
Can. J. Math. Vol. XXXVI, No. 3, 1984, pp. 436-457 

WEAKLY COMPACT, OPERATOR-VALUED 
DERIVATIONS OF TYPE I VON NEUMANN 

ALGEBRAS 

STEVE WRIGHT 

1. Introduction. In [18], the author initiated an investigation of 
compact, Banach-module-valued derivations of C*-algebras. In collabora­
tion with C. A. Akemann [3] and S.-K. Tsui [16], he determined the 
structure of all compact and weakly compact, A -valued derivations of a 
C*-algebra A, and of all compact, i?(//)-valued derivations of a 
C*-subalgebra of B(H), the algebra of bounded linear operators on 
a Hilbert space H. In this paper, we begin the study of weakly compact, 
i?(7/)-valued derivations of C*-subalgebras of B(H). 

Let R be a C*-subalgebra of B(H), 8:R —> B(H) a weakly compact 
derivation, i.e., a weakly compact linear map which has 

8(ab) = aS(b) + 8(a)b for each a, b e= R. 

Since 8 has a unique weakly compact extension to a derivation of the 
closure of R in the weak operator topology (WOT) on B(H) (consult the 
proof of Theorem 3.1 of [16] ), we may assume with no loss of generality 
that R is a von Neumann subalgebra of B(H). In this paper, we determine 
in Lemma 4.1 and Theorems 4.3 and 4.10 the structure of 8 when R is type 
I, using I. E. Segal's multiplicity theory [14] for type I von Neumann 
algebras and results of E. Christensen [6], [7] on i?(//)-valued derivations 
of von Neumann algebras. 

In [10], Johnson and Parrott investigated derivations of a von Neumann 
subalgebra of B(H) with range contained in the closed, two-sided ideal 
C(H) of compact operators in B{H). Such derivations are weakly 
compact, and the results of [10] show that they have a particularly simple 
structure in most cases, one of which is the type I case. For this reason, the 
structure of von Neumann subalgebras of B(H) all of whose weakly 
compact, B(H)-valued derivations have range in C(H) are of interest to 
us, and we determine their structure in Theorem 3.8. 

We now record some notation that will be useful later. If A is a 
C*-algebra, S a subset of A, we denote by Re(S) and S+ the set of all 
self-adjoint and positive elements of S, respectively. Let H be a Hilbert 
space, K a cardinal number. We denote by K • H the Hilbert-space direct 
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sum of K copies of H.U T G B(H) and K = K- H, K • T denotes the /c-fold 
ampliation of T, i.e., the element of B(K) defined by 

K • T:(xa) -> (Txa)9 (xa) G K. 

If A is a subalgebra of B(H), K • A will denote the subalgebra of B(K) 
consisting of all elements of the form K - a, a G A. If X and 7 are Banach 
spaces, then B(X, 7) denotes the linear space of all bounded linear 
transformations of X into 7, and we set B(X) = B(X, X). If T G B(X, 7), 
we define the mappings lT:B(X) -> B(X, Y) (resp., r r : £ ( 7 ) -> £(X, 7) ) 
by lT\A ^ TA,A G B(X) (resp., rr:,4 -> ^T , A G 5 ( 7 ) ). If T G £(X), 
then ad^il^X) —> B(X) is the mapping 

A -* TA - AT, A G £(X). 

If 5 ç X, we set 

Ball(S) = {x G S:||JC|| ^ 1}, 

and we denote the distance of x G X to S by dist(x, S). All subspaces of 
5(7/) are assumed to contain the identity operator / on H. 

All of the basic results on weak compactness contained in Sections V.4, 
V.6 and VI.4 of [9] that are used in what follows will be invoked where 
needed without specific reference. 

2. Generalities on weakly compact maps of von Neumann algebras. In 
this section, we present the main abstract technical lemmas on which the 
subsequent sections will be based. 

2.1. PROPOSITION. Let R be a von Neumann algebra, X a Banach space, 
<p\R —> X* a o(R, R*) — o(X*, X) continuous linear map. Then the following 
are equivalent: 

(i) For any sequence {pn} ofpairwise orthogonal projections in R, 

lim \\<p(pn) | | = 0 . 
n 

(ii) <p is weakly compact. 
(iii) For any decreasing sequence {pn} of projections in R with infimum 

zero, 

lim ||<p(/?„) | | = 0 . 
n 

Proof, (i) => (ii). By the assumed continuity of <p, there is a bounded 
linear map T.X —» R* such that <p = T*. It thus suffices to show that T is 
weakly compact. Let C = T(Ball(X) ), and let {pn} be a sequence of 
orthogonal projections in R. For each x G Ball(X), 

Pn(Tx) = (T*pn)(x) = <p(pn)(x)9 
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and so 

\p„(Tx) | ^ Hp„) ||. 

Since 

lim Mp„) II = 0, 
n 

we hence conclude that 

\\mpn(f) = 0 uniformly f o r / e C, 

and so by Theorem II.2 of [1], C is weakly precompact in R*. 
(ii) =̂> (Hi). Let {pn} be a decreasing sequence of projections in R with 

infimum zero. Since T^Bal^A") ) is weakly precompact, 

lim <p(pn)(x) = lim pn(Tx) = 0 uniformly for x e Ball^Y) 
n n 

by Corollary II.5 of [1], i.e., 

lim \W(Pn)\\ = 0. 
n 

(iii) =» (i). Let {pn} be a pairwise orthogonal sequence of projections in 
R. Set/? = ®npn. Then the series 2W qp(/?«) converges in norm to <P(/?), and 
so 

lim Mpn) H = 0. 
n 

2.2. COROLLARY. Let M and N be von Neumann algebras, <p\M —> N a 
o-continuous linear map. Then (i), (ii), and (iii) of Proposition 2.1 are 
equivalent. 

