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Abstract. A considerable number of communities throughout the world, most of them isolated, need hybrid
energy solutions either for rural electrification or for the reduction of diesel use. Despite several research
projects and demonstrations which have been conducted in recent years, wind-diesel technology remains
complex and much too costly. Induction generators are the most robust and common for wind energy
systems but this option is a serious challenge for electrical regulation. When a wind turbine is used in
an off-grid configuration, either continuously or intermittently, precise and robust regulation is difficult to
attain. The voltage parameter regulation option, as was experienced at several remote sites (on islands and
in the arctic for example), is a safe, reliable and relatively simple technology, but does not optimize the
wave quality and creates instabilities. These difficulties are due to the fact that no theory is available to
describe the system, due to the inverse nature of the problem. In order to address and solve the problem
of the unstable operation of this wind turbine generator, an innovative approach is described, based on a
different induction generator single phase equivalent circuit.

PACS. 84.50.+d Electric motors – 84.60.-h Direct energy conversion and storage – 89.30.Ee Hydroelectric,
hydrothermal, geothermal and wind power – 89.30.-g Energy resources

1 Introduction

Wind turbines using self-excited three-phase induction
generators are relatively widespread as devices used to
produce electrical energy at remote sites when the re-
quired power is relatively limited. This choice is the result
of a compromise which favors the structure’s robustness
relative to the regulation facilities [1]. These wind tur-
bines, which are often used in conjunction with diesel
groups [2,3], are typically used at private (or a whole of
private) and technical sites [4]. However, more and more,
there exists a reluctance to use these devices because the
use of these generators, for these specific applications, re-
sults in rather poor control. This can be explained by the
lack of analytical expressions which make it possible to
characterize in a simple way the influence of various pa-
rameters on the system behavior in the steady state. The
great majority of approaches used are therefore numerical
ones, [5–7], leading to properties which cannot systemat-
ically come into general use. These numerical approaches
are all the more justified since the use of assumptions that
are too simplified distort the problem leading, sometimes,
to mistakes in the interpretation of the operational mode
of the wind turbines. To surmount these difficulties it is
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possible to defer the problem onto the regulation facili-
ties and their techniques, which are then relatively com-
plex [8–10]. However, this solution is not easy to imple-
ment in some critical sites due to the climatic conditions
and (or) the availability of skilled labour in a geographical
environment sufficiently nearby [11].

The main reasons at the origin of these difficulties re-
sult from the inverse nature of the problem to be solved
(frequency, slip and voltage unknown) and due to the fact
that it is based on the traditional equivalent single-phase
circuit of the Induction Machine (IM) [6,12], which, from
the beginning, has been conceived to function as a motor.

The study intends to exploit a single-phase equivalent
circuit that more appropriately describes the steady state
operation of a three-phase IM acting as a self-excited gen-
erator requiring a connection at the stator outputs, in
addition to the load, a capacitor bank. After presenting
this equivalent circuit as well as the relationships which
govern its operation, the analysis will be carried out by
considering first a resistive load. The objectives concern
the definition of reliable angular frequency and slip ana-
lytical expressions of a Self-Excited Induction Generator
(SEIG) which then also permit an easy analysis taking
into account all parameters which define the IM. Never-
theless, this characterization induces a constraint because
these expressions cannot cover all the possible operating
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Fig. 1. Single-phase equivalent circuit of the SEIG.

ranges of this SEIG. So, the concept of a controlled op-
erating zone will be introduced. It will be shown that,
in this zone, these analytical expressions make it possi-
ble to define a very simple strategy for voltage regulation.
This strategy, not only protects the SEIG from danger-
ous high current and torque transients during load state
changes, but also avoids the loss of SEIG control due to
its disengagement. This voltage control leads then to op-
eration at a quasi constant frequency so that, from the
load, the SEIG runs practically like a synchronous gen-
erator without a frequency control loop. Finally, elemen-
tary considerations – extrapolating the results from the
study considering a resistive load – allow one to propose
a very simple control strategy leading to a quasi constant
voltage-frequency operation, valid when the nature of the
load changes.

2 Presentation of the single phase
equivalent circuit

The single-phase equivalent circuit of a p pole pair IM,
based on the concept of an induced voltage source [13,14]
when the iron losses are neglected, is given in Figure 1. In
this figure also appears the load Z connected to the stator
outputs and, in addition, a capacitor of capacitance C
used to provide the reactive power necessary, on one hand,
for the magnetization of the IM and, on the other hand,
for the load consumption.

Let us assume that the stator windings are crossed by
a sinusoidal, balanced, three-phase current system of an-
gular frequency ω (frequency f). The synchronous speed
is defined by: Ω = ω/p. The angular rotor speed Ω′ is
equal to: Ω′ = (1 − s)Ω, where s denotes the slip. Opera-
tion as a generator requires that: Ω′ > Ω, therefore s < 0.
As saturation is neglected, the equations which describe
the SEIG operation are expressed as:

V s = rsIs + jxsIs + Es
R (1)

Es
R = Es

(s) + Es
(r) (2)

Es
(s) = jXsIs

Es
(r) = jXsI ′̊ r

Es
R = jXsIs

R

⎫⎬
⎭ (3)

with:
Is

R = Is + I ′̊ r (4)

I ′̊ r = KIs

K = −jLssω/[r′r + j(Ls + l′r)sω]

}
. (5)

– Xs = Lsω, xs = lsω, with Ls the main cyclic self
inductance and ls the leakage inductance of the stator
windings,

– x′r = l′rω with l′r the leakage inductance of the rotor
copper arrangement (wound or cage rotor) referred to
the stator side,

– rs is the stator winding resistance,
– r′r is the rotor copper arrangement resistance referred

to the stator side.
To characterize these leakage inductances, they will be
defined relative to Ls: ls = λs Ls, l′r = λr Ls where λs

and λr are constants whose values are small relative to
unity. Let us point out that the quantities ls, l′r as well as
rs will be referred to as parasitical terms in the following
work.

Equations (1), (2) and those of system (3) are similar in
their forms to those which characterize the smooth air gap
synchronous machine. However, for the synchronous ma-
chine, the rotor current associated with I ′̊ r is an external
quantity, controlled by the operator, and is independent of
the stator currents which, in turn, are dependent on the
rotor current. Consequently, the stator voltage equation
alone is sufficient to define the single-phase synchronous
machine equivalent circuit. For the IM, the two currents
Is and I ′̊ rdepend on each other according to the equations
of system (5).

