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Bounded Derived Categories of Infinite
Quivers: Grothendieck Duality,
Reflection Functor

Javad Asadollahi, Rasool Hafezi, and Razieh Vahed

Abstract. We study bounded derived categories of the category of representations of infinite quivers
over a ring R. In case R is a commutative noetherian ring with a dualising complex, we investigate an
equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex
does not apply to them. The quivers we consider are left (resp. right) rooted quivers that are either
noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result
of Happel to noetherian rings of finite global dimension, instead of fields.

1 Introduction

Dualising complexes were introduced by Grothendieck and Hartshorne [Har] for
use in algebraic geometry. Soon it was discovered that these complexes are powerful
tools in other subjects, especially commutative algebra; see e.g., [PS, Ro]. For us,
the importance of the dualising complexes is in connection to its origin; i.e., the
Grothendieck duality theorem: a dualising complex for a ring R is a complex D of
R-R bimodules such that the functor

RHomR( · ,D) : Db
f (mod-Rop)op −→ Db

f (mod-R)

is an equivalence of categories.
The Grothendieck duality theorem is one of the milestones of the classical alge-

braic geometry. In the recent years, there have been several attempts both to extend
Grothendieck duality to larger classes and to get similar duality for another cate-
gories.

The project started in 2005 with papers by Krause [K05] and Jørgensen [J], and
continued with papers by Iyengar and Krause [IK] and Neeman [N08]. Roughly
speaking, based on the results of [K05] and [J], Iyengar and Krause extended Gro-
thendieck duality to the homotopy categories K(Inj-R) and K(Prj-R) for certain rings,
and based on the results of [N08], Murfet generalized these results to the category of
quasi-coherent sheaves over a semi-separated noetherian scheme. Following Nee-
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man’s beautiful idea he considered the quotient category K(Flat-R)/K(Prj-R)⊥ as a
replacement for K(Prj-R) and then extended the theory to non-affine case; see [M].
The introduction of [N08] contains a good survey of these results.

Another natural direction is to try to get similar equivalences in other abelian
categories. In [AEHS] the authors obtained an extension of the above results in
the category of representations of certain quivers. In particular, for finite quivers
they presented a triangle equivalence K(Prj-Q)

∼→ K(Inj-Q). When R is a left-
Gorenstein ring, Chen [C, Theorem B] provides an equivalence of triangulated cat-
egories K(GPrj-R) and K(GInj-R). This equivalence over Gorenstein rings, extends
the Iyengar–Krause equivalence, up to a natural isomorphism. And finally an ex-
tended version of the results of Iyengar and Krause to the category of complexes is
given in [AHS].

Our aim in this paper is to follow up the above project and try to get variations
of the above mentioned results in the category of representations of infinite quivers.
The quivers we consider are left (resp. right) rooted quivers that are either noetherian
or their opposites are noetherian.

Although classical representation theory deals with representations of finite quiv-
ers mainly on an algebraic closed field, in the recent years study of more general
quivers over arbitrary rings has been the subject of several research papers. In fact,
infinite quivers and their representations have appeared naturally in subjects such as
module theory, Lie theory, and algebraic geometry. For example, in representation
theory, Reiten and Van den Bergh [RV] studied finitely presented representations of
locally finite left rooted quivers, which are infinite in general, and showed that this
category has right almost split sequences. Ringel [Ri] studied ray quivers, which are
infinite in general. In algebraic geometry, the category of quasi-coherent sheaves over
a scheme X is equivalent to the category of representations of a not necessarily finite
quiver. For more examples of applications of infinite quivers consult [E, BLP, Ru].
The introduction of [BLP] also contains a very good motivation and explanation of
the importance of the study of infinite quivers.

The paper is structured as follows. Section 2 is the preliminary section. Among
other things, we study noetherian quivers and some equivalences between categories
in the two subsections of this section.

Section 3 also includes two subsections. The first one is devoted to attempts to get
equivalences similar to Grothendieck duality for infinite quivers. We show that when
Q is a noetherian quiver with the property that for every v,w ∈ V , the set of paths
from v to w is finite and such that Qop is also noetherian, then Db

f (Qop)op is equivalent
to a full triangulated subcategory of Db

f (Q) that we will denote by Db
L f (Q); see 3.3 for

the definition of Db
L f (Q). In case Q is finite Db

L f (Q) = Db
f (Q), and so we get the

usual Grothendieck duality.
The class of quivers satisfying the above condition, includes the class of left rooted

quivers that are noetherian and locally finite and also the class of right rooted quivers
that are locally finite and their opposites are noetherian. So the above-mentioned
equivalence holds true for the bounded derived category of such classes of quivers.
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Furthermore, we show that if we let the underlying ring to be a field, then we have
the Grothendieck duality for path algebras KQ, whenever Q is a right rooted quiver
that is locally finite and its opposite is noetherian. For example, this result shows that
there is an equivalence Db

f (A+∞)op ∼→ Db
f (A−∞) of triangulated categories.

Using the fact that Rep(A+∞
−∞,R) is equivalent to gr-R[x], viewing R[x] as a Z-gra-

ded ring, we specialize our results to the category of graded modules; see Corol-
lary 3.13.

Note that our approach does not follow the existence of an Iyengar–Krause equiv-
alence for the homotopy categories of projective and injective quivers, although we
prove that there exists a fully faithful functor from K(Prj-Q) to K(Inj-Q).

Continuing our project in getting equivalences between bounded derived cate-
gories of representation of quivers, in Section 3.2, we turn our attention to the reflec-
tion functors. Bernstein, Gelfand, and Ponomarev in their work on Gabriel’s Theo-
rem introduced the notion of reflection functors. This notion was then generalized
by various authors. In particular, Brenner and Butler provided an extension of this
subject with nice applications to quivers with relations; see [BB].

In Subsection 3.2, we show that when R is a noetherian ring of finite global dimen-
sion, and i is either a source or a sink of an arbitrary quiver Q, there is an equivalence
of triangulated categories Db

f (Q) ' Db
f (σiQ); compare [Hap, I. 5.7]. As a corollary,

it will be shown that when Q1 and Q2 are two trees with the same underlying graph,
then they are derived equivalent; i.e., there is an equivalence of triangulated categories
Db

f (Q1) ∼= Db
f (Q2).

Using an example, we show that this equivalence exists for special quivers, even if
the global dimension of the ring is not finite. But we do not know if it is true for any
finite quivers.

Throughout the paper, R is an associative ring with identity, unless otherwise spec-
ified. Mod-R (resp. mod-R) denotes the category of all (resp. finitely presented) right
R-modules.

