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Abstract

We propose a monotone approximation scheme for a class of fully nonlinear degen-
erate partial integro-differential equations which characterize nonlinear α-stable Lévy
processes under a sublinear expectation space with α ∈ (1, 2). We further establish the
error bounds for the monotone approximation scheme. This in turn yields an explicit
Berry–Esseen bound and convergence rate for the α-stable central limit theorem under
sublinear expectation.
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1. Introduction

Motivated by measuring risks under model uncertainty, [31–33, 36] introduced the notion
of a sublinear expectation space, called a G-expectation space. The G-expectation theory has
been widely used to evaluate random outcomes, not using a single probability measure, but
using the supremum over a family of possibly mutually singular probability measures. One of
the fundamental results in this theory is the robust central limit theorem introduced in [34, 36].
The corresponding convergence rate was an open problem until recently. The first convergence
rate was established in [14, 37] using Stein’s method and later in [28] using a stochastic control
method under different model assumptions. More recently, [20] studied the convergence rate of
a more general central limit theorem via a monotone approximation scheme for the G-equation.

On the other hand, nonlinear Lévy processes have been studied in [19, 29]. For α ∈ (1, 2),
they considered a nonlinear α-stable Lévy process (Xt)t≥0 defined on a sublinear expecta-
tion space (�,H, Ê), whose local characteristics are described by a set of Lévy triplets
�= {(0, 0, Fk± ) : k± ∈ K±}, where K± ⊂ (λ1, λ2) for some λ1, λ2 ≥ 0, and Fk±(dz) is the
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2 M. HU ET AL.

α-stable Lévy measure

Fk±(dz) = k−
|z|α+1

1(−∞,0)(z) dz + k+
|z|α+1

1(0,+∞)(z) dz.

Such a nonlinear α-stable Lévy process can be characterized via a fully nonlinear partial
integro-differential equation (PIDE). For any φ ∈ Cb,Lip(R), [29] proved the representation
result u(t, x) := Ê[φ(x + Xt)], (t, x) ∈ [0, T] ×R, where u is the unique viscosity solution of
the fully nonlinear PIDE⎧⎨

⎩∂tu(t, x) − sup
k±∈K±

{ ∫
R

δzu(t, x)Fk± (dz)

}
= 0, (t, x) ∈ (0, T] ×R,

u(0, x) = φ(x), x ∈R,

(1)

with δzu(t, x) := u(t, x + z) − u(t, x) − Dxu(t, x)z. In contrast to the fully nonlinear PIDEs
studied in the partial differential equation (PDE) literature, (1) is driven by a family of α-
stable Lévy measures rather than a single Lévy measure. Moreover, since Fk±(dz) possesses a
singularity at the origin, the integral term degenerates and (1) is a degenerate equation.

The corresponding generalized central limit theorem for α-stable random variables under
sublinear expectation was established in [6]. For this, let (ξi)∞i=1 be a sequence of independent
and identically distributed (i.i.d.) R-valued random variables on a sublinear expectation space
(�,H, Ẽ). After proper normalization, [6] showed that

lim
n→∞ Ẽ

[
φ

(
n∑

i=1

ξi
α
√

n

)]
= Ê[φ(X1)]

for any φ ∈ Cb,Lip(R). We refer to the above convergence result as the α-stable central limit
theorem under sublinear expectation.

Noting that Ê[φ(X1)] = u(1, 0), where u is the viscosity solution of (1), in this work we
study the rate of convergence for the α-stable central limit theorem under sublinear expectation
via the numerical analysis method for the nonlinear PIDE (1). To do this, we first construct a
sublinear expectation space (R,CLip(R), Ẽ) and introduce a random variable ξ on this space.
For given T > 0 and 
 ∈ (0, 1), using the random variable ξ under Ẽ as input, we define a
discrete scheme u
 : [0, T] ×R→R to approximate u by

u
(t, x) =
{
φ(x) if t ∈ [0, 
),

Ẽ[u
(t −
, x +
1/αξ )] if t ∈ [
, T].
(2)

Taking T = 1 and 
= 1/n, we can recursively apply the above scheme to obtain

Ẽ

[
φ

(
n∑

i=1

ξi
α
√

n

)]
= u
(1, 0).

In this way, the convergence rate of the α-stable central limit theorem is transformed into the
convergence rate of the discrete scheme (2) for approximating the nonlinear PIDE (1).

The basic framework for convergence of numerical schemes to viscosity solutions of
Hamilton–Jacobi–Bellman equations was established in [5], which showed that any monotone,
stable, and consistent approximation scheme converges to the correct solution, provided that
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Convergence of an α-stable central limit theorem under sublinear expectation 3

there exists a comparison principle for the limiting equation. The corresponding convergence
rate was first obtained with the introduction of the shaking coefficients technique to con-
struct a sequence of smooth subsolutions/supersolutions in [25–27]. This technique was further
developed to general monotone approximation schemes (see [2–4] and references therein).

The design and analysis of numerical schemes for nonlinear PIDEs is a relatively new area
of research. For nonlinear degenerate PIDEs driven by a family of α-stable Lévy measures,
there are no general results giving error bounds for numerical schemes. Most of the existing
results in the PDE literature only deal with a single Lévy measure and its finite difference
method, e.g. [7–9, 22]. One exception is [12], which considers a nonlinear PIDE driven by a
set of tempered α-stable Lévy measures for α ∈ (0, 1) by using the finite difference method.

To derive the error bounds for the discrete scheme (2), the key step is to interchange the roles
of the discrete scheme and the original equation when the approximate solution has enough
regularity. The classical regularity estimates of the approximate solution depend on the finite
variance of random variables. Since ξ has infinite variance, the method developed in [28]
cannot be applied to u
. To overcome this difficulty, by introducing a truncated discrete scheme
u
,N related to a truncated random variable ξN with finite variance, we construct a new type of
regularity estimate of u
,N that plays a pivotal role in establishing the space and time regularity
properties for u
. With the help of a precise estimate of the truncation Ẽ[|ξ − ξN |], a novel
estimate for |u
 − u
,N | is obtained. By choosing a proper N, we then establish the regularity
estimates for u
. Together with the concavity of (1) and (2), and the regularity estimates of
their solutions, we are able to interchange their roles and thus derive the error bounds for the
discrete scheme. To the best of our knowledge, these are the first error bounds for numerical
schemes for fully nonlinear PIDEs associated with a family of α-stable Lévy measures, which
in turn provide a nontrivial convergence rate result for the α-stable central limit theorem under
sublinear expectation.

On the other hand, the classical probability literature mainly deals with� as a singleton, so
(Xt)t≥0 becomes a classical Lévy process with triplet�, and X1 is an α-stable random variable.
The corresponding convergence rate of the classical α-stable central limit theorem (with � as
a singleton) has been studied using the Kolmogorov distance (see, e.g., [13, 15–17, 21, 24])
and the Wasserstein-1 distance or the smooth Wasserstein distance (see, e.g., [1, 10, 11, 23, 30,
38]). The first type is proved by the characteristic functions, which do not exist in the sublinear
framework, while the second type relies on Stein’s method which also fails under the sublinear
setting.

The rest of the paper is organized as follows. In Section 2, we review some necessary results
about sublinear expectation and α-stable Lévy processes. In Section 3, we list the assumptions
and our main results, the convergence rate of α-stable random variables under sublinear expec-
tation. We present two examples to illustrate our results in Section 4. Finally, by using the
monotone scheme method, the proof of our main result is given in Section 5.

2. Preliminaries

In this section, we recall some basic results of sublinear expectation and α-stable Lévy
processes that are needed in the sequel. For more details, we refer the reader to [6, 29, 32, 36]
and the references therein.