Remark. A problem worthy of further investigation would be to 
generalize Proposition 2.1 by replacing X* by X. An outstanding unsolved 
problem in the duality theory of von Neumann algebras is the 
characterization of the weakly compact subsets of the dual of a von 
Neumann algebra (see [1], [2], [13] and [17] for information and partial 
progress on this problem). The main conjecture in this area is the 
following: if R is a von Neumann algebra, then a bounded subset S of R* 
is weakly precompact if and only if for each sequence {pn} of orthogonal 
projections in R, 

lim f(pn) = 0 uniformly f o r / e S. 
n 

If this conjecture is true, the simple arguments in the proof of Proposition 
2.1 would show that that proposition holds for any bounded linear map of 
R into a Banach space. This stronger form of Proposition 2.1 can be easily 
deduced for abelian von Neumann algebras from Theorems I. 1.13 and VI. 
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1.1 of [8], and also for a direct sum of type I factors (with the help of 
Theorem IV. 2 of [1] ), at least when <p satisfies certain natural continuity 
assumptions. 

The next lemma is well known and easy to prove: we state it merely for 
convenience of reference. 

2.3. LEMMA. Let R be a von Neumann algebra, X a normed linear space, 
<p:R —» X a bounded linear map. Set 

IMI+ = sup{||v(fl)||:fl e Ball(*) + }, 

IMI + + = sup{ \\<p(p) \\\p a projection in R). 

Then\\<p\\ + + = |W|+ g IMI g 4|WI + . 

2.4. LEMMA. Let {Ha:a G S/} be a family of Hilbert spaces, let Ra be a 
von Neumann subalgebra of B(Ha) for a e se, and set H = 
®a Ha, R = ®a Ra. For each finite subset o of se, let 

Ra = 0 {Ra:a £ a). 

Suppose <p:R —» B(H) is a o(R, R*) — ultraweakly continuous linear map. 
Then <p is weakly compact if and only if 

lim \W\R}\ = 0 and 
a 

<p\Rn'Ra ~~* B(H) is weakly compact for each a e s/. 

Proof (<=). This is clear. 
(=>). It is clear that <p\R:Ra —> £ ( / / ) is weakly compact for each a e S/. 

Suppose that 

lim IMKJI # 0. 
a 

Let P a = projection of H onto # a , Pg = © {Pa
:a G a } f° r e a °h finite 

subset o of M Then since 

<p(a) = ultraweak-lim <p(aPa) for a ^ R 
a 

and each Pa is central in R, we conclude from Lemma 2.3 that there is a 
sequence {pn} of orthogonal projections in R for which 

lim \\<p(pn) || * 0, 

contradicting Corollary 2.2. 

3. Algebras with the Johnson-Parrott property. Let i? be a von 
Neumann subalgebra of B(H). If 8\R —> 5(7/) is a derivation, then it is 
automatically o(R, ,R*)-ultraweakly continuous, and if 8(R) Q C(H\ then 
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it is an easy consequence of the WOT-compactness of Ball(^) and the 
normal-singular decomposition of B(H)* that 8 is weakly compact. In 
[10], Johnson and Parrott showed that in most cases, all derivations of R 
into C(H) are generated by compact operators. It follows that the weakly 
compact, B(H)-valued derivations of R that have the simplest and most 
natural structure are the derivations of R with range in C(H). A natural 
question which therefore arises in our investigations is the one which asks: 
which von Neumann subalgebras of B(H) have all of their weakly 
compact, i?(//)-valued derivations of this particularly simple form? The 
purpose of this section is to answer this question for all von Neumann 
subalgebras of B(H) (for a precise statement of our answer, see Theorem 
3.8). 

We isolate the property of R that will concern us here with the following 
definition: we say that R has the Johnson-Parrott property (property JP) if 
the following condition holds: if T e B(H) and ad^ is weakly compact on 
R, then adr(Z?) Q C(H). Thus R has property JP if all weakly compact, 
5(//)-valued derivations of R which are generated by elements of B(H) 
have their range contained in C(H). 

A concept which plays a fundamental role in our analysis is that of a 
weakly compact multiplier. An operator T e B(H) is said to be a left 
(resp., right) weakly compact multiplier of R if lT (resp., rT) is weakly 
compact on R. By Proposition 2.2 of [4], T e B(H) is a weakly compact 
multiplier of B(H) if and only if T e C(H), and we will call elements of 
C(H) trivial weakly compact multipliers. In what follows, we will suppress 
the adjectives right and left, and assume that all weakly compact 
multipliers are left ones. Indeed, the two types can be interchanged by 
simply taking adjoints. 

3.1. LEMMA. Let H and K be Hilbert spaces, with S a subspace of B(H) 
and T e B(H, K). Then lT is weakly compact on S if and only if lT*T is 
weakly compact on S. 

Proof The "only if" implication is clear, and the "if" implication is a 
straightforward consequence of the spectral theorem and polar decompo­
sition of T. 

In the lemmas which follow, R will denote a fixed von Neumann 
subalgebra of B(H). 