2 Preliminary Results

Let A be an additive category and C(A) denote the category of complexes over A.
If A = Mod-R is the category of (right) R-modules, we write C(R) instead of
C(Mod-R). The homotopy and derived categories of A are denoted by K(A) and
D(A), respectively. In case A = Mod-R, we write K(R) and D(R), respectively, in-
stead of K(Mod-R) and D(Mod-R).

Definition 2.1 (Quivers) A quiver Q is a quadruple Q = (V, E, s, t), where V and
E are the sets of vertices and arrows, respectively of Q, and s, t : E→ V are two maps
that associate with any arrow a ∈ E its source s(a) and its target t(a). We usually
denote the quiver Q = (V, E, s, t) briefly by Q. Also we let Qop denote the opposite
quiver of Q, which is a quiver with the same vertices but arrows in reverse directions.
It it known that the category of all representations ofQ in Mod-R, denoted Rep(Q,R),
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is a Grothendieck category. For an object M ∈ Rep(Q,R) and a vertex v ∈ V , Mv

denotes the module at vertex v. For simplicity, we write K(Q) (resp. D(Q)) in place
of K(Rep(Q,R)) (resp. D(Rep(Q,R))).

A full subquiver Q′ of a quiver Q is called convex in Q if, for any path v0 → v1 →
· · · → vt in Q with v0, vt in VQ′ , we have vi ∈ VQ′ for all o < i < t .

We denote the full subcategory of Rep(Q,R) consisting of injective (resp. projec-
tive) representations by Inj-Q (resp. Prj-Q). The reader may consult [EE1, EEG] for
more details on these subcategories.

Definition 2.2 (Evaluation functor) Given a quiver Q and an R-module M, for any
v ∈ V , sv(M) denotes a representation of Q defined as follows: for any w ∈ V ,

sv(M)w =

{
M if w = v,

0 if w 6= v.

On the other hand, for any vertex v of quiver Q, there exists a functor

ev : Rep(Q,R) −→ Mod-R,

called the evaluation functor, which assigns to any representation M of Q its module
at vertex v, Mv. In [EH], it is proved that ev has a right adjoint ev

ρ and a left adjoint ev
λ.

In fact, for an R-module M, ev
ρ(M)w =

∏
Q(w,v) M, where Q(w, v) denotes the set of

all paths from w to v. For any arrow a : w1 → w2, ev
ρ(M)a :

∏
Q(w1,v) M →

∏
Q(w2,v) M

is the natural projection. The left adjoint of ev is defined similarly: for any R-module
M, one defines ev

λ(M)w =
⊕

Q(v,w) M. The maps are natural injections. Sometimes,

to avoid any confusion, we emphasis the quiver Q by writing ev,Q
ρ (resp. ev,Q

λ ) instead
of ev

ρ (resp. ev
λ).

The evaluation functor ev can be naturally extended to a functor kv : K(Q) →
K(R). This follows just by taking for any complex X ∈ K(Q), kv(X) to be X itself re-
stricted to the vertex v and for any map f : X→ Y in K(Q), kv( f ) to be the restriction
of f . Similarly, this functor admits a right and a left adjoint kv

ρ and kv
λ, respectively.

For example, kv
ρ : K(R)→ K(Q) is given by

kv
ρ(X)i = ev

ρ(Xi) and ∂
kv
ρ(X)

i = ev
ρ(∂Xi );

for more details see [AEHS]. As in the paragraph above, sometimes we write kv,Q
ρ

(resp. kv,Q
λ ) in place of kv

ρ (resp. kv
λ) to avoid any confusion.

Let Q′ be a subquiver of Q. The restriction functor eQ
′
: Rep(Q,R) → Rep(Q′,R)

that, by definition, restricts any representation of Q to the vertices of Q′, is known to
possess a right adjoint eQ

′

ρ and a left adjoint eQ
′

λ ; for more details see [EHS]. Simi-
larly, the restriction functor eQ

′
and its adjoints eQ

′

ρ and eQ
′

λ can be extended to the
functor kQ

′
: K(Q) → K(Q′) with right and left adjoints kQ

′

ρ : K(Q′) → K(Q) and
kQ
′

λ : K(Q′)→ K(Q), respectively.
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Let X be a complex of representations of Q. We write Xv for kv(X). For any
complex X of representations of Q there are short exact sequences, see [EHS],

0 −→ X −→
∏
v

kv
ρ(Xv) −→

∏
a

ks(a)
ρ (Xt(a)) −→ 0,

0 −→
⊕

a
kt(a)
λ (Xs(a)) −→

⊕
v

kv
λ(Xv) −→ X −→ 0.

Definition 2.3 (Rooted quivers) Let Q be a quiver. We apply transfinite induction
to build a set of vertices Vβ for each ordinal number β. Put

V1 = {v ∈ V : @ a ∈ E such that t(a) = v}.

Suppose β is an ordinal number and we have defined Vγ for all γ < β. Let

Vβ =
{

v ∈ V \
⋃
γ<β

Vγ : @ a ∈ E \
{

a : s(a) ∈
⋃
γ<β

Vγ

}
such that t(a) = v

}
.

By [EOT, Proposition 3.6] Q is left rooted, i.e. does not contain any subquiver of the
form · · · → · → · if and only if there is an ordinal number β such that V =

⋃
γ≤β Vγ .

In this case, the least ordinal number β for which V =
⋃
γ≤β Vγ , will be denoted by

µ(Q). We set Vα =
⋃
β≤αVβ .

Dually one can define

V ′1 = {v ∈ V : @ a ∈ E such that s(a) = v},

and if β is an ordinal number

V ′β = {v ∈ V \
⋃
γ<β

V ′γ : @ a ∈ E \ {a : t(a) ∈
⋃
γ<β

Vγ} such that s(a) = v}.

Similarly, a quiver Q is right rooted if and only if there is an ordinal number β such
that V =

⋃
γ≤β V ′γ and the least ordinal number β for which V =

⋃
γ≤β V ′γ , will be

denoted by µ′(Q). Also, we set V′α =
⋃
β≤αV ′β .

All left (resp. right) rooted quivers that we work on have the property that µ(Q) ≤
ℵ0 (resp. µ′(Q) ≤ ℵ0).

Finally, recall that a left (resp. right) rooted quiver Q is said to be locally finite if
for any ordinal number α, Vα (resp. V ′α), is finite. In this case, the number of paths
between every two given vertices is finite.

Definition 2.4 (Compactly Generated Triangulated Categories) Let T be a triangu-
lated category with coproducts. Let S be a set of objects of T. We say that S generates
T if an object T of T is zero provided T(S,T) = 0, for all S ∈ S.