The circuit given in Figure 1 leads to the time phasor
diagram presented in Figure 2. Considering the projec-
tions along the x and y axes, which correspond to the
active and reactive powers, one obtains:

Es
(r) cos(ϕ′s − ϕr) + Es

(s) sinϕ′s

−rsIs cosϕ′s + xsIs sinϕ′s = V s

Es
(r) sin(ϕ′s − ϕr) − Es

(s) cosϕ′s

−rsIs sinϕ′s − xsIs cosϕ′s = 0

⎫⎪⎪⎬
⎪⎪⎭ . (6)

– The quantity −ϕ′s, which represents the phase lag of
−Is relative to V s, is tied to the load and the capacitor
connected to the stator outputs.

– ϕr corresponds to the K denominator angle: ϕr =
arctan[(Ls + l′r)sω/r′r]. Considering the second equa-
tion of system (3), which can equally be written as:
Es

(r) = jXsKIs, and taking that s is negative into ac-
count, it is noted that −ϕr also gives the phase angle
of Es

(r) relative to −Is. ϕr, which evolves between 0
and −π/2, is characterized by:

sinϕr = s(Xs + x′r)/H
cosϕr = r′r/H
H =

√
r′r2 + s2(Xs + x′r)2

⎫⎬
⎭ . (7)

– γr, corresponds to the phase angle of I ′̊ r relative to
Es

R. γr expression results from Es
R which can also be

expressed as: Es
R = jXs [(1 +K)/K] I ′̊ r. Calculations

show that γr must take values between 0 and π/2.
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Fig. 2. Time phasor associated with the SEIG single-phase
equivalent circuit.

– ξ denotes the phase angle of Es
R relative to V s.

One may notice that equations (1) to (7) are valid regard-
less of the load. In the following, the load will be first
considered as resistive.

3 Relationships for a resistive load

If this application considering only a resistive load seems
restrictive, one should note that it is for this type of ap-
plication that a majority of such SEIGs are used. Volt-
age regulation can be carried out simply by connecting
or disconnecting resistive elements. The study of this el-
ementary case is nevertheless complex due to the inverse
nature of the problem which has as its objective to de-
termine analytical expressions for ω, s (so Ω′) and V s

when an assumed wind power Pw is transmitted on the
SEIG shaft. If R denotes the equivalent load impedance,
so: Z = R.

3.1 Voltage relationships

– ϕ′s is characterized by:

sinϕ′s = RCω/G
cosϕ′s = 1/G
G =

√
1 +R2C2ω2

⎫⎬
⎭ . (8)

This phase angle evolves between 0 and π/2. The rms
voltage results from:

V s = RIs/G. (9)

Let us substitute these quantities in the equations of sys-
tem (6). Taking into account the expression for ϕr and
introducing the constants:

A′′ = Ls2(1 + λr) {Ls [1 − (1 + λs)(1 + λr)]
−rsRC(1 + λr)}

B = Ls2RCr′r
D′′ = r′r2 {Ls(1 + λs) + rsRC}
E′′ = Ls2(1 + λr)2 [R+ rs]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

leads one to characterize the SEIG operating mode by
the following equations:

RCA′s2ω4 + E′′s2ω2 + Ls2r′rsω2

−D′RCω2 + (rs +R)r′r2 = 0
A′′s2ω2 −Bsω2 −D′′ = 0

⎫⎬
⎭ . (11)

The constants denoted by the superscript “ ′ ” result from
those denoted with the superscript “ ′′ ” by considering the
case rs = 0. Let us point out that the constants A′′ and
A′ are negative quantities whereas all the other terms are
positive.

3.2 Electromagnetic torque

The IM electromagnetic torque results from the cross
product: Γe = κ′

−→
b s

p×
−→
b̊ r

p where κ′ is a constant tied to the

IM parameters.
−→
b s

p and
−→
b̊ r

p are the air gap flux density
space phasors, generated by the stator and rotor windings
respectively, defined in the stator reference frame. As Es

(s)

and Es
(r) come from

−→
b s

p and
−→
b̊ r

p, respectively, using the
same procedure of integration and derivation, it results
that Γe can also be expressed as:

Γe = κ
−→
E s

(s) ×
−→
E s

(r) = κEs
(s)E

s
(r) sin

(π
2
− ϕr

)
(12)

where: κ = 3p/Xsω. The use of equation (12) makes it
possible to express V s in terms of Γe:

V s =
R

Ls

√
Γe

3pω
r′r2 + s2(Xs + x′r)2

(1 +R2C2ω2)sr′r
(13)

where Γe is related to Pw using the relationship: Pw =
(Γe + Γf )Ω′, where Γf represents the IM friction and
windage torque. Let us note that equation (13) is the same
one as that which can be deduced from the traditional IM
single-phase equivalent circuit.

4 Development of an analytical solution

The equations of system (11) show that ω and s depend
only on R, C and the parameters which characterize the
IM. So, for given R,C and IM, the SEIG will be locked
to a constant operating angular frequency regardless of
Pw. This property is also true for the slip. Indirectly this
means that Ω′ will be fixed, and only V s will be influenced
by the torque applied on the SEIG shaft. The aim of this
analysis is to determine analytic expressions for ω and s in
order to be able to determine easily the SEIG behavior,
and in particular:

– to appreciate the impact of parasitic terms on the
Operating Point (OP) definition,

– to define the ranges of R and C which lead to con-
trolled operation,

– to suggest solutions in order to stabilize operation dur-
ing a transient state using voltage control by changing
the value of R.
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4.1 Procedure of study

The analytical solutions of system (11) which character-
ize the accurate expressions ωex and sex are in very com-
plex forms. They therefore cannot be used to address the
previous items, even in approximate form. It would be con-
ceivable to numerically exploit these equations. However,
taking into account the relatively high number of param-
eters, it is foreseeable that it will be difficult to deduce
some general laws. Consequently it is necessary to use an-
other approach which consists of determining approximate
analytical solutions in the following form:

ω ∼= ωref(1 + ε(ω))
s ∼= sref (1 + ε(s))

}
. (14)

If ε(ω) and ε(s) are sufficiently small relative to unity, it
will be possible that the analytic expressions for ωref and
sref are representative of the SEIG behavior leading, un-
der these conditions, to reduce the problem to the deter-
mination of these quantities. The numerical values which
will be deduced from ωref and sref could be improved by
calculating the correction terms ε(ω) and ε(s) which corre-
spond to estimated precisions. In order to test the validity
of this procedure, the relative errors e(ω) and e(s) will also
be calculated for a given R and C:

e(ω) = (ωex − ωref)/ωex

e(s) = (sex − sref )/sex

}
. (15)

Using the numerical values deduced from the analytic ex-
pressions for ωref and sref to illustrate this methodology,
applications will be presented on an IM characterized by:
220/380 V, 6.2/3.6 A, cosϕs = 0.85, 50 Hz, 1410 rpm,
1.7 kW. Standard tests lead to: Ls = 400 mH, rs = 5.35 Ω,
r′r = 3.6 Ω, ls + l′r = 33 mH. It will be assumed that:
ls = 15 mH, l′r = 18 mH so that: λs = 3.75%, λr = 4.5%.
Rated values (subscript “rated”) make it possible to es-
timate: Γe(rated) = 11.5 Nm, s(rated) = 6%. Moreover, to
obtain operation corresponding to the rated power under
V s

(rated) = 220 V for ω(rated) = 314.1 rad/s (Ω(rated) =
157 rad/s), R must be in the range of R(rated) = 80 Ω.