We start with some notation. Let CLip(Rn) be the space of Lipschitz functions on R
n, and

Cb,Lip(Rn) be the space of bounded Lipschitz functions on R
n. For any subset Q ⊂ [0, T] ×R

and for any bounded function on Q, we define the norm |ω|0 := sup(t,x)∈Q |ω(t, x)|. We also
use the following spaces: Cb(Q) and C∞

b (Q), denoting, respectively, the space of bounded
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4 M. HU ET AL.

continuous functions on Q and the space of bounded continuous functions on Q with bounded
derivatives of any order. For the rest of this paper we take a nonnegative function ζ ∈ C∞(R2)
with unit integral and support in {(t, x) : − 1< t< 0, |x|< 1} and, for ε ∈ (0, 1), let ζε(t, x) =
ε−3ζ (t/ε2, x/ε).

2.1. Sublinear expectation

Let H be a linear space of real-valued functions defined on a set� such that if X1, . . . , Xn ∈
H, then ϕ(X1, . . . , Xn) ∈H for each ϕ ∈ CLip(Rn).

Definition 1. A functional Ê : H→R is called a sublinear expectation if, for all X, Y ∈H, it
satisfies the following properties:

(i) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y].

(ii) Constant preservation: Ê[c] = c for any c ∈R.

(iii) Subadditivity: Ê[X + Y] ≤ Ê[X] + Ê[Y].

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for each λ> 0.

The triplet (�,H, Ê) is called a sublinear expectation space. From the definition of the
sublinear expectation Ê, the following results can be easily obtained.

Proposition 1. For X, Y ∈H,

(i) if Ê[X] = −Ê[ − X], then Ê[X + Y] = Ê[X] + Ê[Y];

(ii) |Ê[X] − Ê[Y]| ≤ Ê[|X − Y|];
(iii) Ê[|XY|] ≤ (Ê[|X|p])1/p · (Ê[|Y|q])1/q for 1 ≤ p, q<∞ with 1/p + 1/q = 1.

Definition 2. Let X1 and X2 be two n-dimensional random vectors defined respectively in
sublinear expectation spaces (�1,H1, Ê1) and (�2,H2, Ê2). They are called identically

distributed, denoted by X1
d= X2, if Ê1[ϕ(X1)] = Ê2[ϕ(X2)] for all ϕ ∈ CLip(Rn).

Definition 3. In a sublinear expectation space (�,H, Ê), a random vector Y = (Y1, . . . , Yn) ∈
Hn is said to be independent of another random vector X = (X1, . . . , Xm) ∈Hm under
Ê[·], denoted by Y ⊥ X, if, for every test function ϕ ∈ CLip(Rm ×R

n), Ê[ϕ(X, Y)] =
Ê[Ê[ϕ(x, Y)]x=X]. X̄ = (X̄1, . . . , X̄m) ∈Hm is said to be an independent copy of X if X̄

d= X
and X̄ ⊥ X.

More details concerning general sublinear expectation spaces can be found in [33, 36] and
references therein.

2.2. α-stable Lévy process

Definition 4. Let α ∈ (0, 2]. A random variable X on a sublinear expectation space (�,H, Ê)

is said to be (strictly) α-stable if, for all a, b ≥ 0, aX + bY
d= (aα + bα)1/αX, where Y is an

independent copy of X.

Remark 1. For α= 1, X is the maximal random variable discussed in [18, 34, 36]. When
α = 2, X becomes the G-normal random variable introduced in [35, 36]. In this paper, we shall
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Convergence of an α-stable central limit theorem under sublinear expectation 5

focus on the case of α ∈ (1, 2) and consider X for a nonlinear α-stable Lévy process (Xt)t≥0 in
the framework of [29].

Let α ∈ (1, 2), K± be a bounded measurable subset of R+, and Fk± be the α-stable Lévy
measure

Fk± (dz) = k−
|z|α+1

1(−∞,0)(z) dz + k+
|z|α+1

1(0,+∞)(z) dz

for all k−, k+ ∈ K±, and denote by � := {(0, 0, Fk± ) : k± ∈ K±} the set of Lévy triplets. From
[29, Theorem 2.1], we can define a nonlinear α-stable Lévy process (Xt)t≥0 with respect to
a sublinear expectation Ê[·] = supP∈B�

EP[·], where EP is the usual expectation under the
probability measure P, and B� is the set of all semimartingales with �-valued differential
characteristics. This implies the following:

• (Xt)t≥0 is real-valued càdlàg process and X0 = 0.

• (Xt)t≥0 has stationary increments, i.e. Xt − Xs and Xt−s are identically distributed for all
0 ≤ s ≤ t.

• (Xt)t≥0 has independent increments, i.e. Xt − Xs is independent of (Xs1 , . . . , Xsn ) for
each n ∈N and 0 ≤ s1 ≤ · · · ≤ sn ≤ s.

We now present some basic lemmas for the α-stable Lévy process (Xt)t≥0. We refer to [6,
Lemmas 2.6–2.9] and [29, Lemmas 5.1–5.3] for the details of the proofs.

Lemma 1. Ê[|X1|]<∞.

Lemma 2. For all λ> 0 and t ≥ 0, Xλt and λ1/αXt are identically distributed.

Lemma 3. Suppose that φ ∈ Cb,Lip(R). Then, for any (t, x) ∈ [0, T] ×R, u(t, x) = Ê[φ(x + Xt)]
is the unique viscosity solution of the fully nonlinear PIDE⎧⎨

⎩∂tu(t, x) − sup
k±∈K±

{ ∫
R

δzu(t, x)Fk± (dz)

}
= 0, (t, x) ∈ (0, T] ×R,

u(0, x) = φ(x), x ∈R,

(3)

with δzu(t, x) := u(t, x + z) − u(t, x) − Dxu(t, x)z. Moreover, for any 0 ≤ s ≤ t ≤ T, u(t, x) =
Ê[u(t − s, x + Xs)].

Lemma 4. Suppose that φ ∈ Cb,Lip(R). Then the function u is uniformly bounded by |φ|0 and
jointly continuous. More precisely, for any t, s ∈ [0, T] and x, y ∈R,

|u(t, x) − u(s, y)| ≤ Cφ,K(|x − y| + |t − s|1/α),

where Cφ,K is a constant depending only on the Lipschitz constant of φ and

K := sup
k±∈K±

{ ∫
R

|z| ∧ |z|2Fk± (dz)

}
<∞.

3. Main results

First, we construct a sublinear expectation space and introduce random variables on it. For
each k± ∈ K± ⊂ (λ1, λ2) for some λ1, λ2 ≥ 0, let Wk± be a classical mean-zero random variable
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with a cumulative distribution function (CDF)

FWk± (z) =

⎧⎪⎪⎨
⎪⎪⎩

[
k−
α

+ β1,k± (z)

]
1

|z|α , z< 0,

1 −
[

k+
α

+ β2,k± (z)

]
1

zα
, z> 0,

(4)

for some functions β1,k± : (− ∞, 0] →R and β2,k± : [0,∞) →R such that
limz→−∞ β1,k± (z) = limz→∞ β2,k± (z) = 0. Define a sublinear expectation Ẽ on CLip(R)
by

Ẽ[ϕ] = sup
k±∈K±

∫
R

ϕ(z) dFWk± (z)

for all ϕ ∈ CLip(R). Clearly, (R,CLip(R), Ẽ) is a sublinear expectation space. Let ξ be a random
variable on this space given by ξ (z) = z for all z ∈R. Since Wk± has mean zero, this yields
Ẽ[ξ ] = Ẽ[ − ξ ] = 0.

We need the following assumptions, which are motivated by [6, Example 4.2].

Assumption 1. For each k± ∈ K±, β1,k± and β2,k± are continuously differentiable functions in
(4) satisfying

∫
R

z dFWk± (z) = 0.

Assumption 2. There exists a constant M > 0 such that, for any k± ∈ K±, the following
quantities are less than M:

∣∣∣∣
∫ −1

−∞
β1,k±(z)

|z|α dz

∣∣∣∣,
∣∣∣∣
∫ ∞

1

β2,k±(z)

zα
dz

∣∣∣∣.
Assumption 3. There exists a constant q> 0 such that, for any k± ∈ K± and 
 ∈ (0, 1), the
following quantities are less than C
q:

|β1,k± (−
−1/α)|,
∫ −1

−∞
|β1,k±(
−1/αz)|

|z|α dz,
∫ 0

−1

|β1,k± (
−1/αz)|
|z|α−1

dz,

|β2,k± (
−1/α)|,
∫ ∞

1

|β2,k± (
−1/αz)|
zα

dz,
∫ 1

0

|β2,k± (
−1/αz)|
zα−1

dz,

where C> 0 is a constant.