An object X of T is called compact if for any set {Y j} j∈ J of objects of T, every
map X →

∐
j∈ J Y j factors through X →

∐
j∈ J′ Y j , for some finite subset J′ of J.

Given any triangulated category T, we denote by Tc the full subcategory formed by
all compact objects.

If T is generated by a set of compact objects, then it is called compactly generated.
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2.1 Noetherian quivers

Noetherian quivers appeared in the representation theory as those that generalize
the Hilbert basis theorem. At first Höinghaus and Richter introduced Hilbert basis
quivers in [HR2] as finite quivers that satisfy such a theorem. Enochs et al. [EGOP]
generalized this concept. They characterized noetherian quivers without any restric-
tion on the set of vertices. Let us recall some relevant definitions from [EGOP].

For a representation M of a quiver Q, a set of elements of M, denoted by X, is the
union of any collection of subsets of modules Mv, v ∈ V , i.e., X =

⋃
v∈V Xv where

Xv ⊂ Mv. The subrepresentation of M generated by the set X is defined to be the
intersection of all representations of Q containing X. The representation M is called
finitely generated if M is generated by a finite subset of elements. In other words, it
is finitely generated in the category Rep(Q,R).

Definition 2.5 A quiver Q is called (right) noetherian if for any (right) noether-
ian ring R every finitely generated representation in Rep(Q,R) is noetherian in the
categorical sense; i.e., each ascending chain of its subobjects is stationary.

Here is a characterization of noetherian quivers. Let us recall two definitions.

Definition 2.6 For any vertex v of Q, let Qv be a subquiver of Q having V (Qv) =
{w ∈ V : ∃ a path a : v → w} as the set of vertices. Moreover, P(Q) denotes a quiver
whose vertices are all the paths p of Q and arrows are the pairs (p, ap), where a is an
arrow of Q such that t(p) = s(a).

Definition 2.7 ([Ru]) Let T be a tree. A branch of T is a maximal linearly ordered
subset, with the following ordering: v < w if there is an arrow from v to w. Then
B(T) denotes the set of all branches of T, and T is called barren if the set B(T) is
finite.

This definition is not equivalent to the original one is given in [EGOP]. For an
example, see [Ru]. We use the following characterization of noetherian quivers.

Proposition 2.8 ([EGOP]) Let Q be an arbitrary quiver. The following statements
are equivalent:

(i) Q is noetherian;
(ii) P(Q)v is noetherian for any vertex v of Q;
(iii) P(Q)v is barren for any vertex v of Q;
(iv) for any noetherian ring R, every object in the category Rep(Q,R) has an injective

cover.

Remark 2.9 Let A be an abelian category. The bounded derived category of A, de-
noted Db

f (A), is the full subcategory of D(A) consisting of all objects X such that HiX

is finitely generated for all i and HiX = 0 for |i| � 0. Krause [K05, Proposition 2.3]
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proved that when the abelian category A is locally noetherian, then K(Inj-A) is com-
pactly generated and is the completion of the category Db

f (A). On the other hand,
Neeman [N08, Proposition 7.14] proved that K(Prj-R) is compactly generated and it
is the infinite completion of Db

f (Rop)op, provided Rop is a coherent ring. This later
result was proved first for more special rings by Jørgensen [J]. Moreover, let R be a
ring with several objects such that Rop is coherent. Then there is a similar description
for the compact object of K(Prj-R); see [K12, Proposition 4.3].

Throughout, for simplicity, we write Db
f (Q) instead of Db

f (Rep(Q,R)). In view of
2.9 we have the following two results.

Proposition 2.10 Let Q be a noetherian quiver and R be a noetherian ring. Then
K(Inj-Q) is compactly generated, and there is the following equivalence of triangulated
categories

Kc(Inj-Q)
∼−→ Db

f (Q).

For the following proposition, note that the category Rep(Q,R) can be considered
as a ring with several objects.

Proposition 2.11 Let Q be a quiver such that Qop is noetherian. Then the category
K(Prj-Q) is compactly generated, and there is the following equivalence of triangulated
categories

Kc(Prj-Q)
∼−→ Db

f (Qop)op.

By a result of Neeman [N08, Proposition 7.14], we can deduce that Proposi-
tion 2.11 also holds true for quivers in which Rep(Qop,R) is coherent. Recall that the
category Rep(Q,R) is called coherent if for any coherent ring R, the full subcategory
of the category Rep(Q,R) formed by all finitely presented representations, rep(Q,R),
is abelian. For instance, when R is a coherent ring and Q is a locally finite right rooted
quiver, Rep(Q,R) is coherent.

2.2 Equivalences

In this subsection we establish some equivalences between categories. These equiva-
lences will be used throughout the paper.

Let us begin with the following easy, but useful, lemmas.

Lemma 2.12 Let Q be a quiver such that for every v,w ∈ V , Q(v,w) is a finite set.
Then for every v,w ∈ V and C,D ∈ Mod-R, we have the isomorphism

HomQ

(
ev
λ(C), ew

λ (D)
) ∼= HomQ

(
ev
ρ(C), ew

ρ (D)
)
.
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Proof The adjoint pairs (ev, ev
ρ) and (ev

λ, e
v) imply the following two isomorphisms

HomQ(ev
λ(C), ew

λ (D)) ∼= HomR

(
C,

⊕
Q(w,v)

D
)
,

HomQ(ev
ρ(C), ew

ρ (D)) ∼= HomR

( ∏
Q(w,v)

C,D
)
.

Since Q(w, v) is a finite set, the right-hand sides of the above isomorphisms are iso-
morphic, and so we have the desired result.

For a vertex v ∈ V , we set αv to be the unique ordinal number such that v ∈ Vαv .

Lemma 2.13 Let Q be a left rooted quiver. Pick a vertex v in Vαv . For every C,C ′ ∈
Mod-R, there are the following isomorphisms

HomQ

(
ev
λ(C),⊕w∈V ew

λ (C ′)
) ∼= HomQ

(
ev
λ(C),⊕w∈Vαv

ew
λ (C ′)

)
,

HomQ

(
ev
ρ(C),⊕w∈V ew

ρ (C ′)
) ∼= HomQ

(
ev
ρ(C),⊕w∈Vαv

ew
ρ (C ′)

)
.

Proof We prove the first isomorphism. The second one follows similarly. For the
proof it is enough to show that HomQ(ev

λ(C), ew
λ (C ′)) = 0 for any w ∈ Vαw whenever

αw > αv. So assume that w ∈ Vαw is such that αw > αv. We have the isomorphism

HomQ

(
ev
λ(C), ew

λ (C ′)
) ∼= HomR

(
C,

⊕
Q(w,v)

C ′
)
.

