator

is accurate, one would expect such discontinuities to be small. Indeed, when b(r) is a

piecewise constant, discontinuities are difficult to discern by sight. We also use numerical

integration to compute the relevant integrals in equation (A2).

One final issue with LSCV bandwidth selection is the presence of multiple minima. For

the PCF LSCV functional, spurious minima near b = 0 were observed. For the probability

density estimation, it has been suggested that spurious minima are usually less than the

ideal bandwidth [24]. Thus, when multiple minima are present, we choose the minima

that is largest over the range of values we consider for b.

An alternative approach to variable bandwidth estimation is use techniques such as

that introduced in [1]. We believe such an approach would be effective as well.
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Table A.1. Values of b determined through LSCV optimisation are reported for intervals

of r

b rmin rmax

0.050 0.3 0.7

0.3700 0.7 1.6

0.2150 1.6 2.5

0.3960 2.5 5.0

A.3 Inhomogeneity of the direct pair correlation function in non-stationary processes

The motivation for using a transversely anisotropic pair correlation and DCFs was

attributed to properties of the Ornstein–Zernike equation. In this section, we demonstrate

why the Ornstein–Zernike equation implies a loss of translation invariance in the PCF

and DCF when the density is variable.

Consider the inhomogeneous Ornstein–Zernike equation as shown in equation (2.8). Let

the two pairs of points {r1, r2} and {r′1, r
′
2} satisfy r1 − r2 = r′1 − r′2 = δr, and assume that

the pair correlation and DCFs are translation invariant. Then, using the transformation

r′1 = r1 + x, r′2 = r2 + x

h(r1 − r2) = c(r1 − r2) +

∫
ρ(r3)c(r1 − r3)h(r2 − r3)dr3

− h(r′1 − r′2) = c(r′1 − r′2) +

∫
ρ(r3)c(r

′
1 − r3)h(r

′
2 − r3)dr3

0 =

∫
ρ(r3)c(r1 − r3)h(r2 − r3)dr3 −

∫
ρ(r3)c(r

′
1 − r3)h(r

′
2 − r3)dr3.

In order for this to be true for all translations, x, it must be the case that ρ(r3) = const

almost everywhere. Thus, for a smoothly varying number density, it cannot be the case

that c(r1, r2) and h(r1, r2) are both simultaneously translation invariant.
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