4.2 First approach neglecting the parasitic terms

When the parasitic terms are neglected, ω and s can be
equated to ω0 and s0, as defined by:

ω = ω0 = 1/
√
LsC

s = s0 = −r′r/R
}

(16)

leading one to express V s as follows:

V s =
√
−RΓeω/3p. (17)

That implies, when the parasitic terms are taken into ac-
count, that ωref and sref which intervene in the equations
of system (14), can be chosen to be equal to ω0 and s0.
In order to obtain an angular frequency close to ω(rated)

Table 1. Influence of the parasitic terms for R = R0, C = C0.

rs λs λr ωex (rad/s) sex (%)

0 0 0 314 (30.2%) –6.00 (8.8%)

5.35 0 0 342 (24%) –5.62 (14.5%)

0 3.75% 0 339 (24.7%) –6.51 (0.9%)

5.35 3.75% 0 372 (17.3%) –6.12 (6.8%)

0 0 4.5% 351 (22%) –6.07 (7.6%)

5.35 0 4.5% 386 (14.2%) –5.72 (12.9%)

0 3.75% 4.5% 400 (11.1%) –6.85 (–4.3%)

5.35 3.75% 4.5% 450 (0%) –6.57 (0%)

with a slip close to −s(rated), it is first assumed that ε(ω)

and ε(s) are small relative to the unit. It is thus possible
to replace ω with ω0 and s with s0 to calculate R and C.
In these conditions, one obtains: C = C0 = 25.33 μF,
R = R0 = 60 Ω. Thus, the numerical values of the
constants for the system (10) are: A′ = −5.63 × 10−3,
A′′ = −7.05 × 10−3, B = 0.875 × 10−3, D′ = 5.38,
D′′ = 5.48, E′ = 10.48, E′′ = 11.42. Using these quan-
tities, one obtains: ωex = 450 rad/s, sex = −6.57%, which
leads to: e(ω) = 43.3%, e(s) = 9.5%. These values, in par-
ticular that of e(ω), are much too large to be able to assume
that ω0 and s0 are representative of an approximate an-
alytical solution. Consequently, another procedure must
be defined. Nevertheless, at this stage of the analysis, it
seems interesting to appreciate the impact of the parasitic
terms on the ωex and sex values. The results obtained
are grouped together in Table 1. In this table are also pre-
sented the relative discrepancies (numbers between brack-
ets) of ωex and sex defined relative to these same quantities
calculated when all parasitical terms are considered.

An analysis of this table reveals the considerable part
played by these parasitic terms on the OP definition.
It must be specified that by first using the equalities:
ωref = ω0, sref = s0, allows one, through successive it-
erations [15], to find values of ω and s which are practi-
cally identical to ωex and sex. Nevertheless, as specified
previously, this numerical procedure does not correspond
to our aim which consists of determining approximate but
reliable analytical expressions of the solution.

4.3 Second approach using the minimal angular
frequency

Let us consider the second equation of system (11). It can
be written as:

s = B
[
1 ±

√
1 + 4A′′D′′/B2ω2

]
/2A′′ (18)

requiring, as the quantity under the radical must be null
or positive, to satisfy the inequality:

ω2 � ω2
min = −4A′′D′′/B2. (19)

If ω is sufficiently close to ωmin, equation (18) leads to:

s ∼= smin = B/2A′′. (20)
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The numerical application using the numerical values
specified in Section 4.1 gives: ωmin = 449.3 rad/s,
smin

∼= −6.21%. Let us note that ωmin is practically iden-
tical to ωex whereas smin presents a value more distant
from sex but with less discrepancy than that which char-
acterizes this quantity as determined through the first
approach. This particularity concerning the angular fre-
quency, encourages one to adopt as reference variables
the quantities ωmin et smin, leading to: e(ω) = 0.16%,
e(s) = 5.8%. However, this choice does not rely on any
physical consideration, so the obtained numerical values
may have resulted quite simply from a coincidence. It is
thus advisable to determine within which limits this re-
sult can come into general use. With this aim in view,
system (11) will be exploited through graphical means.

5 Graphical analysis

5.1 Principle

• Let us consider the first equation of system (11). Not-
ing:

M = RCA′s2
N = E′′s2 + Ls2r′rs−D′RC
P = (rs +R)r′2

⎫⎬
⎭ (21)

leads to a quadratic equation in ω2 whose roots are ex-
pressed by:

ω2 = −N
[
1 ∓

√
1 − 4MP/N2

]
/2M. (22)

Let us note that ω11 is the value of ω which results from
the previous equation defined with a negative sign in front
of the radical, and ω12 is that defined with a positive sign.
As M is negative, the quantity under the radical of (22) is
greater than unity. The ω11 value will be defined only if N
is negative whereas for ω12 to exist, N must be positive.
Let us denote scrit as the negative value of s which cancels
out N :

scrit = −
[
Ls2r′r +

√
Ls4r′r2 + 4D′RCE′′

]
/2E′′. (23)

It can be deduced that ω11 only exists for the range scrit <
s < 0, and when s tends towards 0 from the negative side:
ω2

11 = ω2
0(R + rs)/R(1 + λs). Neglecting rs relative to

R and λs relative to 1, it appears that in this limit, the
value of ω11 is equal to ω0. For a value of s smaller than
scrit, it is ω12 that it is advisable to consider. When s
tends towards scrit (with s < scrit for ω12 and s > scrit
for ω11), by noting: Mcrit = RCA′s2crit , ω11 and ω12 tend
both towards a single value ωcrit defined by:

ωcrit = (−P/Mcrit)1/4. (24)

• Taking into account the second equation of system (11)
leads to:

ω2 = D′′/[A′′s2 −Bs]. (25)

Let us denote as ω2 the positive value of ω which results
from (25). According to the smin definition given by (20),

0
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≈ωex

Fig. 3. Operating point positions for R = R0, C = C0.

this term only exists for: 2smin < s < 0. ω2 tends towards
infinity when s tends towards 0 and 2smin. Generally, the
possible OPs are defined by the intersections of the ω11(s)
and ω12(s) curves with that of ω2(s). Consequently, it can
be deduced that these OPs, if they exist, are characterised
by the slips that satisfy the condition:

s ∈ ]2smin; 0[. (26)

• Figure 3 presents the variations of ω11 (fine, solid curve),
ω12 (fine, dashed curve) and ω2 (bold curve) with s for
the previously described IM associated with R0 and C0.
According to condition (26), the allowed range of s is re-
stricted to: s = [−0.16; 0]. It can be noted from this figure
there exist two possible OPs (points A and B) which re-
sult only from the intersections of the curves ω12(s) and
ω2(s).