Since Q is left rooted, there is no path from w to v. Therefore,

HomQ(ev
λ(C), ew

λ (C ′)) = 0.

Let A be an abelian category that is closed under arbitrary direct sums. For any
class C of objects of A, Sum-C denotes the additive subcategory of A consisting of all
direct sums of copies of objects of C.

Let C be a full subcategory of Mod-R closed under direct sums. Consider the
subclasses Cλ = {ev

λ(Cv) | v ∈ V,Cv ∈ C} and Cρ = {ev
ρ(Cv) | v ∈ V,Cv ∈ C} of

Rep(Q,R). Sometimes, to avoid any confusion, we write CQ
ρ (resp. CQ

λ ) instead of Cρ
(resp. Cλ).

Let v be a vertex of Q. By definition of the functor ev
λ, we have⊕

C∈C
ev
λ(C) = ev

λ(
⊕

C∈C
C).

So every object of Sum-Cλ can be written as
⊕

v∈V ev
λ(Cv), where Cv ∈ C. Similarly,

if Q is a locally finite quiver, it is easy to see that every object of Sum-Cρ is of the form⊕
v∈V ev

ρ(Cv), where Cv ∈ C.
Throughout the paper, let C be a subcategory of Mod-R closed under direct sums.

Lemma 2.14 Let Q be a locally finite left rooted quiver. Then there exists an equiva-
lence of categories between Sum-Cλ and Sum-Cρ.
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Proof Let
⊕

v∈V ev
λ(Cv) and

⊕
w∈V ew

λ (Cw) be in Sum-Cλ. By Lemmas 2.12 and
2.13 we have the following isomorphisms:

HomQ

( ⊕
v∈V

ev
λ(Cv),

⊕
w∈V

(ew
λ (Cw)

) ∼= ∏
v∈V

HomQ

(
ev
λ(Cv),

⊕
w∈V

ew
λ (Cw)

)
∼=
∏

v∈V
HomQ

(
ev
λ(Cv),

⊕
w∈Vαv

ew
λ (Cw)

)
∼=
∏

v∈V

⊕
w∈Vαv

HomQ

(
ev
λ(Cv), ew

λ (Cw)
)

∼=
∏

v∈V

⊕
w∈Vαv

HomQ

(
ev
ρ(Cv), ew

ρ (Cw)
)

∼= HomQ

( ⊕
v∈V

ev
ρ(Cv),

⊕
w∈V

(ew
ρ (Cw)

)
.

Note that the third isomorphism follows from the finiteness of Vαv . So we have
defined a functor φ : Sum-Cλ → Sum-Cρ that maps ⊕v∈V ev

λ(Cv) ∈ Sum-Cλ to
⊕v∈V ev

ρ(Cv) and takes each morphism f : ⊕v∈V ev
λ(Cv) → ⊕w∈V (ew

λ (Cw) to the
unique morphism φ( f ) that corresponds to f via the above isomorphism. The argu-
ment that is used in [AEHS, Lemma 3.7] works to show that φ is a functor. Moreover,
it is easy to see that φ is fully faithful and dense, so it is an equivalence.

The equivalence φ : Sum-Cλ → Sum-Cρ can be extended to an equivalence

φ̄ : K(Sum-Cλ)→ K(Sum-Cρ).

As a consequence of the above lemma we have the following corollary.

Corollary 2.15 Let Q be a locally finite left rooted quiver. Then there is an equivalence
K(Prj-Q) ∼= K(Sum-(Prj-R)ρ) of triangulated categories.

Proof Set C = Prj-R in Lemma 2.14 and note that by characterization of projec-
tive representations of left rooted quivers [EE1], Sum-Cλ ∼= Prj-Q. Now, the above
remark implies the statement.

Towards the end of this section, we plan to provide a faithful and dense functor
between K(Sum-Cλ) and K(Sum-Cρ) for right rooted quivers.

Lemma 2.16 Let Q be a locally finite right rooted quiver. Then⊕
v∈V

ev
ρ(Mv) ∼=

∏
v∈V

ev
ρ(Mv).

Proof By definition, (ev
ρ(Mv))w =

∏
Q(w,v) Mv. So if v ∈ V ′m and w ∈ V ′n are such

that m > n, then (ev
ρ(Mv))w = 0. Hence (

⊕
v∈V ev

ρ(Mv))w =
⊕

v∈V′n
(
∏

Q(w,v) Mv),

where w ∈ V′n. Similarly, we have (
∏

v∈V ev
ρ(Mv))w =

∏
v∈V′n

(
∏

Q(w,v) Mv). By hy-

pothesis, V′n is a finite set and so
⊕

v∈V ev
ρ(Mv) ∼=

∏
v∈V ev

ρ(Mv).
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Lemma 2.17 Let Q be a locally finite right rooted quiver. Then there exists a mono-
morphism

HomQ

( ⊕
v∈V

ev
λ(Cv),

⊕
w∈V

ew
λ (Cw)

)
−→ HomQ

( ⊕
v∈V

ev
ρ(Cv),

⊕
w∈V

ew
ρ (Cw)

)
,

where Cv,Cw ∈ Mod-R and v,w ∈ V .

Proof By Lemmas 2.12 and 2.16, we have the following isomorphisms∏
v∈V

HomQ

(
ev
λ(Cv),

∏
w∈V

ew
λ (Cw)

) ∼= ∏
v∈V

∏
w∈V

HomQ

(
ev
λ(Cv), ew

λ (Cw)
)

∼=
∏

v∈V

∏
w∈V

HomQ

(
ev
ρ(Cv), ew

ρ (Cw)
)

∼=
∏

v∈V
HomQ

(
ev
ρ(Cv),

∏
w∈V

ew
ρ (Cw)

)
∼=
∏

v∈V
HomQ

(
ev
ρ(Cv),

⊕
w∈V

ew
ρ (Cw)

)
∼= HomQ

( ⊕
v∈V

ev
ρ(Cv),

⊕
w∈V

(ew
ρ (Cw)

)
.

On the other hand, there is the natural monomorphism∏
v∈V

HomQ

(
ev
λ(Cv),

⊕
w∈V

ew
λ (Cw)

)
↪→

∏
v∈V

HomQ

(
ev
λ(Cv),

∏
w∈V

ew
λ (Cw)

)
.

Hence, the isomorphism

HomQ

( ⊕
v∈V

ev
λ(Cv),

⊕
w∈V

ew
λ (Cw)

) ∼= ∏
v∈V

HomQ

(
ev
λ(Cv),

⊕
w∈V

ew
λ (Cw)

)
yields the result.