3.2. LEMMA. Let T e B(H), and let X —> E(X) denote the spectral measure 
of T*T. Then T is a weakly compact multiplier of R if and only if 
E( [8, -foo) ) is a weakly compact multiplier of R for each 8 > 0. 

Proof (<=). Since E$ = E( [8, +oo) ) is a weakly compact multiplier of 
R, so is T*TE8, for 8 > 0. But 
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\\T*T - T*TE8\\ ^ 5, 

and so T*T, and hence T by Lemma 3.1, is a weakly compact multiplier of 
R. 

(=>). Fix 5 > 0, and let {pn} be an orthogonal sequence of projections 
in R. Then 

lim \\T*Tpn\\ = 0, 
n 

and straightforward estimates using the spectral theorem show that 

lim \\EbPn\\ = 0. 
n 

Thus by Corollary 2.2, E§ is a weakly compact multiplier of R. 

The next lemma, the fundamental one of this section, provides the 
connection between property JP and weakly compact multipliers. 

3.3. LEMMA. R has no nontrivial weakly compact multipliers if and only if 
R has property JP and contains no minimal projections which are central of 
infinite rank. 

Proof. (=>). It is clear that R contains no minimal projections which are 
central of infinite rank. 

Suppose T G B(H) and ad 7 is weakly compact on R. We must show 
that ad^(^) Q C(H\ and since R is the norm-closed linear span of its 
projections, it suffices to show that ad^(^) e C(H) for each projection/? 
of R. Let p be such a projection, and let {aa} be a bounded net in R 
with 

lim aa = 0(WOT). 
a 

Since 

aa(I — p)Tp = — (2idj(aa(I — p)))p for each a, 

we conclude by weak compactness of a d r on R that 

aa(I — p)Tp —» 0 weakly, 

after perhaps passing to a cofinal subnet and reindexing. It follows that 
(I — p)Tp is a (right) weakly compact multiplier of R, and so 

(/ - p)Tp G C(H). 

Applying the same reasoning with p replaced by / — p, we conclude 
that 

ad r(/7) = (/ - p)Tp - pT(I -p)e C(H). 
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(<̂ =). Let E e B(H) be a nontrivial weakly compact multiplier of R, 
which we may assume is a projection of infinite rank by Lemma 3.2. 
Suppose R has property JP. We will find a minimal projection in R which 
is central of infinite rank. 

Let T e B(H). Then &àET*TE is weakly compact on R, and thus for each 
V G B(H) didEVE is weakly compact on R. Since R has property JP, 

(3.1) &dEVE(R) Ç C(H\ for all K G B(H). 

Let A G 5 . It follows from (3.1) that 

rEa{I-E)(B(E(H))) Q C(H) and 

<idEaE(B(E(H))) Q C(E(H)l 

and thus by Lemma 3.2 of [10], we deduce that Ea(I — E) e C(H) and 
that there is a scalar X = X(a) such that 

EaE - X(a) • £ e C(tf). 

From the fact that E has infinite rank hence follows the existence of a 
self-adjoint linear functional X on R such that 

(3.2) Ea - X(a) • £ G C(#) , for all A e fl. 

We assert that ker(A) is a WOT-closed, two-sided ideal in R. If a, b e R, 
then by (3.2), 

£ÛA - X(a) - Eb ^ C{H) 

X(a) • £Z> - X(a)X(b) • £ (= C(7/), 

whence 

£aZ> - \(a)\(b) • £ G C(//) . 

Since E has infinite rank, it follows that 

X(ab) = X(a)X(b), 

and À is hence multiplicative, and therefore bounded. Thus ker(A) is a 
norm-closed, two-sided ideal in R. Let a <= R be a WOT-limit point of 
ker(A). We may choose a bounded net {aa} ç ker(À) with 

WOT-lim aa = a. 
a 

Since E is a weakly compact multiplier of R, we may assume upon passage 
to a cofinal subnet if necessary that Eaa —» £<2 weakly in B(H). L e t / b e a 
singular linear functional on B(H) with f(E) ¥= 0. By (3.2), 

f(E(aa — a) ) = A(tfa — a)f(E) for each a, 

and so 
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lim X(aa — a) = \im f(E) ]f(E(aa — a)) = 0. 
a a 

Thus X(a) = 0, a e. ker(A), and ker(X) is WOT-closed. 
Let I — z = central support of ker(A) in R. Then z is a minimal 

projection which is central in R, and z must have infinite rank since 
E(I - z) e C(//) , while E = Ez + E(I - z) <£ C(H). 

3.4. LEMMA. Z? has property JP if and only if either 
(1) R has no nontrivial weakly compact multipliers, or 
(2) R has a unique minimal projection p which is central of infinite rank, 

and R(I — p) has no non-trivial weakly compact multipliers in B((I — 
P)(H)). 

Proof. (=>). If R has at least two minimal projections which are central 
of infinite rank, then R cannot have property JP. If R has no such 
projections, then (1) holds by Lemma 3.3. Otherwise, R has a unique such 
projection, and thus R(I — p) has no such projections, whence by Lemma 
3.3 again, (2) must hold. 

(<^=). If (1) holds, R has property JP by Lemma 3.3. Suppose (2) holds. 
Let T e B(H) have ad^ weakly compact on R, and write 

\T3 Tj 

as an operator matrix relative to the decomposition 

H = p(H) © (/ - p)(H). 