Remark 2. Note that by Assumption 1 alone, the terms in Assumption 2 are finite and the
terms in Assumption 3 approach zero as 
→ 0. In other words, the content of Assumptions 2
and 3 are the uniform bounds and the existence of minimum convergence rates.

Remark 3. By (4), we can write β1,k± and β2,k± as

β1,k± (z) = FWk± (z)|z|α − k−
α
, z ∈ (− ∞, 0],

β2,k± (z) = (1 − FWk± (z))zα − k+
α
, z ∈ [0,∞).
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Under Assumption 1, it can be checked that for any k± ∈ K± the following quantities are
uniformly bounded (we also assume the uniform bound is M):

|β1,k± (−1)|,
∫ 0

−1

| − β ′
1,k± (z)z + αβ1,k± (z)|

|z|α−1
dz,

|β2,k± (1)|,
∫ 1

0

| − β ′
2,k±(z)z + αβ2,k±(z)|

zα−1
dz.

Remark 4. Under Assumptions 1 and (A2), it is easy to check that

Ẽ[|ξ |] = Ẽ

[ ∫ ∞

0
1{|ξ |>z} dz

]
= sup

k±∈K±

{ ∫ ∞

0
Pk± (|ξ |> z) dz

}
,

where {Pk± , k± ∈ K±} is the set of probability measures related to uncertainty distributions
{FWk± , k± ∈ K±}. It follows that

Ẽ[|ξ |] ≤ 1 + sup
k±∈K±

{ ∫ ∞

1
Pk± (|ξ |> z) dz

}

≤ 1 + sup
k±∈K±

{
k− + k+
α(α− 1)

+
∣∣∣∣
∫ ∞

1

β2,k±(z)

zα
dz

∣∣∣∣+
∣∣∣∣
∫ ∞

1

β1,k± (− z)

zα
dz

∣∣∣∣
}
<∞.

Similarly,

Ẽ[|ξ |2] ≥
∫ ∞

1
Pk± (|ξ |>√

z) dz

=
∫ ∞

1

k+/α + β2,k± (
√

z)

zα/2
dz +

∫ ∞

1

k−/α + β1,k± (− √
z)

zα/2
dz = ∞.

Let (ξi)∞i=1 be a sequence of i.i.d. R-valued random variables defined on (R,CLip(R), Ẽ) in

the sense that ξ1 = ξ , ξi+1
d= ξi, and ξi+1 ⊥ (ξ1, ξ2, . . . , ξi) for each i ∈N; we write

S̄n :=
n∑

i=1

ξi
α
√

n
. (5)

Now we state our first main result.

Theorem 1. Suppose that Assumptions 1–3 hold. Let (S̄n)∞n=1 be a sequence as defined in (5),
and (Xt)t≥0 be a nonlinear α-stable Lévy process with the characteristic set �. Then, for any
φ ∈ Cb,Lip(R),

∣∣Ẽ[φ(S̄n)] − Ê[φ(X1)]
∣∣≤ C0n−�(α,q), where

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}

with q> 0 given in Assumption 3, and C0 is a constant depending on the Lipschitz constant of
φ, which is given in Theorem 2.
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Remark 5. The classical α-stable central limit theorem (see, e.g., [21, Theorem 2.6.7]) states
that for a classical mean-zero random variable ξ1, the sequence S̄n converges in law to X1 as
n → ∞ if and only if the CDF of ξ has the form given in (4), where (Xt)t≥0 is a classical Lévy
process with triplet (0, 0, Fk±). In the framework of sublinear expectation, sufficient conditions
for the α-stable central limit theorem are given in [6], which showed that, for a mean-zero
random variable ξ1 under the sublinear expectation Ẽ defined above, S̄n converges in law to
X1 as n → ∞, where (Xt)t≥0 is a nonlinear Lévy process with triplet set �. Here, Theorem 1
further provides an explicit convergence rate of the limit theorem in [6], which can be seen as
a special α-stable central limit theorem under the sublinear expectation.

Remark 6. Assumptions 1–3 are sufficient conditions for [6, Theorem 3.1]. Indeed, by
[6, Proposition 2.10], we know that for any 0< h< 1, u ∈ C1,2

b ([h, 1 + h] ×R). Under
Assumptions 1–3, by using II from (19) we get, for any φ ∈ Cb,Lip(R) and 0< h< 1,

n

∣∣∣∣Ẽ[δn−1/αξ1
v(t, x)

]− 1

n
sup

k±∈K±

{ ∫
R

δzv(t, x)Fk± (dz)

}∣∣∣∣→ 0

uniformly on [0, 1] ×R as n → ∞, where v is the unique viscosity solution of⎧⎨
⎩∂tv(t, x) + sup

k±∈K±

{ ∫
R

δzv(t, x)Fk± (dz)

}
= 0, (t, x) ∈ (− h, 1 + h) ×R,

v(1 + h, x) = φ(x), x ∈R.

In addition, the necessary conditions for the α-stable central limit theorem under sublinear
expectation are still unknown.

4. Two examples

In this section we give two examples to illustrate our results.

Example 1. Let (ξi)∞i=1 be a sequence of i.i.d. R-valued random variables defined on
(R,CLip(R), Ẽ) with CDF (4) satisfying β1,k± (z) = 0 for z ≤ −1 and β2,k± (z) = 0 for z ≥ 1
with λ2 <α/2. The exact expressions for β1,k± (z) and β2,k±(z) for 0< |z|< 1 are not specified
here, but we require β1,k±(z) and β2,k±(z) to satisfy Assumption 1. It is clear that Assumption
2 holds. In addition, for each k± ∈ K± and 
 ∈ (0, 1),

∫ 1

0

|β2,k±(
−1/αz)|
zα−1

dz =
∫ 
1/α

0

|β2,k±(
−1/αz)|
zα−1

dz ≤ c

2 − α

(2−α)/α,

where c := supz∈(0,1) |β2,k±(z)|<∞, and similarly for the negative half-line. This indicates
that Assumption 3 holds with q = (2 − α)/α. According to Theorem 1, we get the convergence
rate

∣∣Ẽ[φ(S̄n)] − Ê[φ(X1)]
∣∣≤ C0n−�(α), where

�(α) = min

{
1

4
,

2 − α

2α

}
.

Example 2. Let (ξi)∞i=1 be a sequence of i.i.d. R-valued random variables defined on
(R,CLip(R), Ẽ) with CDF (4) satisfying β1,k± (z) = a1|z|α−β for z ≤ −1 and β2,k± (z) = a2zα−β
for z ≥ 1, with β > α and two proper constants a1, a2. The exact expressions for β1,k± (z) and
β2,k± (z) for 0< |z|< 1 are not specified here, but we require that β1,k± (z) and β2,k± (z) satisfy
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Assumption 1. For simplicity, we will only check the integral along the positive half-line; the
negative half-line case is similar. Observe that

∫ ∞

1

β2,k± (z)

zα
dz = a2

β − 1
,

which shows that Assumption 2 holds. Also, it can be verified that, for each k± ∈ K± and

 ∈ (0, 1),

|β2,k± (
−1/α)| = a2

(β−α)/α,∫ ∞

1

|β2,k± (
−1/αz)|
zα

dz = a2

β − 1

(β−α)/α,

∫ 1

0

|β2,k± (
−1/αz)|
zα−1

dz =
∫ 
1/α

0

|β2,k±(
−1/αz)|
zα−1

dz +
∫ 1


1/α

|β2,k±(
−1/αz)|
zα−1

dz

≤ c

2 − α

(2−α)/α + a2


(β−α)/α
∫ 1


1/α
z1−β dz,

where c = supz∈(0,1) |β2,k±(z)|<∞. We further distinguish three cases based on the value of
β.