Using the above lemma, we have the following proposition.

Proposition 2.18 Let Q be a locally finite right rooted quiver. Then we have a faithful
and dense functor

φ : Sum-Cλ −→ Sum-Cρ.

Proof Observe that all the morphisms that are given in the proof of the above
lemma are natural. So the above monomorphism enables us to define a functor
φ : Sum-Cλ → Sum-Cρ by φ(⊕v∈V ev

λ(Cv)) = ⊕v∈V ev
ρ(Cv) and φ( f ) to be the mor-

phism that corresponds to f via the above monomorphism, for every morphism
f : ⊕v∈V ev

λ(Cv) → ⊕w∈V ew
λ (Cw). Clearly, φ is dense. Lemma 2.17 implies that φ is

faithful.

Observation 2.19 Similarly, the functor φ : Sum-Cλ → Sum-Cρ can be extended
to the faithful and dense functor φ̄ : K(Sum-Cλ) → K(Sum-Cρ). In particular, if
R is noetherian, C = Inj-R, and Q is a locally finite right rooted quiver, by [EEG,
Theorem 4.2] and Lemma 2.16, K(Sum-Cρ) = K(Inj-Q). So there is a functor
K(Sum-(Inj-R)λ)→ K(Inj-Q) that is faithful and dense.
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Definition 2.20 A thick subcategory I of a triangulated category T is a full triangu-
lated subcategory such that given M,N ∈ T with M ⊕ N ∈ I, then M,N ∈ I.

Let L be a set of objects in a triangulated category T. Let 〈L〉 denote the smallest
thick subcategory of T containing L. It is easy to check that 〈L〉 =

⋃
n∈N∪{0} 〈L〉n,

where

• 〈L〉0 is a full subcategory of T containing L and closed under finite direct sums,
direct summands and shifts;

• for n > 0, 〈L〉n is a full subcategory of T consisting of all objects C such that there
is a distinguished triangle Y → X → Z  in T with Y ∈ 〈L〉i and Z ∈ 〈L〉 j such
that i, j < n and C is a direct summand of shifting of X.

3 Bounded Derived Categories

In this section we plan to provide some equivalences between the bounded derived
categories of representations of quivers. We divide this section into two subsections.
In the first one, the Grothendieck duality theorem will be extended to the category
of representations of a locally finite right rooted quiver Q over a field k. Also, in the
general case, when Q is a noetherian quiver such that Qop is also noetherian, we show
that there is an equivalence between Db

f (Qop)op and a subcategory of Db
f (Q). In the

second subsection, we provide a triangulated equivalence between derived categories
of representations of quivers via reflection functors.

3.1 Grothendieck Duality

Throughout this subsection R is a commutative noetherian ring with a dualising
complex D.

Let Q be an arbitrary quiver and let K(Flat-Q) be the homotopy category of flat
representations. Define a functor

T′ : K(Flat-Q) −→ K(Sum-(Inj-R)λ),

as follows: for any F ∈ K(Flat-Q), T′(F) is a complex defined by T′(F)v = Fv ⊗R D,
for every v ∈ V . Also, we define a functor H : K(Sum-(Inj-R)λ) → K(Flat-Q) as
follows: for every E ∈ K(Sum-(Inj-R)λ), H(E)v = HomR(D,Ev), for every vertex
v ∈ V . It is easy to check that (T′,H) is an adjoint pair of triangulated functors.

On the other hand, by [EHS, Lemma 3.2.4], K(Prj-Q) is compactly generated. So
the inclusion i : K(Prj-Q) → K(Flat-Q) has a right adjoint i∗. In fact, we have the
following commutative diagram

K(Flat-Q)
T′

''
i∗

uu
K(Prj-Q)

T //

i 55

K(Sum-(Inj-R)λ)
H

gg
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Therefore, we have the unit

η : IdK(Prj-Q) → i∗HT

and counit
η′ : Ti∗H −→ IdK(Sum-(Inj-R)λ)

corresponding to the adjoint pair (T, i∗H).

Observation 3.1 Since K(Prj-R) is compactly generated, there is a right adjoint
functor q : K(Flat-R) → K(Prj-R) for the inclusion functor K(Prj-R) → K(Flat-R).
Now, for any complex X ∈ K(Flat-R) an argument similar to [AHS, Lemma 5.2.1]
shows that i∗(kv

λ(X)) = kv
λ(q(X)). By using this fact and the uniqueness of the right

adjoint functor, one can conclude that

ηkv
λ(X)
∼= kv

λ(δX) and η′kv
λ(X)
∼= kv

λ(δ′X),

where δ and δ′ are unit and counit corresponded to the adjoint pair
(D⊗R −, q ◦HomR(D, · )), respectively.

Proposition 3.2 Let Q be an arbitrary quiver. Then the functor

T : K(Prj-Q) −→ K(Sum-(Inj-R)λ)

is an equivalence of triangulated categories.

Proof It is enough to show that both unit η and counit η′ are natural isomorphisms.
We will just show that η is natural isomorphism. The other one can be obtained in a
similar way.

Assume that F ∈ K(Prj-Q). By 2 we have a triangle⊕
a

kt(a)
λ (Fs(a)) −→

⊕
v

kv
λ(Fv) −→ F ,

where a ∈ E and v ∈ V .
Apply natural transformation η on the above triangle to get the following com-

mutative diagram⊕
a kt(a)

λ (Fs(a)) //

η1��

⊕
v kv

λ(Fv) //

η2

��

F

ηF

��

//

i∗HT(
⊕

a kt(a)
λ (Fs(a))) // i∗HT(

⊕
v kv

λ(Fv)) // i∗HT(F) //

The observation just before this proposition implies that η1 (resp. η2) is isomorphic
to
⊕

a∈E kt(a)
λ (δFs(a) ) (resp.

⊕
v∈V kv

λ(δFv )). It follows from [IK, Theorem 4.2] that δFv ,
and hence η1 and η2, are isomorphisms. So ηF is also an isomorphism.

Definition 3.3 We say that a representation M of Q is in L f (Q) if there is a finite
subquiver Q′ of Q and a finitely generated representation M′ of Q′ such that M =

eQ
′

ρ (M′). Db
L f (Q) denotes the full subcategory of Db(Q) formed by complexes X

such that Hi(X) is in L f (Q) for each i and equal to zero when |i| � 0.
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Note that in case Q is finite, Db
L f (Q) = Db

f (Q).
It is proved in [AEHS, Theorem 3.12] that if Q is a finite quiver and S is a compact

generating set for K(Inj-R), then the set {kv
ρ(I) | v ∈ V, I ∈ S} is a compact generat-

ing set for K(Inj-Q). We shall use this fact in the proof of the following lemma.