The A OP, whose coordinates correspond to the
quantities ωex and sex as specified previously
(450 rad/s; –6,57%), is located in the part of the
ω2(s) curve where the variations of ω with s are relatively
restricted. The fact that this OP is in this zone which
can be described as stable, justifies the accuracy and the
uncertainty which affect the values of ω and s respectively
as mentioned in Section 4.3. For given Γe, equation (17)
– which defines a simplified expression of V s – shows that
the voltage will be consequently very little affected by
natural variations (saturation, heating effects...) in the
parameters which intervene in the IM equivalent circuit
definition.

The B OP leads to relatively high values of |s| and ω
(11.4%, 826 rad/s), thus damaging energetic performance
of the SEIG. This OP is also characterized by a much
larger inaccuracy in ω due to the natural variations in the
IM parameters which directly modify the value of V s.

Considering the derivative of ω2 versus s, one can note
that it is null when: s = smin. The two peaks leading to
infinite ω2 are consequently symmetrically located relative
to this minimum. The vertical portions of the dashed line
correspond to smin (–6,21%) and 2smin. The intersection
of the vertical line at smin with the curve ω2(s) defines
ωmin (449.3 rad/s), as given by (19), which is, as specified

https://doi.org/10.1051/epjap:2008115 Published online by Cambridge University Press

https://doi.org/10.1051/epjap:2008115


178 The European Physical Journal Applied Physics

previously, very close to ωex. scrit , which results from (23),
is equal to –6.20 % defining, from (24), ωcrit = 400.6 rad/s.
The continuous vertical line corresponding to scrit, prac-
tically identical with the as defined value of smin, delim-
its two areas characterized by OPs which belong to the
characteristics ω11(s) or ω12(s). The angular frequency of
transition is equal to ωcrit. The difference δ = ωmin−ωcrit

is equal to 48.7 rad/s.

5.2 Variations of R and of C

• Figure 4 shows similar variations as above, keeping the
value of C constant at C0, but giving R values of 55 Ω
(Fig. 4a) and 75 Ω (Fig. 4b). The numerical values of ωex,
sex, ωmin, smin, ωcrit and scrit obtained in these condi-
tions are grouped together in Table 2, where the quantities
obtained for R0 are also presented.

For R = 55 Ω, the A OP, which results from the in-
tersection of the curves ω12(s) and ω2(s), presents a slip
which moves away from scrit with a much larger difference
relative to smin. It results that the precision of ω, defined
by ωref = ωmin, is reduced as long as the A OP exists
in the curved parts of the stable zone. This particularity
increases the δ value which is equal to 95.1 rad/s. Further
decreasing more the value of R leads to a single operating
mode as the A and B OPs are co-located (curves ω12(s)
and ω2(s) tangent). This occurs for a R∗ value of R which
is equal to 52.5 Ω (the numerical values for this OP are
given in Tab. 2). For values of R lower than R∗ there is
no possible OP.

When R increases and takes on a value of 75 Ω, and
considering again OP A, it appears that this last operat-
ing point results from the intersection of the curves ω11(s)
and ω2(s). The accuracy in the slip compared to scrit is
clearly improved. On the other hand, compared to the pre-
vious case (R = 55 Ω), the difference compared to smin not
only changes in sign but also increases in absolute value.
δ takes a negative value –56,7 rad/s. The three variables
ωex, ωmin and ωcrit (see Tab. 2) present similar values. In
this case, there are no limits to increasing the value of R
except those inherent to the energetic performance of the
SEIG, and to the voltage stability.

• For a given value of R equal to R0, the initial value
of C0 has also been increased and decreased by about
20%. An analysis of the results shows that the conclusions
are similar to those formulated previously concerning the
changes in R. In this case, the minimal value C∗ of C
(where the A and B OPs merged) is 19.1 μF. For lower
values of C there are no possible OPs. The various values
of the angular frequencies and the slips are also grouped
together in Table 2.

This graphical analysis stresses the very marked non-
linear character of the SEIG behaviour which allows one
to foresee certain difficulties of control if no precautions
are taken.

6 Analysis of the graphical study

6.1 Approximate expressions of the variables

The previous analysis shows, concerning OP A, that ωref

and sref can be, with sufficient coherence, given respec-
tively by ωmin (Eq. (19)) and by scrit (Eq. (23)), rather
than by smin as was initially done in Section 4.3. These
expressions will be valid only on the condition that R and
C do not take values which place OP A too far into in the
curved section of the stable characteristic ω2(s), for pre-
viously evoked reasons. Taking the constant expressions
given by (10) into account, leads to:

ω2
ref = ω2

min

= 4 ω2
0

R2 (1 + λr)
{

Ls

C (1 + λs) [(1 + λr)(1 + λs) − 1]
+rsR [2(1 + λr)(1 + λs) − 1] + rs2R2C

Ls (1 + λr)
}

sref = scrit = − r′r
2(1+λr)2(R+rs)

×
{
1 +

√
1 + 4ω2

0(1 + λs)(1 + λr)2RC2(R+ rs)
}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

(27)

These equations show that ωref is independent of r′r
whereas sref is proportional to it. This property also ap-
pears when the traditional equivalent circuit for the SIEG
is used. Concerning the parasitical terms, it appears that
the leakage inductances intervene in a predominant man-
ner in the analytical definition of these variables. In par-
ticular, the major contribution of the rotor leakage induc-
tance should be noted.

6.2 Characterization of the controlled operation
regime

The aim is to define within which limits R and C may
vary so as to be able to characterize ω and s with suffi-
cient accuracy using the ωref and sref expressions defined
by (27). To achieve this, three criteria are implemented.

• Criterion 1: Energetic performance, voltage stability.
To simultaneously satisfy the constraints tied to these two
aspects, the OP must be in the stable zone of ω2(s) but
not too far along in the curved section of the curve. Noting
that the stable zone has a certain symmetry about smin

and that the peaks which appear on this curve are far from
smin on this symmetrical axis, it is sufficient that R and
C have values such that:

(1 + k)smin < scrit < (1 − k)smin (28)

where k is a positive number less than unity. The smaller
the value of k, the more equations (27) will be reliable,
and therefore reducing the appropriate range for R and
C. For C = C0 and R = R∗, the numerical values given
previously show that: sex = 1.29scrit. It can be deduced
that k = 0.20 is, a priori, a rather good compromise to
both satisfy the initial requirements and to avoid the loss
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Fig. 4. Operating point positions for variable R and C = C0.

Table 2. Angular frequencies and slips characterizing the operating points.