Then ad^4 is weakly compact on R(I — p), and so by Lemma 3.3, 

*dT4(R(I-p)) Q C((I -p){H)). 

T2 and T3* are weakly compact multipliers of R(I — /?), and thus by 
Lemma 3.1, they are compact. Since for each a e R, there is a scalar X for 
which 

0 T2a(I - p) ~ XT2\ 

XT3 - a(I -p)T3 zdT4(a(I -p)) J 

we conclude that 2idT(R) Q C(H). 

Our next task, as mandated by Lemma 3.4, is to determine the von 
Neumann subalgebras of B(H) with no nontrivial weakly compact 
multipliers. It is easy to find von Neumann algebras with nontrivial 
weakly compact multipliers. A particular class of such examples which will 
be useful later is obtained as follows. Let K be a fixed cardinal number. A 

âdT(a) = 
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von Neumann subalgebra R of B(H) is said to have multiplicity K if there is 
a Hilbert space K ¥= (0) and a von Neumann subalgebra TV of B(K) such 
that R is unitarily equivalent to K • N. If R has infinite multiplicity (i.e., if K 
is infinite), then K • T is a nontrivial weakly compact multiplier of R for 
any nonzero T e C(K). Since R has multiplicity K if and only if there is a 
family of K pairwise orthogonal, equivalent projections in the commutant 
Rf of R with sum /, any von Neumann subalgebra of B(H) with a properly 
infinite commutant has nontrivial weakly compact multipliers. 

A von Neumann algebra with nontrivial weakly compact multipliers on 
the other extreme is provided by L°°(0, 1), realized as a subalgebra of 
B(L2(Q, 1) ) in the usual way. To see this, recall that a sequence {kn} of 
positive integers is said to be lacunary if there exists q > 1 such that kn+\ 
= qkm for all n. Let {kn} be a lacunary sequence, and set S = closed 
linear span of {exp(2iriknx) } in H = L2(0, 1). Then by the proof of 
Lemma V. 6.5 of [19], there is a constant C > 0, depending only on q, such 
that for each s e Ball(S) and measurable subset E of [0, 1], 

( * ) jf \s\2dx g \E\ + CVWl 

where |£| denotes the Lebesgue measure of E. If P denotes the projection 
of H onto S, then one easily checks from ( * ) and Corollary 2.2 that P is 
an infinite-rank projection which is a weakly compact multiplier of 
L°°(0, 1). 

More generally, if (X, /x) is any continuous finite measure space, then 
results of Segal [15] and Maharam [12] show that there is a cardinal 
number K such that a direct summand of L°°(X, n) acting on L2(X, /x) is 
unitarily equivalent to L°°( [0, If, XK) acting on L2( [0, If, AK), where 
[0, I f is the Cartesian product of K copies of [0, 1] and XK is product 
Lebesgue measure on [0, If. We may hence use a lacunary sequence of 
exponentials as defined above and the arguments of Lemma V. 6.5 of [19] 
to construct an infinite-rank projection on L2(X, ti) which is a weakly 
compact multiplier of L°°(X, /A). 

We will now show that a von Neumann subalgebra R of B(H) with no 
nontrivial weakly compact multipliers must be a direct sum of factors. 

If K is a cardinal number, we denote by R 0 MK the von Neumann 
subalgebra of B(K • H) consisting of all K X K operator matrices with 
entries in R which act as bounded operators on K • H. 

3.5. LEMMA. Let K be a cardinal number, and let T e Re(B(H) ). Let a0 

be a fixed coordinate of K = K • H, and let T denote the element of B(K) 
with operator matrix having T in the (OLQ, «Q) entry and zeros elsewhere. Then 
T is a weakly compact multiplier of R ® MK if and only if T is a weakly 
compact multiplier of R. 

Proof (=»). This is clear. 
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(<^). Let {pn} be a. decreasing sequence of projections in R ® MK with 
infimum zero, with respective a0-th columns (Paa0)a- Let x e H, and set 
x = the vector in K with ccQ-th coordinate x and all others 0. Then 

IK(*) Il i o, 
and letting x range over all of H, we deduce the following: if 

a - (y n<"»V"V/2 

" « — \^Lt Facto "a(*o) ' 
^ a ' 

then {an} is a decreasing sequence in Ball(/£) + with lim,7 an = 0 in the 
strong operator topology. 

Now 

l|7>„ll2 = \\P„T\\2 = sup J 2 \\PaiTx\\2:x G Ball(t t)) 
> a ' 

= sup { (a2„Tx, Tx):x e Ball(Tf) } 

= iir^m ê imi \\Tan\\, 
and so by Corollary 2.2, we must show that 

lim||7a„|| = 0, 
n 

and this follows from the proof of Proposition 2.1, Corollary II. 5 of [1], 
and the fact that T is a weakly compact multiplier of R. 

3.6. LEMMA. Let {Ha\a e S/} be a family of Hilbert spaces, set H = 
®a Ha, Pa = projection of H onto Ha, and 

Pa = ® {Pa:a G a} 

for each finite subset a of se. Let Ra be a von Neumann subalgebra of B(Ha), 
and let T e B(H). Then T is a weakly compact multiplier of R = ©a Ra if 
and only if the following conditions hold: 

(i) lim | | r - TPa\\ = 0. 
a 

(ii) PaT*TPa is a weakly compact multiplier of Rafor each a ^ se. 