If β = 2,

∫ 1

0

|β2,k± (
−1/αz)|
zα−1

dz ≤ c

2 − α

(2−α)/α + a2


(2−α)/α ln
−1/α ≤ C
(2−α)/α−ε,

where C = (c/(2 − α)) + a2, for any small ε > 0.
If α < β < 2,

∫ 1

0

|β2,k±(
−1/αz)|
zα−1

dz ≤ c

2 − α

(2−α)/α + a2

2 − β
(
(β−α)/α −
(2−α)/α) ≤ C
(β−α)/α,

where

C = c

2 − α
+ 2a2

2 − β
.

If β > 2, it follows that

∫ 1

0

|β2,k± (
−1/αz)|
zα−1

dz ≤ c

2 − α

(2−α)/α + a2

β − 2
(
(2−α)/α −
(β−α)/α) ≤ C
(2−α)/α,

where

C = c

2 − α
+ 2a2

β − 2
.
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Then, Assumption 3 holds with

q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 − α

α
− ε if β = 2,

β − α

α
if α < β < 2,

2 − α

α
if β > 2

for any small ε > 0. From Theorem 1, we immediately obtain
∣∣Ẽ[φ(S̄n)] − Ê[φ(X1)]

∣∣≤
C0n−�(α,β), where

�(α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min

{
1

4
,

2 − α

2α
− ε

2

}
if β = 2,

min

{
1

4
,
β − α

2α

}
if α < β < 2,

min

{
1

4
,

2 − α

2α

}
if β > 2,

with ε > 0.

5. Proof of Theorem 1: Monotone scheme method

In this section we introduce the numerical analysis tools of nonlinear partial differential
equations to prove Theorem 1. Noting that Ê[φ(X1)] = u(1, 0), where u is the viscosity solution
of (3), we propose a discrete scheme to approximate u by merely using the random variable ξ
under Ẽ as input. For given T > 0 and 
 ∈ (0, 1), define u
 : [0, T] ×R→R recursively by

u
(t, x) =
{
φ(x) if t ∈ [0, 
),

Ẽ[u
(t −
, x +
1/αξ )] if t ∈ [
, T].
(6)

From the above recursive process, we can see that, for each x ∈R and n ∈N such that n
≤ T ,
u
(·, x) is a constant on the interval [n
, (n + 1)
∧ T), that is, u
(t, x) = u
(n
, x) for all
t ∈ [n
, (n + 1)
∧ T).

By induction (see [20, Theorem 2.1]), we can derive that, for all n ∈N such that n
≤ T
and x ∈R,

u
(n
, x) = Ẽ

[
φ

(
x +
1/α

n∑
i=1

ξi

)]
.

In particular, taking T = 1 and 
= 1/n, we have u
(1, 0) = Ẽ[φ(S̄n)], and Theorem 1 follows
from the following result.

Theorem 2. Suppose that Assumptions 1–3 hold, and φ ∈ Cb,Lip(R). Then, for any (t, x) ∈
[0, T] ×R, |u(t, x) − u
(t, x)| ≤ C0


�(α,q), where the Berry–Esseen constant C0 = L0 ∨ U0,
with L0 and U0 given explicitly in Lemmas 11 and 12, respectively, and

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}
.
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5.1. Regularity estimates

To prove Theorem 2, we first need to establish the space and time regularity properties of
u
, which are crucial for proving the convergence of u
 to u and determining its convergence
rate. Before showing our regularity estimates of u
, we set

I1,
 = sup
k±∈K±

{
k− + k+

2 − α
+ 2

∫ 1

0

|β1,k±(−
−1/αz)| + |β2,k±(
−1/αz)|
zα−1

dz

+ |β1,k±(−
−1/α)| + |β2,k±(
−1/α)|
}
,

I2,
 = sup
k±∈K±

{
k− + k+
α − 1

+
∫ ∞

1

|β1,k± (−
−1/αz)| + |β2,k±(
−1/αz)|
zα

dz

+ |β1,k±(−
−1/α)| + |β2,k±(
−1/α)|
}

.

Theorem 3. Suppose that Assumptions 1 and 3 hold, and φ ∈ Cb,Lip(R). Then:

(i) for any t ∈ [0, T] and x, y ∈R, |u
(t, x) − u
(t, y)| ≤ Cφ |x − y|;
(ii) for any t, s ∈ [0, T] and x ∈R, |u
(t, x) − u
(s, x)| ≤ CφI
(|t − s|1/2 +
1/2);

where Cφ is the Lipschitz constant of φ and, I
 =√
I1,
 + 2I2,
 with I
 <∞.

Notice that Ẽ[ξ2] = ∞, so the classical method developed in [28] fails. To prove Theorem 3,
for fixed N > 0, we define ξN := ξ1{|ξ |≤N} and introduce the truncated scheme u
,N : [0, T] ×
R→R recursively by

u
,N(t, x) =
{
φ(x) if t ∈ [0, 
),

Ẽ[u
,N(t −
, x +
1/αξN)] if t ∈ [
, T].
(7)

We get the following estimates.

Lemma 5. For each fixed N > 0, Ẽ[|ξN |2] = N2−αI1,N, where

I1,N := sup
k±∈K±

{
k− + k+

2 − α
+ 2

∫ 1

0

β1,k±(− zN) + β2,k±(zN)

zα−1
dz − β1,k± (−N) − β2,k± (N)

}
.

Proof. Using Fubini’s theorem,

Ẽ[|ξ |21{|ξ |≤N}]

= sup
k±∈K±

{ ∫
R

( ∫ z

0
2r dr1{|z|≤N}

)
dFWk± (z)

}

= sup
k±∈K±

{ ∫
R

( ∫ ∞

0
2r1{0≤r<z} dr −

∫ 0

−∞
2r1{z≤r<0} dr

)
1{|z|≤N} dFWk± (z)

}

= sup
k±∈K±

{ ∫ N

0
2r

( ∫
R

1{r≤z≤N} dFWk± (z)

)
dr −

∫ 0

−N
2r

( ∫
R

1{−N≤z<r} dFWk± (z)

)
dr

}

= sup
k±∈K±

{ ∫ N

0
2r

(
FWk± (N) − FWk± (r)

)
dr −

∫ 0

−N
2r

(
FWk± (r) − FWk± (−N)

)
dr

}
.
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By changing variables, it is straightforward to check that

∫ N

0
2r(FWk± (N) − FWk± (r)) dr = N2−α

(
k+

2 − α
+ 2

∫ 1

0

β2,k± (zN)

zα−1
dz − β2,k± (N)

)
,

∫ 0

−N
2r(FWk± (r) − FWk± (−N)) dr = N2−α

(
k−

2 − α
+ 2

∫ 1

0

β1,k± (− zN)

zα−1
dz − β1,k± (−N)

)
,

which immediately implies the result. �

Lemma 6. For each fixed N > 0, Ẽ[|ξ − ξN |] = N1−αI2,N, where

I2,N := sup
k±∈K±

{
k− + k+
α − 1

+ β1,k±(−N) + β2,k±(N) +
∫ +∞

1

β1,k± (− zN) + β2,k± (zN)

zα
dz

}
.

Proof. Notice that

Ẽ[|ξ − ξN |] = Ẽ
[|ξ |1{|ξ |>N}

]= sup
k±∈K±

{ ∫
R

|z|1{|z|>N} dFWk± (z)

}
. (8)

Observe by Fubini’s theorem that∫
R

|z|1{|z|>N} dFWk± (z) =
∫ ∞

0

∫
R

1{0≤r<|z|}1{|z|>N} dFWk± (z) dr

=
∫ ∞

N

∫
R

1{|z|>r} dFWk± (z) dr + N
∫
R

1{|z|>N} dFWk± (z)

=
∫ ∞

N
(1 − FWk± (r) + FWk± (−r)) dr

+ N(1 − FWk± (N) + FWk± (−N)). (9)

Using (8) and (9), we obtain

Ẽ[|ξ − ξN |] = sup
k±∈K±

{
k− + k+
α− 1

N1−α + N1−α(β1,k±(−N) + β2,k±(N))

+
∫ ∞

N

β1,k± (−r) + β2,k±(r)

rα
dr

}
.