C (μF) R (Ω) ωex (rd/s) sex (%) ωmin (rd/s) smin (%) ωcrit (rd/s) scrit (%)

C0 = 25.33

R0 = 60 450 –6.57 449.3 –6.21 400.6 –6.20

55 507 –7.45 485.6 –5.79 390.5 –6.55

R∗ = 52.5 612 –8.70 506.4 –5.57 385.1 –6.75

75 387 –5.15 369.2 –7.39 425.9 –5.45

20.33

R0 = 60

584 –6.99 547.5 –5.19 430.1 –6

30.33 385 –6.46 383.3 –7.15 377.3 –6.39

C∗ = 19.1 701 –7.68 580.2 –4.92 438.9 –5.95

of the OP for low values of R and C, leading to the dis-
engagement of the SEIG.

Let us point out that energetic performance are deter-
mined by two factors:

Slip s. The rotor copper losses increase with |s|, and it
thus results that it must be avoided that |s| takes excessive
values. On the other hand, for low values of |s|, a given
value of C and a high value of R, simultaneously satisfying
the two conditions of small |s| and R � R(rated), would
lead to a SEIG OP close to a no-load OP, a condition
synonymous with low efficiency.

Angular frequency ω. Excessive values of ω would
result in high iron losses in the stator core. Moreover,ω no-
tably higher than ω(rated) and a low value of |s|, would lead
to a too high value of Ω′, raising mechanical resistance
problems. These excessive values of Ω′ also significantly
increase the corresponding friction and windage losses. Let
us note that this aspect was intentionally ignored in this
work, as the primarily aim was only to present an ap-
proach to solve the described problem.

• Criterion 2: This second criterion relates to the nu-
merical values of the quantities ε(ω) and ε(s) which charac-
terize the variables ω and s. Referring to equations (14),
if ε(ω) and ε(s) are small compared to unity, it is possi-
ble to neglect the second and higher order terms so that:
ωn ∼= ωn

ref (1 + nε(ω)), sn ∼= sn
ref (1 + nε(s)). By substi-

tuting these expressions into equations (11), a system of
two first order equations with two unknowns is obtained,

which leads to:

ε(ω) = [K1J3 −K3J1] / [K3J2 −K2J3]
ε(s) = [K2J1 −K1J2] / [K3J2 −K2J3]

}
(29)

where:

J1 = −
[
RCA′s2refω

4
ref + E′′s2refω

2
ref

+Ls2r′rsrefω
2
ref −D′RCω2

ref + (rs +R)r′r2
]

J2 = −
[
4RCA′s2refω

4
ref + 2E′′s2refω

2
ref

+2Ls2r′rsrefω
2
ref − 2D′RCω2

ref

]
J3 = −

[
2RCA′s2refω

4
ref + 2E′′s2refω

2
ref

+Ls2r′rsrefω
2
ref

]
K1 =

[
A′′s2refω

2
ref −Bsrefω

2
ref −D′′

]
K2 =

[
2A′′s2refω

2
ref − 2Bsrefω

2
ref

]
K3 =

[
2A′′s2refω

2
ref −Bsrefω

2
ref

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30)
It has been previously specified that in the stable zone,
the imprecision in s was greater than that of ω. In order
to retain the values of R and C, it will be adopted that
ε(ω) and ε(s) must be, in absolute values, lower than 10
and 20% respectively.

• Criterion 3: The suggested approach ignores how
variations of R and C may modify the characteristics
which give the variations of the angular frequency with s.
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However, it has appeared that the stable zone widens as
these elements present higher values (see Fig. 4). This fact
leads to the risk that one may obtain OPs satisfying the
two previous criteria but with excessively large slips. Con-
siderations on the rotor copper losses, lead one to adopt a
maximum value of s higher than –10% as a third criterion.

6.3 Determination of the controlled operation regime

The determination of the controlled operation regime re-
sults from the numerical analysis of the preceding equa-
tions. In order to do this, C is chosen as a fixed parameter
while R is varied. The principle is to collect, for a given
C, the following quantities:

– R∗, which corresponds to the minimal value of R be-
low which there exist no intersections of the ω12(s) and
ω2(s) characteristics. This quantity, defined by succes-
sive approximations, is obtained from the analysis of
the difference ω2−ω12 which must be positive for all s
except for a single value (denoted s∗) where it must be
null. This leads to the quantities: ω∗, s∗, ω∗

min, s∗min,
ω∗

crit and s∗crit. It can be pointed out that s∗ and ω∗,
which result from the graphical analysis, correspond
to the sex and ωex values.

– The R values satisfying the previous criteria and, for
each of these values, the OP coordinates assumed to
be defined by ωmin and scrit as well as the quantities
ε(ω) and ε(s). ωex and sex have been also calculated
for each OP that allows one to determine the e(ω) and
e(s) values.

– The value RT of R which corresponds to the transition
of the OP from the ω11(s) characteristic to ω12(s) or
vice versa.

– The minimal value of R, RL, which satisfies the given
criteria. This analysis shows that RL results only from
the non-satisfaction of the condition concerning ε(s).

– The maximum value of R, RH1, which satisfies
the given criteria. The numerical study reveals that
this quantity is primarily determined by the non-
satisfaction of the condition: scrit < (1 − k)smin.
The numerical values obtained show, regardless of the
value of C, that RH1 leads to an OP characterized
by very low values of ε(ω) and ε(s). In order to in-
crease the allowable range of R, the value of k is in-
creased for R > RT . By doubling this quantity, a value
for R of RH2 is obtained which results from the non-
satisfaction of the condition applied to ε(ω).

Taking the defined criteria into account, the controlled
operation zone as determined by C and R is given in
Figure 5.
The limiting curves LCL, LCH1 and LCH2 (fine lines) are
deduced from the coordinates of the OPs corresponding to
RL, RH1 and RH2. The characteristics LCT (fine dashed
line) and LC∗ (bold line) corresponding respectively to
RT and R∗ are also presented. The curves in Figure 6 give
the variations of ε(ω) and e(ω) with ωref = ωmin (Fig. 6a)
and of ε(s) and e(s) with sref = scrit (Fig. 6b) in the
controlled operation area determined by C −R. The solid
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Fig. 5. Controlled operator area for combinations of C and R.

curves correspond to the described estimations and the
dashed curves correspond to the relative errors defined by
equations (15).

It can be noticed that limiting the upper value of R
to RH1 leads to a sufficiently limited controlled operation
area, approximately delimited by R values of RL and RT .
It thus results that the OP would belong essentially to
the characteristic ω12(s).

Adapting the k value by doubling it for R > RT ,
is equivalent to nearly doubling the controlled operation
zone, maintaining acceptable precision for the estimated
values of ω and s as is shown in the curves presented in
Figure 6. These curves show that, in the SEIG controlled
area, the estimated precisions are practically identical to
the relative errors with an overestimation for low values
of R and an underestimation for high values. The mini-
mal values of the estimated precisions or of the relative
errors appear at values of R close to RT . To extend the
allowed range of R and C it would be possible, in prac-
tice, to increase RH2, but such an increase would result
in numerous disadvantages such as the expressions given
by (27) becoming unreliable, and an OP close to a no-load
condition for low values of C.