Proof. (=>). To see (i), notice that 

lir - TP„\\ = H/TV-PJI, 

and apply Lemma 2.4. As for (ii), fix a, and notice that lT = lTPa on Ra, 
and so lTPa is weakly compact on Ra. Now apply Lemma 3.1. 

(<=). By Lemma 3.1 and the first part of the proof, TPa is a weakly 
compact multiplier of R for each a, and so therefore is TP0 for each a. 
Since 
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0 = lim ||T - 77\,||, 
a 

T is a weakly compact multiplier of R. 

3.7. LEMMA. Let Rbe a von Neumann subalgebra of B(H). Then R has no 
non trivial weakly compact multipliers if and only if R is a direct sum of 
factors with no nontrivial weakly compact multipliers. 

Proof (<=). This is a straightforward consequence of Lemma 3.6. 
(=>). Suppose the center of R has a nonzero continuous part. Then from 

Segal's classification of abelian von Neumann algebras [14], we deduce the 
existence of a cardinal number /c, a continuous finite measure space (X, /x), 
and a central projection/? of R such that Rp is unitarily equivalent to a von 
Neumann subalgebra N oî B(K • L2(X, /A) ) with 

N n N' = K • L°°(X, /A). 

Then N is contained in L°°(X, /A) ® MK, and thus by Lemma 3.5 and the 
examples presented in the discussion before that lemma, N, and hence R, 
has a nontrivial weakly compact multiplier, contrary to assumption. Thus 
R has a purely atomic center, and is hence a direct sum of the desired 
type. 

Now, suppose R is as in Lemma 3.7, with R = ®a Ra the direct sum 
decomposition of that lemma. We assert that each Ra must be type I. To 
see this, notice that if Ra is not type I, then any maximal abelian 
self-adjoint subalgebra A of R'a must be continuous, and so there exists a 
continuous, finite measure space (X, it), a cardinal number K, and a 
projectionp e A such thatpA is unitarily equivalent to K • L°°(X, ju). Since 
p G jR ,̂ it follows that pRa is unitarily equivalent to a subalgebra of L°°(X, 
ix) ® MK, and so by Lemma 3.5 and the examples preceeding it, Ra has a 
nontrivial weakly compact multiplier (we are indebted to Chuck Akemann 
for this argument). It is easy to see that a type I factor has no nontrivial 
weakly compact multipliers if and only if it is of finite multiplicity (cf. 
Proposition 2.2 of [4] and the remarks before Lemma 3.5), and we may 
thus deduce the following theorem from Lemmas 3.4 and 3.7: 

3.8. THEOREM. Let R be a von Neumann subalgebra of B(H). The 
following are equivalent: 

(1) R has property JP; 
(2) Each weakly compact derivation of R into B(H) has range in C(H)\ 
(3) R is either a direct sum of type I factors each of finite multiplicity or R 

contains a unique minimal projection p which is central of infinite rank, and 
R(I — p) is a direct sum of type I factors each of finite multiplicity. 

Proof We have already seen that (1) and (3) are equivalent by Lemmas 
3.4 and 3.7. It is clear that (2) implies (1). If (3) holds, then R is type I, and 
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so by the results of [7], every derivation of R into B(H) is generated by an 
element of B(H). Thus by Lemmas 3.4, 3.7, and the remarks after Lemma 
3.7, (2) holds. 

4. Weakly compact derivations of type I von Neumann algebras. Let R 
be a type I von Neumann subalgebra of B(H), 8:R —> B(H) a derivation. 
We know from the work of E. Christensen [6], [7] that there i s a l e B(H) 
such that ad r |# = ô, and thus to determine when S is weakly compact, we 
need to study the structure of those T e B(H) for which ad r is weakly 
compact on R. Now the multiplicity theory of Segal [14] determines the 
structure of R as follows: there exists an indexing set s/, cardinal-
number-valued functions a —> K(OL), a —» y(a), a e s/, and (not necessarily 
distinct) finite measure spaces (Xa, fia) such that R is unitarily equivalent 
to 

0 {«<*) • L°°(Xa, Ma) ) 0 My(a):a e J * } . 

These facts all motivate our first lemma. 
Let {Ha:a G j / } be a family of Hilbert spaces, Ra a von Neumann 

subalgebra of B(Ha). Let H = ©a Ha9 and let Pa, P0 be defined as in 
Lemma 3.6. We recall a definition from [16]: an operator T <E B(H) is said 
to almost commute with R = ®a Ra'\î T commutes with Ra = R(I — Pa) 
for some a. T is said to approximately commute with R if T is the norm limit 
of operators which almost commute with R. 

4.1. LEMMA. Let R and H be as in the preceding paragraph, and suppose 
no Ra is type IIj. Let T G B(H). Then a,dT is weakly compact on R if and 
only if the following conditions hold: 

(i) T approximately commutes with R. 
(ii) For each a e j ^ adp^p^ is weakly compact on Ra and PaT(I — 

Pa)T*Pa (resp., PaT*(I — Pa)TPa) is a right {resp., left) weakly compact 
multiplier of Ra. 

Proof. (=>). For each finite subset a of J ^ R0 is not of type I I h and so by 
the comments following the proof of Theorem 2.4 of [5], 

dist(7, R'a) ^ ^| |ad r |*J|. 

By Lemma 2.4, 

0 = lim HacMflJI, 
a 

and so (i) follows. 
To see (ii), fix a e j ^ and write 

T = \^Xa ^2a J 
\T3a T4a/ 
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as an operator matrix relative to the decomposition 

H = Pa{H) ® (I - Pa)(H). 