Lemma 3.4 Let Q be a noetherian quiver in which the set of paths between every two
vertices is finite. Let S be a compact generating set for K(Inj-R). Then〈

{kv
ρ(I) | v ∈ V, I ∈ S}

〉 ∼= Db
L f (Q).

Proof We have

K+,b(Inj-Q)
Q //

OO

?�

Db(Q)OO

?�

〈{kv
ρ(I) | v ∈ V, I ∈ S}〉

Q| // Db
L f (Q),

where K+,b(Inj-Q) is a full subcategory of K(Inj-Q) consisting of all bounded below
complexes X such that Hi(X) = 0 for i � 0. In view of this diagram, it is enough
to show that the image of the restriction of the canonical functor Q, which is fully
faithful, on 〈{kv

ρ(I) | v ∈ V, I ∈ S}〉 is Db
L f (Q) and this restriction is also dense.

Let V =
⋃

j∈ J V j , where {V j | j ∈ J} is the set of all finite subsets of V . Let Qi be
a subquiver of Q having VQi = {w ∈ V | w ∈ Q(vi , v j) for some vi , v j ∈ Vi} as the
set of vertices; that is, Qi is the smallest convex subquiver of Q containing Vi . Since Q
is locally finite, Qi is a finite quiver.

Now, for any i ∈ J, set Li := 〈{kv,Q
ρ (I) | v ∈ VQi , I ∈ S}〉. By definition of Qi , we

see that

kQi (Li) =
〈
{kQi (kv,Q

ρ (I)) | v ∈ VQi , I ∈ S}
〉 ∼= 〈{kv,Qi

ρ (I) | v ∈ VQi , I ∈ S}
〉
.

By the above remark {kv,Qi
ρ (I) | v ∈ VQi , I ∈ S} is a compact generating set for

K(Inj-Qi), because Qi is finite. In other words, we have the following equivalences of
triangulated categories:

kQi (Li) ∼= Kc(Inj-Qi) ∼= Db
f (Qi).

It easily follows from the construction of 〈{kv
ρ(I) | v ∈ V, I ∈ S}〉 (see 2.20) that〈

{kv,Q
ρ (I) | v ∈ V, I ∈ S}

〉
=
⋃
i∈ J

Li .

So it is enough to investigate the image of elements of Li under the functor Q.
Note that, an easy computation, using definition of ev

ρ and eQi
ρ , shows that

kQi
ρ (kQi (Li)) = Li . Let X ∈ Li . So X = kQi

ρ (I), where I is an injective resolution

of a finitely generated representation M of Qi . Since kQi
ρ is an exact functor, we have

a quasi-isomorphism eQi
ρ (M)→ kQi

ρ (I). Therefore, the image of X under the functor

Q is in Db
L f (Q).
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Finally, definition of Db
L f (Q) implies that Q | is dense. This completes the proof.

Theorem 3.5 Let Q be a noetherian quiver with the property that for every v,w ∈ V ,
Q(v,w) is finite and that Qop is noetherian. Then we have the following equivalence of
triangulated categories:

Db
f (Qop)op ∼−→ Db

L f (Q).

Proof First observe that if J is a finite subset of V , then by Lemma 2.12, there is an
isomorphism

HomQ

(⊕
v∈ J

ev
λ(Iv),

⊕
w∈ J

ew
λ (Iw)

) ∼= HomQ

(⊕
v∈ J

ev
ρ(Iv),

⊕
w∈ J

ew
ρ (Iw)

)
.

So we have an equivalence K(A) → K(B) of triangulated categories, where A =
{⊕vev

λ(I) | v ∈ J, I ∈ Inj-R} and B = {⊕vev
ρ(I) | v ∈ J, I ∈ Inj-R}.

Consider the diagram

K(A)
∼ //

OO

?�

K(B)OO

?�

〈{kv
λ(I) | v ∈ V, I ∈ S}〉 ∼ // 〈{kv

ρ(I) | v ∈ V, I ∈ S}〉,

where S is a compact generating set for K(Inj-R).
Let S′ be a compact generating set for K(Prj-R). Then, in view of the Iyengar–

Krause equivalence, S = {D⊗R P | P ∈ S′}. Also, by the definition of T, T(kv
λ(X)) =

kv
λ(D⊗R X). Therefore, Proposition 3.2 implies the following equivalences,

Kc(Prj-Q) ∼= Kc
(

Sum-(Inj-R)λ
) ∼= 〈{kv

λ(I) | v ∈ V, I ∈ S}
〉
.

Now, Proposition 2.11 and Lemma 3.4 complete the proof.

Example 3.6 Let Q be the quiver

A+∞
−∞ : · · · −→ · −→ · −→ · −→ · · · .

The theorem above implies the following equivalence

Db
f (A+∞
−∞)op −→ Db

L f (A+∞
−∞)

So, in this case we have a duality between Db
f (A+∞
−∞) and its special subcategory.

Note that Theorem 3.5 provides a version of Grothendieck duality for the category
of representations of quivers. An interesting observation is that over the category of
representations of a finite and symmetric quiver Q, the above duality is similar to
Grothendieck duality in the commutative case, even though the algebra RQ is not
commutative. Recall that Q is called symmetric if Q = Qop.
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The symmetric quiver
.

.

>>

.

``

.

`` >>

is an example.

Left rooted quivers Let Q be a left rooted quiver. We say that a representation M of
Q is in S f (Q), if it is finitely generated and there is m ∈ N such that for each n > m
and each v ∈ Vn, Mv = 0. Then Db

S f (Q) denotes the full subcategory of Db
f (Q)

formed by all complexes X such that Hi(X) is in S f (Q) for each i and equal to zero
when |i| � 0. Note that in this case, by definition of the left adjoint eQ

′

ρ , we have
L f (Q) = S f (Q). Hence in view of Theorem 3.5, we have the following corollary.

Corollary 3.7 Let Q be a noetherian locally finite left rooted quiver. Then we have
the following equivalence of triangulated categories:

Db
f (Qop)op ∼−→ Db

S f (Q).

Proof If Q is a noetherian left rooted quiver, then by Proposition 2.8 Qop is also
noetherian. So Theorem 3.5 implies the result.