7 Stability study

The stability analysis will be carried out assuming that
the SEIG load is only resistive. This resistance is var-
ied starting from a stable steady state corresponding to
a load R0 with C = C0. The problem consists of analyz-
ing how the SEIG behaves during transients. Generally,
as a first approach for this kind of study, it is assumed
that the electrical time constants are much smaller than
the mechanical one, which exists due to the polar moment
of inertia J of the whole rotational mechanical structure
referred back to the SEIG shaft. That implies that the
electrical transient has practically disappeared before the
speed has a chance to vary significantly.

However, in this case, taking into account the unique-
ness of the solution for the steady state of the system (11)
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(b) ε(s) and e(s) versus sref=scrit 
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Fig. 6. Variations of the estimated precisions ε(ω), ε(s) ( — ) and of the relative errors e(ω), e(s) ( - - - ).

which defines a single rotor rotational speed for a given
IM, R and C, it is very probable that it will not be pos-
sible to dissociate the electrical and the mechanical tran-
sients. Consequently, any analysis of the SEIG behavior
during these transients will be notably affected, and only
a global modeling of the SEIG will be able to provide
accurate information about the impact of changes in R.

7.1 Global modeling of the Self-Excited Induction
Generator

The global model for the SEIG uses the space phasor for-
malism. It considers three-phase stator and rotor windings
constituted of ns

e and nr
e effective turns for each phase.

The stator ds and rotor dr spatial references are meant
to be the same as the stator and rotor phase 1 axes. The
self excitation of the SEIG is only possible if a remanent
rotor flux density exists. To model this phenomenon, it
is sufficient to consider three fictitious coils with na

e ef-
fective turns each, distributed on the rotor just as the
“real” winding. These coils are crossed by DC currents iaq
(q = 1, 2 or 3) with a null sum. In this case, the space
phasor ia maintains a fixed modulus and position in the
dr reference frame.

The analysis of the voltage equations is carried out in
the rotor reference frame. Let us denote as x̊ s a stator
space phasor x s defined in the dr reference frame. One
thus can obtain:

v̊ s = rs i̊ s + d
dt ψ̊

s + jω′ψ̊ s

vr = rrir + d
dtψ

r

va = raia + d
dtψ

a

⎫⎬
⎭ (31)

where: ω′ = pΩ′, x̊ s = xs exp(−jθ). θ = θ0 + ω′t defines
the spatial angular gap between dr and ds. ψ̊ s, ψr and ψa,
which represent the fluxes linked by the stator, the rotor
and the fictitious windings respectively, are expressed as:

ψr = Lr(1 + λr)ir +M rsi̊ s +M raia

ψa = La(1 + λa)ia +Masi̊ s +Marir

ψ̊ s = Ls(1 + λs)i̊ s +M srir +M saia

⎫⎬
⎭ . (32)

Introducing a constant K tied to the IM geometric sizes,
allows one to express the inductance coefficients:

– Ls = Kns2

e , Lr = Knr2

e and La = Kna2

e characterize
the main cyclic inductances of the stator, the rotor and
the fictitious windings,

– M sr = Knr
en

s
e, M sa = Kns

en
a
e and M ra = Knr

en
a
e

represent the mutual inductances between the stator,
the rotor and the fictitious windings.

– rs, rr and ra are the resistances of the stator, the rotor
and the fictitious windings.

– λs, λr et λa are coefficients which characterize the leak-
age inductances.

Let us introduce the following quantities: L′s = Ls(1+λs),
L′r = Lr(1 + λr), L′a = La(1 + λa). By substituting the
expression for ψ̊ s into the stator voltage equation, as long
as the time derivative of ia is null and that the inductance
coefficients are constants, one obtains:

v̊ s = [rs + jω′L′s]i̊ s + L′s di̊
s

dt
+ jω′M srir

+M sr di
r

dt
+ jω′M saia. (33)

https://doi.org/10.1051/epjap:2008115 Published online by Cambridge University Press

https://doi.org/10.1051/epjap:2008115


182 The European Physical Journal Applied Physics

As vr = 0, the rotor voltage equation makes it possible to
express i◦s versus ir and ia. This leads to:

rrir + L′r di
r

dt
= −M sr di̊

s

dt
. (34)

In order to model the SEIG behavior, the following be
also added to equations (33) and (34):

– the voltage equation which characterizes the impact of
R and C in the rotor reference frame, as:

−i̊ s = C
dv̊ s

dt
+

(
1
R

+ jω′C
)
v̊ s (35)

– the equation which represents the SEIG mechanical
behavior, which will be assumed to be expressible as:

Γs = Γe + Γf + J
dΩ′

dt
(36)

with Γs = Pw/Ω
′ representing the torque which acts

on the SEIG shaft by means of the blades, Γf the
SEIG friction and windage torque and Γe the IM elec-
tromagnetic torque, as defined by the cross product:

Γe =
3
2
ψ̊ s × i̊ s. (37)

7.2 Simulation results

The IM considered in this section is the same as that
which was the subject of the study in steady state. To
exploit the equations which make it possible to model the
SEIG behavior during transients, the variables rr , Lr,
M sr and M sa have to be characterized. It is assumed that
the IM turn ratio at standstill is close to: ns

e/n
r
e =

√
2.

In these conditions, according to the numerical values of
r′r , l′r and Ls given previously, one can deduce that: lr =
9 mH, Lr = 0.2 H, rr = 1.8 Ω, M sr =

√
LsLr = 0.283 H.

To characterize M sa the value 0.1 H is adopted. During
the self excited step, the currents iaq are such that: |ia| =
0.1 A. When the SEIG is self-excited, the analysis of the
steady state or of the transient states corresponding to
changes in R, is performed assuming that the currents iaq
are null.

The different curves of Figure 7 display the mod-
ulus for certain values: Δis = |is| /Is

(rated)

√
2, Δvs =

|vs| /V s
(rated)

√
2, ΔΓe = −Γe/Γe(rated) and ΔΩ′ =

Ω′/Ω(rated) with: Is
(rated) = 3.6 A, V s

(rated) = 220 V,
Ω(rated) = 157 rad/s, Γe(rated) = 11.5 Nm. The study
is carried out assuming that the SEIG shaft is submitted
to a constant Pw equal to −1700 W.

