
Powder Diffraction PDJ Journal of Materials Characterization

The observed bimodal profile (blue) and the bimodal Rietveld refinement fits for a mixture of Si SRM 640d powder and a commercial high purity Si powder are shown. The room temperature synchrotron XRD measurements were collected at the Engineering Applications Beamline of the Indus-2 synchrotron source.

Volume 39 / Number 03 / September 2024

Powder Diffraction

Journal of Materials Characterization

Journal of the International Centre for Diffraction Data https://www.cambridge.org/core/journals/powder-diffraction Volume 39, Issues 1-4

eISSN: 1945-7413; ISSN: 0885-7156

Editor-in-Chief

Camden Hubbard, Applied Diffraction Services, USA

Managing Editor

Nicole Ernst Boris, International Centre for Diffraction Data, USA

Editors for New Diffraction Data

Stacy Gates-Rector, International Centre for Diffraction Data, USA Soorya Kabekkodu, International Centre for Diffraction Data, USA

Associate Editor for New Diffraction Data

Frank Rotella, Argonne National Laboratory (Retired), USA

Editors

Xiaolong Chen, Institute of Physics, Chinese Academy of Sciences, China José Miguel Delgado, Universidad de Los Andes, Venezuela Norberto Masciocchi, Università dell'Insubria, Italy

Editors for Crystallography Education

James Kaduk, Poly Crystallography Inc., USA Brian H. Toby, Argonne National Laboratory, USA

International Reports Editor

Winnie Wong-Ng, National Institute of Standards and Technology, USA

Calendar of Meetings and Workshops Editor

Gang Wang, Chinese Academy of Sciences, China

Advisory Board

Evgeny Antipov, Moscow State University, Russian Federation Xiaolong Chen, Chinese Academy of Sciences, China Jose Miguel Delgado, University de Los Andes, Venezuela Steve Hillier, The James Hutton Institute, UK Takashi Ida, Nagoya Institute of Technology, Japan Matteo Leoni, University of Trento, Italy Vanessa Peterson, Australian Nuclear Science and Technology Organisation, Australia Mark Rodriguez, Sandia National Labs, USA T.N. Guru Row, Indian Institute of Science, India Allison Keene, Cambridge University Press, USA

Information about editors and editorial board members correct as of 1st January 2022. For the latest information please see https://www.cambridge.org/core/journals/powder-diffraction/information/editorial-board

Aims & Scope

ICDD's quarterly, and special topical issue, international journal, *Powder Diffraction*, focuses on materials characterization employing X-ray powder diffraction and related techniques. With feature articles covering a wide range of applications, from mineral analysis to epitactic growth of thin films to advances in application software and hardware, this journal offers a wide range of practical applications. ICDD, in collaboration with the Denver X-ray Conference Organizing Committee, has increased services for the subscribers of Powder Diffraction and authors of Advances in X-ray Analysis. Beginning in 2006, ICDD offered a copy of the previous year's edition of AXA to Powder Diffraction institutional subscribers who receive both print and on-line versions. This effectively doubles the number of articles annually available to Powder Diffraction subscribers and significantly increases the circulation for the authors in Advances in X-ray Analysis.

Subject coverage includes:

- Techniques and procedures in X-ray powder diffractometry
- Advances in instrumentation
- Study of materials including organic materials, minerals, metals and thin film superconductors
- Publication of powder data on new materials

International Centre for Diffraction Data

The International Centre for Diffraction Data (ICDD[®]) is a non-profit scientific organization dedicated to collecting, editing, publishing, and distributing powder diffraction data for the identification of materials. The membership of the ICDD consists of worldwide representation from academe, government, and industry.

© International Centre for Diffraction Data

Published by Cambridge University Press.

Volume 39 Number 3 September 2024

Powder Diffraction

An International Journal of Materials Characterization

CODEN: PODIE2 ISSN: 0885-7156

TECHNICAL ARTICLES

Ashok Bhakar, Himanshu Srivastava, Pragya Tiwari and S. K. Rai	Bimodal microstructural characterization of Si powder using X-ray diffraction: the role of peak shape doi:10.1017/S0885715624000216	119
S.V. Gabielkov, I.V. Zhyganiuk, A.D. Skorbun, V.G. Kudlai, B.S. Savchenko, P.E. Parkhomchuk and S.O. Chikolovets	Possibilities of the X-ray diffraction data processing method for detecting reflections with intensity below the background noise component doi:10.1017/S0885715624000241	132

NEW DIFFRACTION DATA

James A. Kaduk, Anja Dosen and Thomas N. Blanton	Crystal structure of brimonidine hydrogen tartrate, $(C_{11}H_{11}BrN_5)(HC_4H_4O_6)$ doi:10.1017/S0885715624000174	144
Petr Buikin, Alexander Korlyukov, Elizaveta Kulikova, Roman Novikov, and Anna Vologzhanina	Crystal structure of rilpivirine hydrochloride, N ₆ H ₁₉ C ₂₂ Cl doi:10.1017/S0885715624000228	151
Tawnee M. Ens, James A. Kaduk, Anja Dosen, and Thomas N. Blanton	Powder X-ray diffraction of nintedanib esylate hemihydrate, $(C_{31}H_{33}N_5O_4)$ $(C_2H_5O_3S)(H_2O)_{0.5}$ doi:10.1017/S0885715624000186	159
Anthony M. T. Bell	Crystal structures and X-ray powder diffraction data for $AAlGe_2O_6$ synthetic leucite analogs ($A = K$, Rb, Cs) doi:10.1017/S088571562400023X	162
James A. Kaduk, Megan M. Rost, Anja Dosen and Thomas N. Blanton	Crystal structure of alectinib hydrochloride Type I, $C_{30}H_{35}N_4O_2Cl$ doi:10.1017/S0885715624000204	170
Tawnee M. Ens, James A. Kaduk, Megan M. Rost, Anja Dosen and Thomas N. Blanton	Crystal structure of valbenazine, $C_{24}H_{38}N_2O_4$ doi:10.1017/S0885715624000198	176

INTERNATIONAL REPORT

Denise Zulli	2024 ICDD® Annual Spring Meetings: a hybrid event 11–15 March 2024 doi:10.1017/S0885715624000253	182		
CALENDARS OF MEETINGS, SHORT COURSES AND WORKSHOPS				

Gang Wang	Calendar of Forthcoming Meetings (Occurring after 1 October 2024)	188
	doi:10.1017/S0885715624000332	

On the Cover: The cover figure for this issue of *Powder Diffraction* was prepared using figures from the manuscript "Bimodal microstructural characterization of Si powder using X–ray diffraction: the role of peak shape" by Ashok Bhakar and colleagues of the Raja Ramanna Centre for Advanced Technology, Homi Bhabha National Institute, Indore, India.

The cover figure shows the results of profile fitting for characterization of bi-modal Rietveld refinement for Si powder. The fitting of the x-ray powder diffraction data used pseudo-Voigt (pV) and Thompson-Cox-Hastings (TCH) peak profile functions. The manuscript clearly demonstrates that for high quality (e.g. synchrotron source) data it is possible to Rietveld refine the bimodal distribution of crystallite sizes.