As an example, let Q be the quiver

A+∞ −→ · −→ · −→ · → · · · .
Above corollary implies the following equivalence

Db
f (A−∞)op ∼

−→ Db
S f (A+∞),

where A−∞ is the following quiver

· · · −→ · −→ · −→ · .
As mentioned in the introduction, Iyengar and Krause [IK] obtained an equiv-

alence K(Prj-R) → K(Inj-R), provided R is a commutative noetherian ring with a
dualising complex D. This equivalence is extended to path algebra RQ, when R is a
commutative noetherian ring with a dualising complex and Q is a finite quiver; see
[AEHS]. In the sequel we show that we cannot get such an equivalence for infinite
quivers using the above approach.

First we know from Corollary 2.15 that

K(Prj-Q) ∼= K
(

Sum-(Inj-R)ρ
)
.

Clearly, K(Sum-(Inj-R)ρ) is a full subcategory of K(Inj-Q), but they do not coincide
in general. To see this, let Q be the quiver A+∞. It is shown in [EEO] that a represen-
tation

E∞ : E −→ E −→ E −→ · · ·
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is injective, where E is an injective R-module and maps are identity. Consider E∞

as a complex concentrated in degree zero. If E∞ is homotopic to a complex in
K(Sum-(Inj-R)ρ), then E∞ should be a direct summand of ⊕iei

ρ(Ii) for some in-
jectives Ii , which is a contradiction. Consequently, there is a fully faithful functor
K(Prj-Q)→ K(Inj-Q) that is not dense.

Right rooted quivers Using Proposition 2.8, it is easy to check that if Q is a right
rooted quiver such that Qop is noetherian, then Q is noetherian. Moreover, every
locally finite right rooted quiver has the property that the set of all paths between
every two vertices is finite. Hence, Theorem 3.5 implies the following result.

Corollary 3.8 Let Q be a locally finite right rooted quiver such that Qop is noetherian.
Then there is the following equivalence of triangulated categories:

Db
f (Qop)op ∼−→ Db

L f (Q).

On the other hand, Lemma 2.12 implies that K(sum-(Inj-R)λ) is equivalent to
K(sum-(Inj-R)ρ) as triangulated categories, where, for a subcategory C of an abelian
category A, sum-C denotes the additive subcategory of A consisting of all finite direct
sums of copies of objects of C.

Now, as we saw in the proof of Theorem 3.5, we have the following equivalences:

Kc(Prj-Q) ∼= Kc
(

Sum-(Inj-R)λ
) ∼= 〈{kv

λ(I) | v ∈ V, I ∈ S}
〉
,

where S is a compact generating set for K(Inj-R).
Therefore, by Proposition 3.2, we have the following commutative diagram

(3.1) K(Prj-Q)
∼ // K(Sum-(Inj-R)λ)

φ̄ // K(Inj-Q)

K(sum-(Inj-R)λ)
∼ //?�

OO

K(sum-(Inj-R)ρ)
?�

OO

Kc(Prj-Q)
∼ //?�

OO

Kc(Sum-(Inj-R)λ)
∼ //?�

OO

〈{kv
ρ(I) | I ∈ S, v ∈ V}〉,

?�

OO

in which the bottom row is an equivalence of triangulated categories. Here φ̄ is the
functor that was introduced in 2.19.

In view of the above diagram, when Q is a right rooted quiver we have a faithful
and dense functor from K(Prj-Q) to K(Inj-Q). In case Q is finite, by [AEHS, Theo-
rem3.12], 〈{kv

ρ(I) | I ∈ S, v ∈ V}〉 is a compact generating set for K(Inj-Q) and so the
top row in the above diagram is an equivalence; that is, K(Prj-Q) ∼= K(Inj-Q). But, in
case Q is infinite, the problem is that we cannot prove that 〈{kv

ρ(I) | I ∈ S, v ∈ V}〉
provides a compact generating set for K(Inj-Q). So, in this case, we cannot get a
version of the Iyengar–Krause equivalence.

In the following, we provide a version of Grothendieck duality provided Q is a
locally finite right rooted quiver and R = K is a field.
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Let Vec(K) (resp. vec(K)) denote the category of K-vector spaces (resp. finite
dimensional K-vector spaces). Recall that CQ

ρ , resp CQ
λ , is the class of all ev,Q

ρ (C)

(resp. ev,Q
λ (C)), where C ∈ C and v ∈ V .

Proposition 3.9 Let Q be a locally finite right rooted quiver. Then we have the fol-
lowing duality of categories:

vec(K)Qρ
∼−→ vec(K)Q

op

ρ .

Proof Observe that there is a duality (−)∗ = HomK ( · ,K) : vec(K) → vec(K).
Now we define the functor (−)′ : vec(K)Qρ → vec(K)Q

op

ρ as follows. Let ev,Q
ρ (s) ∈

vec(K)Qρ , where v ∈ V and s ∈ vec(K). Then (ev,Q
ρ (s))′ is defined to be ev,Qop

ρ (s∗).
This functor is clearly dense. Moreover, for any v,w ∈ V and s, t ∈ vec(K), we have
the following isomorphisms:

HomQ(ev,Q
ρ (s), ew,Q

ρ (t)) ∼= HomK (
⊕

Q(w,v)
s, t)

∼=
⊕

Q(w,v)
HomK (s, t)

∼=
⊕

Q(w,v)
HomK (t∗, s∗)

∼=
⊕

Qop(v,w)
HomK (t∗, s∗)

∼= HomQop

(
ew,Qop

ρ (t∗), ev,Qop

ρ (s∗)
)
.

Therefore, ( )′ is a fully faithful functor and so the proof is now complete.

Using standard arguments, the above equivalence can be extended to the following
equivalence of triangulated categories:

K(vec(K)Qρ )
∼
−→ K(vec(K)Q

op

ρ )op.

Proposition 3.10 Let Q be a locally finite right rooted quiver with the property that
Qop is noetherian and let R = K be a field. Then there is an equivalence

Db
f (Qop)op ∼−→ Db

f (Q)

of triangulated categories.

Proof In view of Proposition 3.9, diagram (3.1) can be extended to the following
diagram

K(Prj-Q)
∼ // K(Vec(K)λ)

K(vec(K)λ)
∼ //?�

OO

K(vec(K)ρ)
∼′ // K(vec(K)Q

op

ρ )op

Kc(Prj-Q)
∼ //?�

OO

Kc(Vec(K)λ)
∼ //?�

OO

A
?�

OO

∼ // Bop,
?�

OO
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where A = 〈{ev
ρ(s) | s ∈ vec(K), v ∈ V}〉 and B = 〈{ev,Qop

ρ (s) | s ∈ vec(K), v ∈ V}〉.
So

Kc(Prj-Q) ∼= Bop ∼= Db
S f (Qop)op ∼= Db

f (Q).