By changing variables, we immediately conclude the proof. �

Lemma 7. Suppose that φ ∈ Cb,Lip(R). Then:

(i) for any k ∈N such that k
≤ T and x, y ∈R, |u
,N(k
, x) − u
,N(k
, y)| ≤ Cφ |x − y|;
(ii) for any k ∈N such that k
≤ T and x ∈R,

|u
,N(k
, x) − u
,N(0, x)| ≤ Cφ
(
(I1,N)1/2N(2−α)/2
(2−α)/2α

+ I2,NN1−α
(1−α)/α)(k
)1/2;
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where Cφ is the Lipschitz constant of φ, and I1,N, I2,N are given in Lemmas 5 and 6,
respectively.

Proof. Assertion (i) is proved by induction using (7). Clearly, the estimate holds for k = 0. In
general, we assume the assertion holds for some k ∈N with k
≤ T . Then, using Proposition 1,
we have∣∣u
,N((k + 1)
, x) − u
,N((k + 1)
, y)

∣∣
= ∣∣Ẽ[u
,N(k
, x +
1/αξN)] − Ẽ[u
,N(k
, y +
1/αξN)]

∣∣
≤ Ẽ

[∣∣u
,N(k
, x +
1/αξN) − u
,N(k
, y +
1/αξN)
∣∣]≤ Cφ |x − y|.

By the principle of induction the assertion is true for all k ∈N with k
≤ T .
Now we establish the time regularity for u
,N in (ii). Note that Young’s inequality implies

that, for any x, y> 0, xy ≤ 1
2 (x2 + y2). For any ε > 0, let x = |x − y| and y = 1/ε; then it follows

from (i) that
u
,N(k
, x) ≤ u
,N(k
, y) + A|x − y|2 + B,

where A = (ε/2)Cφ and B = (1/2ε)Cφ .
We claim that, for any k ∈N such that k
≤ T and x, y ∈R,

u
,N(k
, x) ≤ u
,N(0, y) + A|x − y|2 + AM2
Nk
2/α + CφDNk
1/α + B, (10)

where M2
N = Ẽ[|ξN |2] and DN = Ẽ[|ξ − ξN |]. Indeed, (10) obviously holds for k = 0. Assume

that for some k ∈N the assertion (10) holds. Notice that

u
,N((k + 1)
, x) = Ẽ[u
,N(k
, x +
1/αξN)]

= sup
k±∈K±

EPk±
[
u
,N(k
, x +
1/αξN)

]
. (11)

Then, for any k± ∈ K±,

EPk± [u
,N(k
, x +
1/αξN)] ≤ u
,N(0, y +
1/αEPk± [ξN]) + AM2
Nk
2/α + CφDNk
1/α

+ B + AEPk±
[∣∣x − y +
1/α(ξN − EPk± [ξN])

∣∣2]. (12)

Seeing that EPk±
[
ξN − EPk± [ξN]

]= 0 and

EPk±
[(
ξN − EPk± [ξN]

)2]= EPk±
[
(ξN)2]− (

EPk± [ξN]
)2 ≤ Ẽ

[|ξN |2],
we can deduce that

EPk±
[∣∣x − y +
1/α(ξN − EPk± [ξN]

)∣∣2]≤ |x − y|2 + M2
N


2/α . (13)

Also, since EPk± [ξ ] = 0, it follows from (i) that

u
,N(0, y +
1/αEPk± [ξN]) = u
,N(0, y +
1/αEPk± [ξN − ξ ])

≤ u
,N(0, y) + CφDN

1/α . (14)
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Combining (11)–(14), we obtain

u
,N((k + 1)
, x) ≤ u
,N(0, y) + A|x − y|2 + AM2
N(k + 1)
2/α + CφDN(k + 1)
1/α + B,

which shows that (10) also holds for k + 1. By the principle of induction our claim is true for
all k ∈N such that k
≤ T and x, y ∈R. By taking y = x in (10) we have, for any ε > 0,

u
,N(k
, x) ≤ u
,N(0, x) + ε

2
CφM2

Nk
2/α + CφDNk
1/α + 1

2ε
Cφ .

By minimizing of the right-hand side with respect to ε, we obtain

u
,N(k
, x) ≤ u
,N(0, x) + Cφ(M2
N)1/2
(2−α)/2α(k
)1/2 + CφDN


(1−α)/α(k
)

≤ u
,N(0, x) + Cφ
(
(M2

N)1/2
(2−α)/2α + DN

(1−α)/α)(k
)1/2.

Similarly, we also have

u
,N(0, x) ≤ u
,N(k
, x) + Cφ
(
(M2

N)1/2
(2−α)/2α + DN

(1−α)/α)(k
)1/2.

Combining with Lemmas 5 and 6, we obtain our desired result (ii). �

Lemma 8. Suppose that φ ∈ Cb,Lip(R) and N > 0 is fixed. Then, for any k ∈N such that k
≤ T
and x ∈R,

vertu
(k
, x) − u
,N(k
, x)| ≤ CφI2,NN1−α
(1−α)/αk
,

where Cφ is the Lipschitz constant of φ and I2,N is given in Lemma 6.

Proof. Let (ξi)i≥1 be a sequence of random variables on (R,CLip(R), Ẽ) such that ξ1 = ξ ,

ξi+1
d= ξi, and ξi+1 ⊥ (ξ1, ξ2, . . . , ξi) for each i ∈N, and let ξN

i = ξi ∧ N ∨ (−N) for each i ∈N.
In view of (6) and (7), by using the induction method of [20, Theorem 2.1] we have, for any
k ∈N such that k
≤ T and x ∈R,

u
(k
, x) = Ẽ

[
φ

(
x +
1/α

k∑
i=1

ξi

)]
, u
,N(k
, x) = Ẽ

[
φ

(
x +
1/α

k∑
i=1

ξN
i

)]
.

Then, it follows from the Lipschitz condition of φ and Lemma 6 that

|u
(k
, x) − u
,N(k
, x)| ≤ Cφ

1/αkẼ[|ξ1 − ξN

1 |] ≤ CφI2,NN1−α
(1−α)/αk
. �

Now we start to prove the regularity results of u
.

Proof of Theorem 3. The space regularity of u
 can be proved by induction using (6). We
only focus on the time regularity of u
 and divide its proof into three steps.

Step 1. Consider the special case |u
(k
, ·) − u
(0, ·)| for any k ∈N such that k
≤ T .
Noting that u
,N(0, x) = u
(0, x) = φ(x), we have

|u
(k
, x) − u
(0, x)| ≤ |u
(k
, x) − u
,N(k
, x)| + |u
,N(k
, x) − u
,N(0, x)|.
In view of Lemmas 7 and 8, by choosing N =
−1/α we obtain

|u
(k
, x) − u
(0, x)| ≤ Cφ((I1,N)1/2N(2−α)/2
(2−α)/2α + 2I2,NN1−α
(1−α)/α)(k
)1/2

≤ Cφ
(
(I1,
)1/2 + 2I2,


)
(k
)1/2, (15)
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where

I1,
 = sup
k±∈K±

{
k− + k+

2 − α
+ 2

∫ 1

0

|β1,k±(−
−1/αz)| + |β2,k±(
−1/αz)|
zα−1

dz

+ |β1,k±(−
−1/α)| + |β2,k±(
−1/α)|
}
,

I2,
 = sup
k±∈K±

{
k− + k+
α − 1

+
∫ ∞

1

|β1,k± (−
−1/αz)| + |β2,k±(
−1/αz)|
zα

dz

+ |β1,k±(−
−1/α)| + |β2,k±(
−1/α)|
}

.

In addition, by Assumption 1, it is easy to obtain that I1,
 and I2,
 are finite as 
→ 0.

Step 2. Let us turn to the case |u
(k
, ·) − u
(l
, ·)| for any k, l ∈N such that (k ∨ l)
≤
T . Without loss of generality, we assume that k ≥ l. Let (ξi)∞i=1 be a sequence of random vari-

ables on (R,CLip(R), Ẽ) such that ξ1 = ξ , ξi+1
d= ξi, and ξi+1 ⊥ (ξ1, ξ2, . . . , ξi) for each i ∈N.