Then for each a G Ra, 

A , . / ad r , (a) -aT2a\ 

and (ii) hence follows by Lemma 3.1. 
(<=). By reversing the reasoning of the second part of the previous 

implication, the mapping <j>a:a —> adT(a), a G Ra, is weakly compact for 
each a G S/. We have 

lim | | r - Tn\\ = 0, 
n 

where for each n, Tn G R'0n for some finite subset on of se. It follows 
that 

adT\R\R-> B(H) 

is the norm limit of finite sums of mappings <|>a, and is hence weakly 
compact. 

Thus by Lemma 4.1 and the comments preceding it, we may reduce to 
the following case: let K and y be fixed cardinal numbers, and let (X, /A) be 
a fixed finite measure space. Let 

K = K • L\X, ii),H = yK9R = (K' L°°(Z, /*) ) ® My. 

We must determine all weakly compact multipliers of R and all T G B(H) 
for which ad^ is weakly compact on R. 

We turn first to the weakly compact multipliers. For each measurable 
subset E of X, we let PE denote the projection in K • L°°(X, /x) = K • L°° 
given by K • ME, where ME is multiplication by the characteristic function 
of E on L2(X, ji). If Â  is a von Neumann algebra and <J>:K • L°° —> TV is a 
bounded, a-continuous linear map, then by Theorem I. 2.1 of [8], 
Corollary 2.2, and the finiteness of (Xy ju), we deduce: 

(4.1) <j> is weakly compact if and only if for each e > 0, there exists a 8 > 0 
such that for each measurable subset E of X with fi(E) < ô, \\<J>(PE) II < *. 

An analogue of (4.1) in fact holds for a general von Neumann algebra 
M. If (j>:M —> N is a a-continuous linear map, then Theorem II. 3 of [1] 
implies that <f> is weakly compact if and only if there exists a normal 
positive linear functional p on M, depending in general on <£, with the 
following property: for each € > 0, there is a 8 > 0 such that for any 
projectionp in M with p(p) < o, \\<j>(p) || < e. The content of (4.1) is that 
for M = K - L°°, a single specific functional, namely 
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K ' T ~* Jx (symbo1 of T ) d ^ T G L°°> 
controls weak compactness in this sense for any a-continuous linear map 
of K • L°° into N. 

Following [11], we say that a subset S of K has uniformly absolutely 
continuous norm if for each e > 0, there is a S > 0 such that for any 
measurable subset E of X with \i(E) < 8, 

sup {\\PE(s)\\:s G S] < £ . 

It follows easily from (4.1) that the projection of AT onto a subspace M is a 
weakly compact multiplier of K • L°° if and only if Ball(M) has uniformly 
absolutely continuous norm. Applying Lemma 3.2, we hence deduce: 

4.2. PROPOSITION. Let T e B(K), and let E(X) denote the spectral 
measure ofT*T. Then T is a weakly compact multiplier of K • L°°(X, \x) if and 
only if for each e > 0, Ball(£'( [e, +oo))(K)) has uniformly absolutely 
continuous norm. 

Remark. When combined with Lemma 3.6, Proposition 4.2 determines 
the structure of the weakly compact multipliers of an arbitrary abelian von 
Neumann algebra. 

Now, let Qa = projection of H = y • K onto its a-th coordinate, and for 
each finite subset a of coordinates, set 

Qa = ® {C«:« e *} 
4.3. THEOREM. Let R = (K - L°°(X, /i) ) ® Mv and let T G B(H). Then T 

is a (left) weakly compact multiplier of R if and only if it satisfies the 
following conditions : 

(i) lim \\T*T - QaT*TQ„\\ = 0. 
a 

(ii) If(Tap) is the operator matrix for T*T relative to H = y • K and Eap is 
the special measure of T%pTap, then for each a, /}, and e > 0, Ball(£a^( [c, 
+ 00) )(K) ) has uniformly absolutely continuous norm. 

Proof (=>). Let D denote the diagonal subalgebra of R, i.e., the abelian 
subalgebra of R formed by the direct sum of y copies of K • L°° acting on 
H. Then / — Qa G D for each a, and, with Da = D(I — Qa), we have 

| | ( / - Qa)T*T]\ = \\T*T(I - Qa)\\ = H W k l l . 

But by Lemma 2.4, 

lim HWlzJI = 0, 
a 

and (i) hence follows. 
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As for (ii), fix a and /?, notice that 

Tap = QaT*TQp G B(K) 

is a weakly compact multiplier of K • L°°, and apply Proposition 4.2. 
(<= ). For each fixed a and /?, let Tayg denote the operator on H whose 

operator matrix has Tap in its (a, /?)-entry and zeros elsewhere. Then 
T*pTap has TapTap in its (/?, /?)-entry and zeros elsewhere, and so by (ii), 
Proposition 4.2, and Lemma 3.5, T*pTap, and hence Tap, is a weakly 
compact multiplier of R. Since Q0T*TQ0 is a finite sum of such operators 
for each CT, it is a weakly compact multiplier of R for each a, and so 
therefore by (i) is 7*7, and hence T. 

Remark. The proof of Theorem 4.3 shows that T <E /?(//) is a weakly 
compact multiplier of R if and only if T is one for the diagonal subalgebra 
DofR. 

