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Abstract

A hierarchy of bilinear Lotka-Volterra equations with a unified structure is proposed. The
bilinear Backlund transformation for this hierarchy and the corresponding canonical Lax
pair are obtained. Furthermore, the nonlinear superposition formula is proved rigorously.

1. Introduction

Recursion operators and Hirota bilinear forms have played an important role in the
development of soliton theory. Recursion operators were first introduced by Olver in
1977 [23] and developed by Fuchssteiner [5] and by Fokas and Santini [4,24], while
Hirota bilinear forms were introduced by Hirota in 1971 [6]. By using recursion
operators, we can easily generate a hierarchy of integrable equations. However,
recursion operators cannot be applied directly to bilinear equations. Instead recursion
operators are characterized by bilinear equations with a unified structure (or canonical
form). For example, starting from the isospectral problem

ik

'Academy of Mathematics and Systems Sciences, State Key Laboratory of Scientific and Engineering
Computing, Institute of Computational Mathematics and Scientific Engineering Computing, Academia
Sinica, P.O. Box 2719, Beijing 100080, P.R. China; e-mail: hxb@lsec.cc.ac.cn.
institute of Mathematics and Statistics, University of Kent at Canterbury, Canterbury CT2 7NF, United
Kingdom.
3Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
e-mail: jspringa@mach.vub.ac.be.
© Australian Mathematical Society 2002, Serial-fee code 1446-1811/02

121

https://doi.org/10.1017/S1446181100007975 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100007975


122 Xing-Biao Hu and Johan Springael [2]

we can obtain the AKNS hierarchy [1,2,22]

(*)-«•£)• ->•
where R is a recursion operator which is given by

R = Ti ( -2rd;lr dx - 2rd;xq) '

By introducing an infinite number of variables x = t\, t2, h,... and considering q
and r to be functions of t = (?i, t2, h,...) we have the equivalent equation

Bx-
(q,\

Using the dependent variable transformation q = a/z, r = p/r one can deduce the
bilinear equations, which have a unified structure [12,22]:

a.r =

where the Hirota bilinear operators D™D" are defined as [8,10,19]

, t).b(x, t) = (3, - 3X,)"O, - d,ya(x, t)b(x', t')\x,=x,,,=t.

It should be noted that the unified bilinear form (UBF) for the AKNS hierarchy was
obtained by Newell [22] without explicit use of the recursion operator.

There are two systematic ways to obtain such a UBF; one way is the so called
recursion operator approach [11,12] and the other is based on the structure of the
soliton solutions [25]. As a result UBFs for several hierarchies of integrable equations
can be obtained. Since UBFs are candidates for recursion operators in bilinear form, it
is natural to derive such unified bilinear forms by using recursion operators where they
are available. Compared with the second method, this also avoids tedious calculations
in testing multi-soliton solutions.

On the other hand, the remarkable advantage in finding UBFs based on the structure
of the soliton solutions is that this approach does not depend on knowledge of the
recursion operator. This can lead in some cases to an unknown recursion operator.

In this paper, we will generalize UBFs to the case of differential-difference equa-
tions. By using a corresponding recursion operator, a UBF for the Lotka-Volterra
hierarchy is proposed. To our knowledge, this is the first example in literature giving
a UBF in the differential-difference case. Furthermore, a bilinear Backlund transfor-
mation (BBT) for the Lotka-Volterra hierarchy is presented. From this BBT we obtain
the Lax pair for the Lotka-Volterra hierarchy in a concise form. Finally, a nonlinear
superposition formula is proved rigorously.
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2. A UBF for the Lotka-Volterra hierarchy

The Lotka-Volterra (LV) or Kac-van Moerbeke equation is given by

"n,<, = "n("n-l ~ "n+l) (1)

with «„,, s 3,1un. Much work has been performed on (1) and its generalization (see
for example [3,7,9,13-18,20,21,26,27]). In [27] a recursion operator for (1) was
presented in the following form:

R = un(\ + T_)(unT- - 7>n)(l - 7 1 ) - V

where T±un = un±i. As a result, higher order LV equations can be written as

wn,/» = Rk~lun,,x, k > 1
or equivalently

«„,,» = /?«„,,,.,. (2)

This equation can be bilinearized using the dependent variable transformation

_ /n-3/2/n+3/2

/n-l/2/n+l/2

Using this last transformation we have that

l\ i T \ - \ l . . - \ . . x _ /n+3/2,(4 r,Jn+l/2,lk J n-l/2,tk

f f ^ f
/n+3/2 /n+1/2 /n-1/2

-i /n-l/2.rt_,(i-r_)-1(«n-'Mn.,t.1) = -
/n+3/2 /n-1/2

Furthermore, (1) and (2) can respectively be transformed into the bilinear equations

[A, Sinh(f £>„) + COSh(§ A,) - COSh(I A ) ] / n . / n = 0 (3)

and

At/n+l/2*/n-l/2 = fn+3/2jn-3/2,tt-i ~ /n+l/2,(t_i/n-l/2

~ fn-l/2,lifn+\/2,tk-, + fn+l/2,l,,lt.,fa-l/2- (4)

Using (3), we can rewrite (4) as

[A, sinh(|Dn) + | A,., sinh(|Dn)

+ | D t . , sinh(|Dn) - i A, A,., cosh(iDn)]/n . /n = 0, (5)

which is nothing but the UBF of the Lotka-Volterra hierarchy. Equations (3) and (5)
together constitute the whole hierarchy of LV equations in bilinear form.

https://doi.org/10.1017/S1446181100007975 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100007975


124 Xing-Biao Hu and Johan Springael [4]

3. A unified BBT and a unified Lax pair for the Lotka-Yolterra hierarchy

By application of the exchange formalism one can construct, using the neces-
sary exchange formulas (A1MA6) (see Appendix for details) a bilinear Backlund
transformation for (3) and (5),

eD"fn • gn = Vngn + UtT^f* • gn, (6)

(Dtl-ke-°" -y)fn.gn = 0, (7)

,4 + ^D^e-"- - ^Dlt_te
D- - ¥-D,t_^fn.gn = 0, (8)

where k, fi and y are arbitrary parameters.
Using the linearizing transformation \jrn = /„/#„, vn = gn+\gn-\/g

2
n one can

transform the unified BBT (6)-(8) into the following Lax pair:

Lnyjfn = Vn\Jrn+l - k\lfn - flVnfa-i = 0, fl^Vn = ^n,l, ~ *-Vnfn-\ ~ Yfn = 0,

flfVn = *„,,* --Un,,t_,xlfn - kvM,,^ + f/^,,,,.,)^-! - -fn,,^ = 0

with k > 1 and Un = ^~oln(un_,_/). The compatibility condition

{LnB™ - B^Ln)yjfn = 0

is satisfied when un = un+i/2Un-i/2 satisfies (2).

4. A nonlinear superposition formula for the Lotka-Volterra hierarchy

In this section we present a superposition formula for the solutions of the UBF (3)
and (5).

PROPOSITION 1. Let f0 be a solution of the system given by (3) and (5). Suppose
that ft (i = 1, 2) are two other solutions of (3) and (5) which are related to f0 under
the unified BBT (6)-(8) with parameters (A.,, fiit y{), that is, f0

 ( ^ > ' ' ) / , (i = 1, 2),
where X,X2 ̂  0, / , £ 0 (j = 0, 1, 2). Thenfn defined by

, . / 2 ) (9)

where c is a nonzero constant, is a new solution which is related to fx and fi under
the unified BBT (6)-(8) with parameters (X2, H>2, Yi) and (̂ -l, Mi. Y\) respectively.
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PROOF. Similar to the deduction in [14], we can show that

- D , , / , . / 2 + (y2 - y,)/i/2 - ( l /c)e-D"/0 . / , 2 = 0, (11)

[eD' - kj - tije-D"}ft.fa = 0, i£j, i, j = 1,2,

[ A , - kj e~D" - yj ] / , .fa = 0, i # j , ij = 1,2.