By using induction (6) and the estimate (15), it is easy to obtain that, for any k ≥ l and x ∈R,

|u
(k
, x) − u
(l
, x)|

=
∣∣∣∣∣Ẽ
[

u


(
(k − l)
, x +
1/α

l∑
i=1

ξi

)]
− Ẽ

[
u


(
0, x +
1/α

l∑
i=1

ξi

)]∣∣∣∣∣
≤ Ẽ

[∣∣∣∣∣u

(

(k − l)
, x +
1/α
l∑

i=1

ξi

)
− u


(
0, x +
1/α

l∑
i=1

ξi

)∣∣∣∣∣
]

≤ Cφ((I1,
)1/2 + 2I2,
)((k − l)
)1/2. (16)

Step 3. In general, for s, t ∈ [0, T], let δs, δt ∈ [0, 
) such that s − δs and t − δt are in the
grid points {k
 : k ∈N}. Then, from (16),

u
(t, x) = u
(t − δt, x) ≤ u
(s − δs, x) + Cφ((I1,
)1/2 + 2I2,
)|t − s − δt + δs|1/2

≤ u
(s, x) + Cφ((I1,
)1/2 + 2I2,
)(|t − s|1/2 +
1/2).

We can similarly prove that

u
(s, x) ≤ u
(t, x) + Cφ((I1,
)1/2 + 2I2,
)(|t − s|1/2 +
1/2),

and this yields (ii). �

5.2. The monotone approximation scheme

In this section we first rewrite the recursive approximation (6) as a monotone scheme, and
then derive its consistency error estimates and comparison result.
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For 
 ∈ (0, 1), based on (6), we introduce the monotone approximation scheme as{
S(
, x, u
(t, x), u
(t −
, ·)) = 0, (t, x) ∈ [
, T] ×R,

u
(t, x) = φ(x), (t, x) ∈ [0, 
) ×R,
(17)

where S : (0, 1) ×R×R× Cb(R)→ R is defined by

S(
, x, p, v) = p − Ẽ[v(x +
1/αξ )]



. (18)

For a function f defined on [0, T] ×R, introduce its norm |f |0 := sup[0,T]×R |f (t, x)|. We
now give some key properties of the approximation scheme (17).

Proposition 2. Suppose that S(
, x, p, v) is as given in (18). Then the following properties
hold:

(i) Monotonicity. For any c1, c2 ∈R and any function u ∈ Cb(R) with u ≤ v,

S(
, x, p + c1, u + c2) ≥ S(
, x, p, v) + c1 − c2



.

(ii) Concavity. For any λ ∈ [0, 1], p1, p2 ∈R, and v1, v2 ∈ Cb(R), S(
, x, p, v) is concave in
(p,v), i.e.

S(
, x, λp1 + (1 − λ)p2, λv1( · ) + (1 − λ)v2( · )) ≥ λS(
, x, p1, v1( · ))

+ (1 − λ)S(
, x, p2, v2( · )).

(iii) Consistency. For any ω ∈ C∞
b ([
, T] ×R),∣∣∣∣∂tω(t, x) − sup

k±∈K±

{ ∫
R

δzω(t, x)Fk± (dz)

}
− S(
, x, ω(t, x), ω(t −
, ·))

∣∣∣∣
≤ (1 + Ẽ[|ξ |])(|∂2

t ω|0
+ |∂tDxω|0
1/α)+ R0|D2
xω|0
(2−α)/α

+ |D2
xω|0R1


 + |Dxω|0R2

,

where

R0 = sup
k±∈K±

{
|β1,k±(−1)| + |β2,k±(1)|

+
∫ 1

0

[|αβ1,k±(− z) + β ′
1,k± (− z)z| + |αβ2,k±(z) − β ′

2,k±(z)z|]z1−α dz

}
,

R1

 = 5 sup

k±∈K±

{ ∫ 1

0

[|β1,k±(−
−1/αz)| + |β2,k±(
−1/αz)|]z1−α dz

}
,

R2

 = 4 sup

k±∈K±

{
|β1,k±(−
−1/α)| + |β2,k±(
−1/α)|

+
∫ ∞

1

[|β1,k±(−
−1/αz)| + |β2,k±(
−1/αz)|]z−α dz

}
.
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Proof. Parts (i) and (ii) are immediate, so we only prove (iii). To this end, we split the
consistency error into two parts. Specifically, for (t, x) ∈ [
, T] ×R,∣∣∣∣∂tω(t, x) − sup

k±∈K±

{ ∫
R

δzω(t, x)Fk± (dz)

}
− S(
, x, ω(t, x), ω(t −
, ·))

∣∣∣∣
≤
−1

∣∣Ẽ[ω(t −
, x +
1/αξ )] − Ẽ[ω(t, x +
1/αξ ) − Dxω(t, x)
1/αξ ] + ∂tω(t, x)

∣∣

+
−1
∣∣∣∣Ẽ[δ
1/αξω(t, x)] − sup

k±∈K±

{ ∫
R

δzω(t, x)Fk± (dz)

}



∣∣∣∣ := I + II. (19)

Applying Taylor’s expansion (twice) yields

ω(t, x +
1/αξ ) =ω(t −
, x +
1/αξ ) +
∫ t

t−

∂tω(s, x) ds

+
∫ t

t−


∫ x+
1/αξ

x
∂tDxω(s, y) dy ds. (20)

Since Ẽ[ξ ] = Ẽ[ − ξ ] = 0, (20) and the mean value theorem give

I ≤
−1
∫ t

t−

|∂tω(t, x) − ∂tω(s, x)| ds +
−1

Ẽ

[∣∣∣∣
∫ t

t−


∫ x+
1/αξ

x
∂tDxω(s, y) dy ds

∣∣∣∣
]

≤ 1

2
|∂2

t ω|0
+ Ẽ[|ξ |]|∂tDxω|0
1/α . (21)

For II, by changing variables we get

II ≤ sup
k±∈K±

{∣∣∣∣
∫ 0

−∞
δzω(t, x)[−β ′

1,k± (
−1/αz)
−1/αz + αβ1,k±(
−1/αz)]|z|−α−1 dz

+
∫ ∞

0
δzω(t, x)

[−β ′
2,k± (
−1/αz)
−1/αz + αβ2,k±(
−1/αz)

]
z−α−1 dz

∣∣∣∣
}

.

We only consider the integral above along the positive half-line; the integral along the negative
half-line is similar. For simplicity, we set

ρ = δzω(t, x)
[−β ′

2,k± (
−1/αz)
−1/αz + αβ2,k±(
−1/αz)
]
z−α−1,

∫ ∞

0
ρ dz =

∫ ∞

1
ρ dz +

∫ 1


1/α
ρ dz +

∫ 
1/α

0
ρ dz := J1 + J2 + J3.

Using integration by parts, for any k± ∈ K±,

|J1| =
∣∣∣∣δ1ω(t, x)β2,k± (
−1/α) +

∫ ∞

1
β2,k± (
−1/αz)[Dxω(t, x + z) − Dxω(t, x)]z−α dz

∣∣∣∣
≤ 2|Dxω|0

(
|β2,k±(
−1/α)| +

∫ ∞

1
|β2,k± (
−1/αz)|z−α dz

)
,
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where we have used the fact that, for θ ∈ (0, 1),

|δ1ω(t, x)| = |Dxω(t, x + θ ) − Dxω(t, x)| ≤ 2|Dxω|0.