A) Steady state. Starting from t = 0 with zero speed,
the SEIG evolves to reach the steady state correspond-
ing to R = R0 and C = C0. The study is carried out for
J = 0.4 kgm2, Γf = 0 Nm. The steady state is reached
when the space phasors i̊ s, ir and v̊ s possess constant
moduli and turn at the same speed, sω. This state, which

appears at t ∼= 57 s, is characterized by the following val-
ues: sω = −29.60 rad/s, ω′ = 479.6 rad/s which lead to:
ω = 450 rad/s and s = −6.57%. These values are similar
to those obtained under the same conditions during the
steady state study. The moduli of the space phasors are:
|is| = 4.8 A, |ir| = 6.3 A and |vs| = 239.9 V. Γe is then
equal to −7.1 Nm.

B) Changes in R. The starting point for this study
corresponds to the previous steady state (R = R0, C =
C0, J = 0.4 kgm2) obtained for an instant t = t∗ just
after 57 s. At t = t∗ the value of R is changed. Figure 5
shows that for C = C0, the values of R which lead to a
controlled operating mode are between 53.5 Ω and 83 Ω.

The curves shown in Figure 7 present the time varia-
tions of the related variables as R takes on values of 55 Ω
and 80 Ω.

For these values, the SEIG tends to return towards a
steady state after a relatively long transient. This tran-
sient is accompanied by large over-currents (in particular
for R = 80 Ω) which last several seconds (close to 2 s for
R = 55 Ω). These over-currents will likely trigger any elec-
trical protection mechanisms present, disconnecting the
SEIG from the load, and thus losing control of it.

These over-currents will also result in over-torques
which can, if repeated, weaken the mechanical structure.

To limit these over-currents it would be possible to
split up the increases or decreases in R (progressive
changes in R). However, this procedure will both make
the command more complex, and will prolong large over-
voltages at the load input, thus possibly degrading the
load components.

C) Influence of J. The previous curves show that the
durations of the electrical transients are closely dependent
on the mechanical time constant. To corroborate this re-
sult, it appears interesting to accompany the changes in
R at t = t∗ with changes in J .

The curves presented in Figure 8 give the results
obtained when R takes on the values R = 55 Ω and
R = 80 Ω, and J takes on the value: 1.2 kgm2. In both
cases one can remark a disengagement of the SEIG along
with a very large over-current and a very strong over-
torque for R = 80 Ω.

These losses of control, as well as these large over-
values taken by some variables, are generated by the speed
difference between the initial and final steady states that
the SEIG must reduce. For R = 60 Ω, the steady state
is characterized by Ω′ = 239.8 rad/s. The steady state
speeds for R = 55 Ω and 80 Ω are equal respectively to:
Ω′ = 258.9 rad/s and 183.7 rad/s (these values are de-
duced from (27)). This leads differences with the initial
speed of –8% and 23.4 %. It is thus foreseeable that the
problems will be all the more accentuated if J is large.

8 SEIG control during changes in R

To overcome the problems generated by the changes in R,
the speed differences between the initial and final steady
states must be limited. As Pw does not intervene on the
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Fig. 7. Transients induced by changes in R for C = C0 and J = 0.4 kgm2.
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Fig. 8. Influence of J on the SEIG behavior during transients tied to changes in R.

definition of these speeds, this analysis will be carried
out assuming a constant Pw equal to –1700 W (Pw only
acts on the SEIG response time in accordance with equa-
tion (36)).

The examination of equations (27) shows that an in-
crease of R for given C, results in a decrease in ω and an
increase in s. The increase in s can only result from a de-
crease in the ratio Ω′/Ω, and so the decrease in Ω′ must
be greater than that of Ω.

Considering again the first equation of system (27), it
is possible to remark that a change in R, that keeps the
RC product equal, is equivalent, in the C − R controlled
operation regime, to keeping the angular frequency con-
stant, and consequently also the frequency of the electri-
cal variables delivered by the SEIG. The equation which

gives the slip shows that s increases with R. As previ-
ously, this increase can only result from a decrease in the
ratio Ω′/Ω. However, as Ω is constant, the decrease in
Ω′, which is tied onto the changes in s, is considerably
reduced compared to that necessary for a single increase
in R. Consequently this procedure makes it possible to
reduce the speed differences between the initial and fi-
nal steady states, which should appreciably improve the
SEIG behavior during the changes in R. To appreciate
the impact of this speed difference reduction on the SEIG
behavior, transient states for the two extreme values of R
(55 Ω et, 80 Ω) are presented in Figure 9, for conditions
when J takes successively the values 0.4 and 1.2 kgm2,
and for constant RC product equal to R0C0. For the two
extreme values of R (55 Ω et 80 Ω), C must take on values
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of 27.63 μF and 19 μF respectively. It is possible to check
that these R−C couples are indeed included in the C−R
controlled operation regime defined in Figure 5. The use
of equations (27) leads, in the steady state, to speed dif-
ferences with the initial speed of –0.42% for R = 55 Ω and
1.15% for R = 80 Ω. The curves shown in Figure 9 clearly
demonstrate the beneficial effect of this procedure for the
over-currents, the over-torques, as well for as the loss of
control of the SEIG.

9 Impact of this control law on the steady
state

It has been previously shown that operation while keeping
the RC product constant is equivalent, in steady state, to
operation at a constant frequency. If this procedure makes
it possible avoid loss of SEIG operation control, it is ad-
visable to study the impact of this law on the possibility
of voltage regulation. Moreover, it may be of interest to
bring out the manner in which this control law acts on the
quantities looked at above as ωex and sex. In the following,
operational curves of the SEIG will be drawn towards the
following considerations:

– to use the specific values ωex and sex of ω and s to
define the different quantities (bold curves),

– to express these different quantities from ωref = ωmin

and sref = scrit (dashed curves).

9.1 Impact on voltage control

The impact on voltage control is considered at two differ-
ent levels:

• The first one results from an examination of the sim-
plified equation for V s given by (17). It reveals that for a
given Γe, V s changes as

√
Rω. Consequently, as ω and R

evolve in opposite direction, a change in R alone will lead
to a change in V s which will be lower than

√
R. It can

also be deduced that a change in R while keeping the RC
product constant, leads to a change in V s proportional to√
R, assuming that ω is a constant as well. Consequently

the depth of voltage regulation will be improved.
• The second point for consideration concerns the

C − R controlled operation regime as given in Figure 5.
To visualise the allowed variation in R assuming opera-
tion at constant C, it suffices to draw a horizontal line at
C = C0. This shows that R must be within the interval
ΔR(Cconst.) = [53.5 Ω; 83 Ω] as previously mentioned. By
plotting the hyperbola RC = R0C0 it can be seen that by
keeping RC constant while varying R, a greater range of
R is permitted ΔR(RCconst.) = [48 Ω; 115 Ω].