We turn next to the structure of those T e B(H) for which a d r is 
weakly compact on R. 

4.4. Definition. An operator T e #(X) is said to locally approximately 
commute with K • L°° if for each € > 0, there exists a S > 0 such that for 
each measurable subset E of X with jix(£') < 8, 

dist(r, N'E) < €, where NE = (K • L°°)PE. 

4.5. PROPOSITION. Le/ r G £(AT). 7 7 ^ ad^ z's weakly compact on 
K • L°°(Ar, /x) //" ««J otf/y // T locally approximately commutes with 
K • -L°°(X ft). 

Proof. By (4.1), a d r is weakly compact on M = K • L°° if and only if 

(4.2) for each e > 0, there exists 5 > 0 such that for any measurable 
subset E of X with fi(E) < 5, 

H a d H ^ ) II < e. 

We will show that (4.2) holds if and only if T locally approximately 
commutes with M. 

Assume that (4.2) holds, and fix € > 0. Choose S > 0 so that (4.2) holds 
for S and c/4. Let E be any measurable subset of X with \i(E) < 8. Set ME 

= MPE. If p is a projection in ME, then/? = PE for some measurable set F 
with jit(F) < 5, and so 

whence 

Had-H.vf.IU-. ^ -• 
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Thus by Theorem 2.3 of [5] and Lemma 2.3, 

dist(r,Mfe) ^ 4||adr|A/£|| + + ^ c . 

The converse follows easily from the inequality 

| |ad rUJ| â 2 disuT, M'E). 

Remark. Let N be an arbitrary abelian von Neumann subalgebra of 
B(H). When combined with Lemma 4.1, Proposition 4.5 determines the 
structure of those T e B(H) for which ad 7 is weakly compact on N. 

4.6. Definition. Let (A, B) e B(H) X B(H). The mapping 

ad( /M):2?(tf ) -> 5(7/) 

defined by T —> AT — TBy T G B(H), will be called a generalized 
derivation of B(H) with generator (A, B). 

4.7. LEMMA. Le/ R be a von Neumann subalgebra of B(H). Let 

(Th T2) e Re 5(77) X Re £ ( # ) . 

TTzeft ad(^ 72) /5 weakly compact on R if and only if the following conditions 
hold: 

(i) adT^ and ad^2 are weakly compact on R. 
(ii) For any sequences {pn} of pairwise orthogonal projections in R (resp., 

any decreasing sequence {pn} of projections in R with infimum zero), 

lim \\Pn(Tx - T2)pn\\ = 0. 
n 

Proof. Let {pn} be a sequence of projections in R. For each n, we have 
relative to the decomposition H = pn(H) © (I — pn)(H)\ 

(4.3, - , / , . ) - ( ( , _ ; , „ , , - * . W - » > ) . , - , . 2 : 

By (4.4), 

lim ||ad(7vr2)(/?„) || = 0 
n 

if and only if 

(4.5) lim \\pn{Tx - T2)pn\\ = lim \\PnT2(I - p„) || 

= lim || (/ - p^T^W = 0. 
n 

But 
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\\pnTi(I - pn) || = || (/ - Pn)Tlpn\\ for each n 

since T{ e Re B(H), i = 1, 2, and so by (4.3) and (4.5) 

lim | |ad ( r iT2)(/?w)| | = 0 
n 

if and only if 

lim \\pn{Tx - r2)/?J| = 0 = lim \\zdTi(pn) ||, i = 1, 2. 
A? « 

The lemma now follows from Corollary 2.2. 

From (4.1), Proposition 4.5, and Lemma 4.7, we deduce 

4.8. COROLLARY. Let (Th T2) e Re B(K) X Re B(K). Then ad ( r i T 2 ) is 
weakly compact on K • L°°(X, /A) / / #«<i 0«/y / / the following conditions 
hold: 

(i) T\ and T2 locally approximately commute with K • L°°(X, jit), 
(ii) For e > 0, //zere w Û S > 0 swc/z that for any measurable set E with 

KE) < fi, 

\\PE(T} - T2)PE\\ < €. 

4.9. LEMMA. Let k be a fixed positive integer, and let H = k • K. Let T e 
Re B(H), with operator matrix {Tmn). Then ad^ is weakly compact on 

R = (K- L°°(X, ix))® Mk 

if and only if the following conditions hold: 
(i) For m, n = I, . . . , k, m ¥= n, Tmn is a right and left weakly compact 

multiplier of K • L°°(X, /A). 
(ii) For n = 1, . . . , k, Tnn locally approximately commutes with 

K • L°°(X, /x). 
(iii) For m, n = I, . . . , k, m ¥= n, each pair (Tmm, Tnn) satisfies condition 

(ii) of Corollary 4.8. 

Proof. For n = 1, . . . , k, let Pn = projection of H onto its n-th 
coordinate, and set Rmn = PmRPn. Since 

R = ZJ Rmn 
m,n 

(vector space sum), ad^r is weakly compact on R if and only if 

(4.6) ad^ is weakly compact on Rmn for each m and n. 

Evaluating ad^ on each subspace Rmn and examining the resulting 
operator matrices, we see that (4.6) holds if and only if (i) and the 
following two conditions hold: 
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(ii)' For n = 1, . . . , /c, ad^ is weakly compact on K • L°°. 
(iii)' For m, w = 1, . . . , k, m ¥= n, ad(^ T ) is weakly compact on 

/c • L°°. 