Notice that, for any k± ∈ K±,

|J2| ≤
∣∣∣∣
∫ 1


1/α
αδzω(t, x)β2,k± (
−1/αz)z−α−1 dz

∣∣∣∣
+
∣∣∣∣
∫ 1


1/α
δzω(t, x)[−β ′

2,k± (
−1/αz)
−1/αz]z−α−1 dz

∣∣∣∣.
By means of integration by parts and the mean value theorem, we obtain

∣∣∣∣
∫ 1


1/α
δzω(t, x)[−β ′

2,k± (
−1/αz)
−1/αz]z−α−1 dz

∣∣∣∣
=
∣∣∣∣δ
1/αω(t, x)β2,k± (1)
−1 − δ1ω(t, x)β2,k± (
−1/α)

+
∫ 1


1/α
β2,k± (
−1/αz)[Dxω(t, x + z) − Dxω(t, x)]z−α dz

− α

∫ 1


1/α
δzω(t, x)β2,k± (
−1/αz)z−α−1 dz

∣∣∣∣
≤ |D2

xω|0|β2,k±(1)|
(2−α)/α + 2|Dxω|0|β2,k±(
−1/α)|

+ (α+ 1)|D2
xω|0

∫ 1

0
|β2,k±(
−1/αz)|z1−α dz

by using the fact that, for θ ∈ (0, 1), |δzω(t, x)| = 1
2 |D2

xω(t, x + θz)z2| ≤ |D2
xω|0z2; similarly,

∣∣∣∣
∫ 1


1/α
αδzω(t, x)β2,k± (
−1/αz)z−α−1 dz

∣∣∣∣≤ α|D2
xω|0

∫ 1

0
|β2,k±(
−1/αz)|z1−α dz.

In the same way, we can also obtain

|J3| ≤ |D2
xω|0

∫ 
1/α

0

∣∣αβ2,k±(
−1/αz) − β ′
2,k± (
−1/αz)
−1/αz

∣∣z1−α dz

= |D2
xω|0
(2−α)/α

∫ 1

0
|αβ2,k±(z) − β ′

2,k±(z)z|z1−α dz.
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Together with J1, J2, and J3, we conclude that

II ≤ 4|Dxω|0 sup
k±∈K±

{
|β1,k± (−
−1/α)| + |β2,k± (
−1/α)|

+
∫ ∞

1
[|β1,k±(−
−1/αz)| + |β2,k± (
−1/αz)|]z−α dz

}

+ (1 + 2α)|D2
xω|0 sup

k±∈K±

{ ∫ 1

0
[|β1,k±(−
−1/αz)| + |β2,k±(
−1/αz)|]z1−α dz

}

+
(2−α)/α|D2
xω|0 sup

k±∈K±

{
|β1,k±(−1)| + |β2,k±(1)|

+
∫ 1

0

[∣∣αβ1,k± (− z) + β ′
1,k± (− z)z

∣∣
+ ∣∣αβ2,k±(z) − β ′

2,k± (z)z
∣∣]z1−α dz

}
.

The desired conclusion follows from this and (21). �

From Proposition 2(i) we can derive the following comparison result for the scheme (17),
which is used throughout this paper.

Lemma 9. Suppose that v, v̄ ∈ Cb([0, T] ×R) satisfy

S(
, x, v(t, x), v(t −
, ·)) ≤ h1 in (
, T] ×R,

S(
, x, v̄(t, x), v̄(t −
, ·)) ≥ h2 in (
, T] ×R,

where h1, h2 ∈ Cb((
, T] ×R). Then

v − v̄ ≤ sup
(t,x)∈[0,
]×R

(v − v̄)+ + t sup
(t,x)∈(
,T]×R

(h1 − h2)+.

Proof. The basic idea of the proof comes from [4, Lemma 3.2]; for the reader’s convenience,
we give a sketch of the proof.

We first note that it suffices to prove the lemma in the case v ≤ v̄ in [0, 
] ×R, h1 ≤ h2
in (
, T] ×R. The general case follows from this after seeing that, from the monotonicity
property in Proposition 2(i),

ω := v̄ + sup
(t,x)∈[0,
]×R

(v − v̄)+ + t sup
(t,x)∈(
,T]×R

(h1 − h2)+

satisfies

S(
, x, ω(t, x), ω(t −
, ·)) ≥ S(
, x, v̄(t, x), v̄(t −
, ·)) + sup
(t,x)∈(
,T]×R

(h1 − h2)+ ≥ h1

for (t, x) ∈ (
, T] ×R, and v ≤ω in [0, 
] ×R.
For c ≥ 0, let ψc(t) := ct and g(c) := sup(t,x)∈[0,T]×R{v − v̄ −ψc}. Next, we have to prove

that g(0) ≤ 0 and we argue by contradiction assuming g(0)> 0. From the continuity of g, we
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can find some c> 0 such that g(c)> 0. For such c, take a sequence {(tn, xn)}n≥1 ⊂ [0, T] ×R

such that, as n → ∞,

δn := g(c) − (v − v̄ −ψc)(tn, xn) → 0.

Since v − v̄ −ψc ≤ 0 in [0, 
] ×R and g(c)> 0, we assert that tn >
 for sufficiently large n.
For such n, by applying Proposition 2(i) (twice) we can deduce that

h(tn, xn) ≥ S(
, x, v(t, x), v(t −
, ·))
≥ S(
, x, v̄(tn, xn) +ψc(tn) + g(c) − δn, v̄(tn −
, ·) +ψc(tn −
) + g(c))

≥ S(
, x, v̄(tn, xn), v̄(tn −
, ·)) + (ψc(tn) −ψc(tn −
) − δn)
−1

≥ h2(tn, xn) + c − δn

−1.

Since h1 ≤ h2 in (
, T] ×R, this yields that c − δn

−1 ≤ 0. By letting n → ∞, we obtain

c ≤ 0, which is a contradiction. �

5.3. Convergence rate of the monotone approximation scheme

In this subsection we prove the convergence rate of the monotone approximation scheme
u
 in Theorem 2. The convergence of the approximate solution u
 to the viscosity solution u
follows from a nonlocal extension of the Barles–Souganidis half-relaxed limits method [5].

We start from the first time interval [0, 
] ×R.

Lemma 10. Suppose that φ ∈ Cb,Lip(R). Then, for (t, x) ∈ [0, 
] ×R,

|u(t, x) − u
(t, x)| ≤ Cφ(M1
X + M1

ξ )
1/α, (22)

where Cφ is the Lipschitz constant of φ, M1
ξ := Ẽ[|ξ |] and M1

X := Ê[|X1|].
Proof. Clearly, (22) holds in (t, x) ∈ [0, 
) ×R, since u(0, x) = u
(t, x) = φ(x), (t, x) ∈

[0, 
) ×R. For t =
, from Lemma 3 and (6), we obtain

|u(
, x) − u
(
, x)| ≤ |u(
, x) − u(0, x)| + |u
(0, x) − u
(
, x)|
≤ Ê

[|φ(x + X
) − φ(x)|]+ Ẽ
[|φ(x) − φ(x +
1/αξ )|]

≤ Cφ
(
Ê[|X1|] + Ẽ[|ξ |])
1/α,

which implies the desired result. �

5.3.1. Lower bound for the approximation scheme error. In order to obtain the lower bound for
the approximation scheme, we follow Krylov’s regularization results [25–27] (see also [2, 3]
for analogous results under PDE arguments). For ε ∈ (0, 1), we first extend (3) to the domain
[0, T + ε2] ×R and still denote it as u. For (t, x) ∈ [0, T] ×R, we define the mollification of u
by

uε(t, x) = u ∗ ζε(t, x) =
∫

−ε2<τ<0

∫
|e|<ε

u(t − τ, x − e)ζε(τ, e) de dτ .
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In view of Lemma 4, the standard properties of mollifiers indicate that

|u − uε|0 ≤ Cφ,K(ε+ ε2/α) ≤ 2Cφ,Kε,

|∂ l
t D

k
xuε|0 ≤ Cφ,KMζ (ε+ ε2/α)ε−2l−k ≤ 2Cφ,KMζ ε

1−2l−k for k + l ≥ 1,
(23)

where Mζ := maxk+l≥1
∫
−1<t<0

∫
|x|<1 |∂ l

t D
k
xζ (t, x)| dx dt<∞.

We obtain the following lower bound.

Lemma 11. Suppose that Assumptions 1–3 hold, and φ ∈ Cb,Lip(R). Then, for (t, x) ∈ [0, T] ×
R, u
(t, x) ≤ u(t, x) + L0


�(α,q), where

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}

and L0 is a constant depending on Cφ , Cφ,K, M1
X, M1

ξ , Mζ , and M, and is given in (26).