In order to prove Proposition 1, it suffices to show that

).fa=0, i*j, ij =1,2. (12)

Since fx and f2 are two solutions of (3) and (5), we have that

[e2D"f2.f2] {[A, sinh(| A) + \Dk_, sinh(| A) + \ A_, sinh(iDn)

-\Dh A_, cosh(iA)]/.»/i} - {[Dlk sinh(iDn) -I- f A_, sinh(|Dn)

+ I A , , sinh(iA) - 5 A, A_, cosh(iDn)]/2./2} [eJD"/i«/i]

+ ^ [ ^ . . e i ^ / , . / , ] ^ sinh(iDn) + eiD° - ^D-]

Using formulas (Al)-(A10), (9)-(l 1) we can rewrite (13) as

. / 2 = 0. (13)

for / ^ j , i,y = 1 , 2 , which means that (12) holds. Therefore we complete the proof
of Proposition 1.

As an application of the nonlinear superposition formula (9), we shall now construct
soliton solutions of the Lotka-Volterra hierarchy in bilinear form. Choose for example
fo= 1, c = l/(A.i — A.2). It is easily verified that

, M2, Yl)

where

Fn = 1 +

(*2,K2. K2)

A, - A 2 e 2 p i .
— e2"' +

A1 — A.7

1+e"2 (A, , MI, yi)

Ai — Aj

)\l) f)twithJJ, = -Pln+o)\l)t1+- • •+cof)tk+- • -,0)^ = sinh(2p,),A, = l+e2"',^ = -e2"',
y, = - ( 1 + e2"') and cof = (-l)*-'e-2(*-')/ ' .(l + e2*")2**"1'sinh(2p,)- In general,
along these lines, we can obtain multisoliton solutions for the Lotka-Volterra hierarchy
(3) and (5) step by step.
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5. Conclusion

In this paper we derived a UBF for the Lotka-Volterra hierarchy through the bilin-
earization of the recursion operator. Applying the exchange formalism we obtained
the corresponding unified BBT leading to a unified Lax pair. Finally, we proved a
nonlinear superposition formula for this Lotka-Volterra hierarchy.
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Appendix A. Hirota bilinear operator identities

The following bilinear operator identities hold for arbitrary functions a, b, c and d:

[eSD"b.b][Dzsinh(8Dn)a.a]-[eSD"a.a][Dzsmh(8Dn)b.b]

= 2sinh(8Dn)(Dza.b).ab, (Al)

= 2Dycosh(\Dn)(D,a.b).ab, (A2)

- [e'iD"a.a][Dye
L'D"b.b] + [Dye^a.a][e^D"b.b]

= 2DycosH\Dn)[eD"a.b].[e-D"a.b], (A3)

sinh(<S£>n)a.a = 0, (A4)

Dy cosh(±Dn)[e-D°a.b].ab

= -sinh(±Dn)[[Dye-D"a.b].ab + [Dya.b].[e-D"a.b]}, (A5)

Dycosh(± Dn)[eD*a.b].ab

= sinh(±Dn){[Dye
D"a.b].ab + [Dya.b].[eD"a.b]}, (A6)
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2smh(8Dn)(Dla.b).ab = Dl[eSD"a.b].[e-SD"a.b], (A7)

D,[eSD"a.b].[e-SD"c.d] = eSD"[(D,a.d).bc - ad.(D,c.b)], (A8)

2Dycosh(\Dn)[e-D"a.b].cd

= e-^D"{[Dye-D"a.d].cb - ad.[Dye-°"c.b]

+ [Dya.d].[e-D"c.b] - [e-D-a.d].[Dyc.b]}, (A9)

2Dycosh(\Dn)ab.[eD-c.d]

= e-iD"{[Dye
D"a.d].cb - ad.[Dye

D"c.b]

+ [Dya.d].[eD"c.b] - [eD"a.d].[Dyc.b]). (A10)
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