Figure 10a presents, for Γe = −Γe(rated), the varia-
tions in V s/V s

(rated) with R for the two ranges of R as
just defined, and using equation (13) to characterize V s.
In spite of an appreciable gap which affects the V s val-
ues according to they are calculated from ωref and sref

or ωex and sex, it appears that this constant frequency

operation amplifies considerably the ease of voltage regu-
lation. Concerning the gap as just evoked, it appears that
this one keeps a constant value for operation at constant
RC while it increases with R for operation at constant C.
These particularities accentuate the benefits brought by
this control law.

9.2 Impact on frequency changes

In order to better appreciate the meaning of this con-
stant frequency operation, the curves given in Figure 10b
present the variation in ω/ω(rated) with R for the two
running modes: constant C and constant RC product.
One can see that this natural frequency regulation (con-
stant RC product) gives excellent results over the inter-
val ΔR(Cconst.) with a section (interval ab) where ωex is
identical to ωmin. Apart from this intervalΔR(Cconst.), the
frequency performance deteriorate but keep nevertheless
acceptable values. This particularity can be explained by
considering the hyperbola RC = R0C0 which, for a no
negligible range in the changes in R, is relatively close to
the LCL limit (see Fig. 5) for low values of R and is close
to the LCH2 limit for high values of R.

Let us note that this procedure, which leads to nat-
ural frequency control, induces small fluctuations in the
frequency which are tied essentially to the non-linear char-
acter of the behaviour of the SEIG. In order to take this
particularity into account, this procedure will be described
as running at quasi constant frequency.

10 Case of different load types

• For a resistive load, ϕ′s as given by (8) can be expressed
by tgϕ′s = RCω. In these conditions, as ω can be con-
sidered as quasi constant for constant RC product, it suf-
fices to keep a constant tgϕ′s to obtain operation at quasi-
constant voltage-frequency.
• When the nature of the load changes, as long as the
characterization of the load as seen from the SEIG can
always be done by means of the quantity tgϕ′s, it seems
probable that it suffices to satisfy a similar rule (tgϕ′s
constant) to obtain operation at quasi constant V s and
f . In this case the difficulty is deferred on any procedure
which may make it possible to keep tgϕ′s constant, as this
quantity may be much more complex to control.

The aim is not to develop an analysis similar to that
done for a resistive load but only to present the results
obtained when considering voltage regulation if the sug-
gested procedure is used. To do this, it is assumed, for
example, that an inductance L of constant value is con-
nected at the terminals of the resistance R in Figure 1.
tgϕ′s is then given by:

tgϕ′s = R(LCω2 − 1)/Lω. (38)

Assuming that the voltage control is carried out by adapt-
ing the value of R, it appears, assuming that keeping tgϕ′s
constant leads to a quasi-constant value of ω, that this
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Fig. 9. Transients during the R changes when the product RC is constant and equal to R0C0.
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Fig. 10. Variations of related variables for resistive load and Γe = −Γe(rated).
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Fig. 11. Variations of related variables for inductive load and Γe = −Γe(rated).

condition is satisfied when quantity R(LCω2 − 1) is kept
constant.

When the parasitical terms are neglected, ω and s are
equal to ω′

0 and s′0, as defined by:

ω = ω′
0 =

√
(Ls + L)/CLsL

s = s′0 = −r′r/R
}
. (39)

For the IM considered and with L = 0.6 H, these equa-
tions show that in order to obtain ω ≈ ω(rated) and
s ≈ −s(rated) it suffices to choose: R = R0 = 60 Ω,
C = C′

0 = 42.2 μF. With the aim of keeping an angular
frequency close to ω(rated), it is advisable, in order to keep
tgϕ′s constant, to satisfy the equality: R(LCω2

(rated)−1) =
R0(LC′

0ω
2
(rated) − 1). This leads to the following relation-

ship between C and R:

C = [R+R0(LC′
0ω

2
(rated) − 1)]/RLω2

(rated). (40)

The relationship between V s and Γe can be written as:

V s = R
L

Ls

√
Γeω

3p
r′r2 + s2Ls2(1 + λr)2ω2

[R2(LCω2 − 1)2 + L2ω2]sr′r
. (41)

As previously, it is possible to characterize ω and s by
setting them equal to ωref = ωmin and sref = scrit. Fol-
lowing the same approach that was used during the study
with a resistive load and when still using the constants
given by (10), one can in this case obtain:

sref = scrit = LLs2r′r
2(RA′−LE′′)

(
1+

√
1 − 4RCD′(RA′−LE′′)

LLs4r′r2

)
ω2

ref = ω2
min = − rsE′s2

min+Ls2r
′rRsmin−LD′′

Lsmin(A′′smin−B)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(42)

where:

smin =
A′′LD′′

rsE′B + Ls2r′rRA′′

×
{

1 +

√
1 − B

A′′2LD′′ (r
sE′B + Ls2r′rRA′′) . (43)

These equations show that simply inserting the element L
leads to ωmin and scrit relationships which are much more
complex.

• The curves of Figure 11a present the variations of
V s/V s

(rated) with R deduced from (41) for a given Γe

equal to −Γe(rated) considering the following two strate-
gies: [variable R; constant C] and [variable R and C]. Let
us note that these curves are drawn without consideration
as to the potential limitations imposed by the controlled
operation regime, as this complication would be to tedious
to present in this paper. It appears again that the sug-
gested procedure increases the ease of voltage regulation.

• The curves of Figure 11b give the variations of
ω/ω(rated) with R for the two previously described strate-
gies. Again it is possible to appreciate the positive impact
brought by the additional degree of freedom that this sug-
gested control law introduces, in this case (it suffices to
choose a value other than ω(rated) in equation (40) in or-
der to change the variations of the frequency with R).

11 Conclusion

The analysis presented in this paper is based on a single-
phase equivalent circuit definition using the notion of an
induced voltage source in order to characterize SEIG op-
eration. It has made it possible to overcome the inherent
difficulties related to the inverse nature of the problem,
when considering a resistive load in steady state.
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However, it has been necessary to define an operat-
ing regime within which the SEIG behavior is to be con-
trolled. The other advantage of this operational regime is
the possibility to characterize the angular frequency and
the slip within this region by analytical expressions, thus
taking into account all the parameters which character-
ize the IM. From these expressions a control strategy has
been proposed. This strategy makes it possible, to avoid
the over-values taken by some variables and to avoid the
disengagement of the SEIG during the state changes im-
posed by the load resistance variations necessary to con-
trol the voltage appearing at the inputs.

This aspect is very interesting because these phenom-
ena are often prejudicial with the development of such
structures at remote sites. The SEIG behavior thus ob-
tained can be considered as operation at quasi constant
voltage-frequency without a frequency control loop. This
command law also makes it possible to increase the ease
of voltage regulation. Finally, it has been shown that this
regulation strategy could be used in the case of loads of
different types as long as the relationship between C and
the load components is adapted.

Abbreviations

IM Induction Machine
SEIG Self-Excited Induction Generator
OP Operating Point
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