Proof. Step 1. Notice that u(t − τ, x − e) is a viscosity solution of (3) in [0, T] ×R for any
(τ, e) ∈ (− ε2, 0) × B(0, ε). Multiplying it by ζε(τ, e) and integrating it with respect to (τ, e),
from the concavity of (3) with respect to the nonlocal term we can derive that uε(t, x) is a
supersolution of (3) in (0, T] ×R, i.e. for (t, x) ∈ (0, T] ×R,

∂tu
ε(t, x) − sup

k±∈K±

{ ∫
R

δzu
ε(t, x)Fk± (dz)

}
≥ 0. (24)

Step 2. Since uε ∈ C∞
b ([0, T] ×R), together with the consistency property in Proposition

2(iii) and (24), using (23), we can deduce that

S(
, x, uε(t, x), uε(t −
, ·))
≥ −2Cφ,KMζ [(1 + M1

ξ )(ε−3
+ ε−2
1/α) + ε−1
)2−α)/αR0 + ε−1R1

 + R2


]

= : − 2Cφ,KMζC(ε, 
). (25)

Applying the comparison principle in Lemma 9 to u
 and uε, by (17) and (25), we have, for
(t, x) ∈ [0, T] ×R,

u
 − uε ≤ sup
(t,x)∈[0,
]×R

(u
 − uε)+ + 2TCφ,KMζC(ε, 
).

Step 3. In view of the previous equation and Lemma 10, we obtain

u
 − u = (u
 − uε) + (uε − u)

≤ sup
(t,x)∈[0,
]×R

(u
 − u)+ + |u − uε| + 2TCφ,KMζC(ε, 
) + 2Cφ,Kε

≤ Cφ(M1
X + M1

ξ )
1/α + 2TCφ,KMζC(ε, 
) + 4Cφ,Kε.

Assumptions 1–3 indicate that R0 ≤ 4M, R1

 ≤ 10C
q, and R2


 ≤ 16C
q. When α ∈ (1, 4
3

]
and q ∈ [ 1

2 ,∞
)
, by choosing ε=
1/4 we have u
 − u ≤ L0


1/4, where

L0 := Cφ(M1
X + M1

ξ ) + 4Cφ,K + 2TCφ,KMζ [2(1 + M1
ξ ) + 4M + 26C]; (26)
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when α ∈ (1, 4
3

]
and q ∈ [0, 1

2 ), by choosing ε=
q/2, we have u
 − u ≤ L0

q/2; when α ∈( 4

3 , 2
)

and q ∈ [(2 − α)/α,∞), by letting ε=
(2−α)/2α we get u
 − u ≤ L0

(2−α)/2α; when

α ∈ ( 4
3 , 2

)
and q ∈ (0, (2 − α)/α), by letting ε=
q/2 we get u
 − u ≤ L0


q/2. To sum up, we
conclude that u
 − u ≤ L0


�(α,q), where

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}
.

This leads to the desired result. �
5.3.2. Upper bound for the approximation scheme error. To obtain an upper bound for the
approximation scheme error, we are not able to construct approximate smooth subsolutions
of (3) due to the concavity of (3). Instead, we interchange the roles of the PIDE (3) and the
approximation scheme (17). For ε ∈ (0, 1), we extend (17) to the domain [0, T + ε2] ×R and
still denote it as u
. For (t, x) ∈ [0, T] ×R, we define the mollification of u by

uε
(t, x) = u
 ∗ ζε(t, x) =
∫

−ε2<τ<0

∫
|e|<ε

u
(t − τ, x − e)ζε(τ, e) dτ de.

In view of Theorem 3, the standard properties of mollifiers indicate that

|u
 − uε
|0 ≤ Cφ(1 + I
)(ε+
1/2),

|∂ l
t D

k
xuε
|0 ≤ CφMζ (1 + I
)(ε+
1/2)ε−2l−k for k + l ≥ 1.

(27)

We obtain the following upper bound.

Lemma 12. Suppose that Assumptions 1–3 hold and φ ∈ Cb,Lip(R). Then, for (t, x) ∈ [0, T] ×
R, u(t, x) ≤ u
(t, x) + U0


�(α,q), where

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}

and U0 is a constant depending on Cφ , Cφ,K, M1
X, M1

ξ , Mζ , M, and I
, and is given in (29).

Proof. Step 1. Note that for any (t, x) ∈ [
, T] ×R and (τ, e) ∈ (− ε2, 0) × B(0, ε),

S(
, x, u
(t − τ, x − e), u
(t −
, · − e)) = 0.

Multiplying the above equality by ζε(τ, e) and integrating with respect to (τ, e), from the
concavity of the approximation scheme (17), we have, for (t, x) ∈ (
, T] ×R,

0 =
∫

−ε2<τ<0

∫
|e|<ε

S(
, x, u
(t − τ, x − e), u
(t −
− τ, · − e))ζε(τ, e) de dτ

=
∫

−ε2<τ<0

∫
|e|<ε

(
u
(t − τ, x − e) − Ẽ[u
(t −
− τ, x − e +
1/αξ )]

)

−1ζε(τ, e) de dτ

≤ (uε
(t, x) − Ẽ[uε
(t −
, x +
1/αξ )]
)

−1 = S(
, x, uε
(t, x), uε
(t, ·)). (28)

Step 2. Since uε
 ∈ C∞
b ([0, T] ×R), by substituting uε
 into the consistency property in

Proposition 2(iii), together with (27) and (28), we can compute that

∂tu
ε

(t, x) − sup

k±∈K±

{ ∫
R

δzu
ε

(t, x)Fk± (dz)

}
≥ −CφMζ (1 + I
)(1 + ε−1
1/2)C(ε, 
),
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where C(ε, 
) is defined in (25). Then, the function

v̄(t, x) := uε
(t, x) + CφMζ (1 + I
)(1 + ε−1
1/2)C(ε, 
)(t −
)

is a supersolution of (3) in (
, T] ×R with initial condition v̄(
, x) = uε
(
, x). In addition,

v(t, x) = u(t, x) − Cφ(M1
X + M1

ξ )
1/α − Cφ(1 + I
)(ε+
1/2)

is a viscosity solution of (3) in (
, T] ×R. From (27) and Lemma 10, we can further obtain

v(
, x) = u(
, x) − Cφ(M1
X + M1

ξ )
1/α − Cφ(1 + I
)(ε+
1/2)

= (u(
, x) − u
(
, x)) + (u
(
, x) − uε
(
, x)) + uε
(
, x)

− Cφ(M1
X + M1

ξ )
1/α − Cφ(1 + I
)(ε+
1/2)

≤ uε
(
, x) = v̄(
, x).

By means of the comparison principle for PIDE (3) (see [29, Proposition 5.5]), we conclude
that v(t, x) ≤ v̄(t, x) in [
, T] ×R, which implies, for (t, x) ∈ [
, T] ×R,

u − uε
 ≤ Cφ
[
(M1

X + M1
ξ )
1/α + (1 + I
)(ε+
1/2) + TMζ (1 + I
)(1 + ε−1
1/2)C(ε, 
)

]
.

Step 3. Using the previous equation and (27), we have

u − u
 = (u − uε
) + (uε
 − u
)

≤ Cφ[(M1
X + M1

ξ )
1/α + 2(1 + I
)(ε+
1/2) + TMζ (1 + I
)(1 + ε−1
1/2)C(ε, 
)].

Under Assumptions 1–3, we have I
 <∞, R0 ≤ 4M, R1

 ≤ 10C
q, and R2


 ≤ 16C
q. In the
same way as for Lemma 11, by minimizing with respect to ε we can derive that, for (t, x) ∈
[
, T] ×R, u − u
 ≤ U0


�(α,q), where

U0 = Cφ[M1
X + M1

ξ + 4(1 + I
) + 2TMζ (1 + I
)(2(1 + M1
ξ ) + 4M + 26C)] (29)

and

�(α, q) = min

{
1

4
,

2 − α

2α
,

q

2

}
.

Combining this and Lemma 10, we obtain the desired result. �
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