But by Proposition 4.5 and Corollary 4.8, conditions (i), (ii)', and (iii)' 
hold if and only (i), (ii), and (iii) of the lemma hold. 

In the following theorem, we take H = y • K and T G Re B(H) to 
shorten an already fairly lengthy statement. This is no loss of generality, 
because one can easily obtain a statement for arbitrary T e B(H), or 
observe that a.dT is weakly compact on R if and only if adRe^ and adIm:r 

are both weakly compact on R. 

4.10. THEOREM. Let H = y K, R = (/c • L°°(X, JU) ) ® MY, and let Qa and 
Qa be defined as in Theorem 4.3. Let l e Re B(H), with operator matrix 
(Tap) relative to H = y • K. For each o, let 

(Tla T2a\ 
\^3a T4aJ 

be the operator matrix of T relative to the decomposition 

H = Qa(H) © (7 - Qa)(H). 

Then adT is weakly compact on R if and only if the following conditions 
hold: 

(i)iim||r- (r l 0©r4a)| | = o. 
a 

(ii) lim dist (T4a, (I - Qa)R(I - QJ) = 0. 
a 

(iii) The map a —> TX(5a — aT4a, a <E QaR{I — Qa), is weakly compact for 
each a. 

(iv) For each a and f3 with a ^ /?, Tap is a right and left weakly compact 
multiplier of K • L°°(X, //,). 

(v) For each a, Taa locally approximately commutes with K • L°°(X, JU). 
(vi) For each a and /? with a ¥= ft, the pair (Taa, Tpp) satisfies the 

following condition: for each e > 0, there exists 8 > 0 such that for any 
measurable subset E of X with \i(E) < Ô, 

\\PE(Taa ~ Tpp)PE\\ < c. 

Proof (=>). We have for each a, 

and applying the diagonal subalgebra argument used in the proof of 
Theorem 4.3, we conclude that 
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lim | | ad r ( / - Qa) || = 0, 
a 

and so 

0 = lim | |72j | = lim ||r3a | |, 
a a 

whence (i) follows. 
To verify (ii), let 

R„ = (I- Qa)R(I ~ Qa)-

We claim that 

(4.7) 0 = lim ||a<M*J|. 
O 

Suppose not. Then by Lemma 2.3, there exists 8 > 0, sequences {ak} Q 
BallCR) + , and {ok} such that 

(4.8) a^_i c ok, for all k, 

(4.9) ak-x G (Qak+i - Q0k)R(Qak + l - Q0k), for all k, and 

(4.10) | | a d r ( ^ ) | | ^ 5, for all k. 

From Theorem II.3 of [1] follows the existence of a normal state p on R 
with the following property: for c > 0, there is a 8' > 0 such that for any a 
G BallCR) with p(a*a + aa*) < 8\ 

Hadr(û) || < €. 

By (4.8) and (4.9), 

lim ak = 0 
A: 

in the strong operator topology, and so 

lim p(a2
k) = 0. 

k 

We hence conclude that for k sufficiently large, 

\\zdT(ak) || < 8, 

which contradicts (4.10). This verifies (4.7). 
If T„ = Tu 0 T4a, then 

0 = lim | |7 - Ta\\, 
a 

and so by Theorem 2.4 of [5] and (4.7), we can write 

0 = lim | |ad r | / J | = lim Had^J^JI 
a a 

= lim HadTjflJI 
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S - lim dist(74o, K). 

This yields (ii). 
To see (hi), notice that for each a, ad^ is weakly compact on 

QoR(I - Qo\ and for a G QaR(I ~ Qo\ 

ad r is also weakly compact on QaRQa, and for a e QaRQa, 

adr<«) - ("£'> " f •) . 
We now apply Lemma 4.9 to deduce (iv), (v), and (vi). 

(<=). For each a, define linear maps <pa, \pa, £0:R —» B(H) as follows: for 
a e R with operator matrix 

(<*\a ala\ 
\a3a aAa) 

relative to H = gCT(i/) 0 ( 7 - (?a)(i/), set 

/ad r i a(û l a) (A 

V«W - yQ Q j , 

Sofa) = ( r _ _„ T 0) • 
V^4a^3a #3aMa U ' 

By (iv), (v), (vi), and Lemma 4.9, <pa is weakly compact, and \p0 is weakly 
compact by (hi). If a e Re R, then 

and so £a is weakly compact on Re R, and hence on Re R + /Re 7? = 
R. 

By (ii) and the inequality 

HadrJaJI S 2 dist(r4a, R'c), 

we have 

0 = lim ! |ad rJ«Jj. 

By (i), 

0 = lim |lad?- — adj-1|, 
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and since 

llady-Jtf - (<pa + 4>o + U II = HadrJ^JI, 

we conclude that 

0 = lim ||adr|« - (<p0 + ^ + &,) ||. 
a 

Thus &dT\R is the norm-limit of maps weakly compact on R, and is hence 
weakly compact on R. 

Remark. Condition (iii) of Theorem 4.10 is not completely satisfactory. 
One would ideally want a condition guaranteeing the desired weak 
compactness which involves only conditions intrinsic to K • L°°(X, /x) and 
the operators T]o and T4a. We have not been able to obtain such 
conditions. However, since T\a represents a matrix with only finitely many 
nonzero entries and (by (ii) ) r4a is "essentially" a diagonal matrix with 
constant diagonal, condition (iii) does make verification of the desired 
weak compactness easier in most cases. 
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