The second equivalence follows from Lemma 3.4 while the last one follows from the
fact that Qop is a left rooted quiver that satisfies the assumptions of Corollary 3.7.
Now, Proposition 2.11 yields the desired equivalence

Db
f (Qop)op ∼

−→ Db
f (Q).

Example 3.11 Let Q be the quiver A−∞ and R be a field. In view of the above
proposition we have the following equivalence of triangulated categories:

Db
f (A+∞)op −→ Db

f (A−∞).

Special case: Graded modules Our results can be specialized to get a version of
Grothendieck duality for the category of graded modules over graded rings.

Recall that a graded ring R is a ring with identity element 1, together with a direct
sum decomposition R =

⊕
i∈G Ri (as additive subgroups) such that RiR j ⊆ Ri j , for

all i, j ∈ G. Thus Re is a subring of R, 1 ∈ Re and for every i ∈ G, Ri is an Re-
bimodule. A left graded R-module is a left R-module M endowed with an internal
direct sum decomposition M =

⊕
i∈G Mi , where Mi is a subgroup of the additive

group M in which RiM j ⊆ Mi j for all i, j ∈ G. Then gr-R denotes the category of all
graded left R-modules.

It is easy to check that Rep(A+∞
−∞,R) is equivalent to gr-R[x], when R[x] viewed

as a Z-graded ring, with a copy of R (generated by 1) in degree 0 and a copy of R
(generated by xn) in degree n, for n ∈ N. So Example 3.6 yields that the category
Db

f (gr-R[x]) is equivalent to its special subcategory.
Furthermore, since R is a noetherian ring, the category C(R) can be viewed as

a ring with several objects such that C(R)op is coherent. So by [N08] and [K12],
the homotopy category of projective complexes, K(Prj-C(R)), is compactly generated
and we have the following equivalence of triangulated categories:

Kc
(

Prj-C(R)
)
−→ Db

f

(
C(R)op

) op
.

Also, since the category C(R) is locally noetherian, it follows from [K05] that the
homotopy category of injective complexes, K(Inj-C(R)), is compactly generated and
Kc(Inj-C(R)) ∼= Db(C(R)).

The Iyengar–Krause equivalence is extended to the category of complexes in
[AHS]; i.e., there is an equivalence between K(Inj-C(R)) and K(Prj-C(R)). In fact,
we have the following proposition.

Proposition 3.12 Let R be a commutative noetherian ring with a dualising complex.
Then we have the following equivalence of triangulated categories:

Db
f

(
C(R)op

) op −→ Db
f

(
C(R)

)
.
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On the other hand, it is known that the category of complexes is equivalent to the
category of graded R[x]/(x2)-modules, when R[x]/(x2) is viewed as a graded ring,
with a copy of R (generated by 1) in degree 0 and a copy of R (generated by x) in
degree 1; see also [GH]. So by Proposition 3.12 we have the following corollary.

Corollary 3.13 Suppose that R is a commutative noetherian ring admitting a dual-
ising complex. Then there is an equivalence

Db
f

(
gr-R[x]/(x2)

) op ∼−→ Db
f

(
gr-R[x]/(x2)

)
,

of triangulated categories.

There is a notion of N-complexes introduced and studied in [E]. There exists an
equivalence between the category of N-complexes and gr-R[x]/(xn)-modules. So,
by the same argument as above, we have an equivalence as in Corollary 3.13 for
gr-R[x]/(xn).

3.2 Reflection Functors

The reflection functors appeared in a 1973 paper of Bernstein, Gel’fand, and Pono-
marev [BGP] and played an essential role in their approach to classification of quivers
with only finitely many indecomposable representations. These functors were refor-
mulated by Auslander et al. [APR]. The importance of this work is the interpretation
of the reflection functors as functors of the form HomA(T, · ) between module cate-
gories, for an A-module T. This work was later generalized by Brenner–Bulter [BB]
and Happel–Ringel [HR1], leading to the origins of tilting theory. These A-modules
T provided the first module theoretic example of what come to be known as tilting
modules. In this way, the tilting modules of finite projective dimension and the con-
nections with derived categories are established by Happel [Hap]. A further develop-
ment is Rickard’s work [Ric] on tilting complexes; we explain these generalizations
more precisely later in this subsection.

Given a vertex i of a quiver Q, the quiver σiQ is obtained from Q by reversing all
arrows which start or end at i.

Let us recall the definition of a pair of reflection functors; for more details see
[K08, 3.3]. Let i be a sink of Q. The reflection functor S+

i is defined as follows. For
any representation M, S+

i (M)v = Mv for a vertex v 6= i, and S+
i (M)i is the kernel of

the map ⊕
t(a)=i

Ms(a)

ζ
−→Mi .

If i is a source of Q, then S−i is defined dually; i.e., for any representation M,
S−i (M)v = Mv for any v 6= i, and S−i (M)i is the cokernel of the map

Mi −→
⊕

s(a)=i
Mt(a).
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The reflection functor S+
i (resp. S−i ) can be extended to the functor

K(S+
i ) : K(Q)→ K(σiQ) (resp. K(S−i ) : K(Q)→ K(σiQ)).

To simplify the notation, we will write S+
i (resp. S−i ) instead of K(S+

i ) (resp. K(S−i )).
For simplicity, we write ev

ρ instead of ev,Q
ρ in the following lemma.

Lemma 3.14 Let Q be a finite acyclic quiver. Then the following hold true.

(i) Let i be a sink of Q. For any vertex v 6= i and I ∈ Inj-R,

S+
i

(
ev
ρ(I)
)

= ev,σiQ
ρ (I).

(ii) Let i be a source of Q. For any vertex v 6= i and P ∈ Prj-R,

S−i
(

ev
λ(P)

)
= ev,σiQ

λ (P).

Proof We just prove (i). Part (ii) follows similarly. By definition, S+
i (ev

ρ(I))w =

ev,σiQ
ρ (I)w for any w 6= i. For w = i,

S+
i (ev

ρ(I))i =
⊕

t(a)=i,a∈VQ

( ∏
Q(s(a),v)

I
)
.

On the other hand, ev,σiQ
ρ (I)i =

∏
σiQ(i,v) I. But, since i is a source of σiQ,∏

σiQ(i,v)
I =

∏
s(a)=i,a∈VσiQ

( ∏
σiQ(t(a),v)

I
)
.

Now, since Q is finite and acyclic, we see that∏
s(a)=i,a∈VσiQ

( ∏
σiQ(t(a),v)

I
)

=
⊕

t(a)=i,a∈VQ

( ∏
Q(s(a),v)

I
)
.

Lemma 3.15 (i) Let i be a sink of Q. Then for any vertex v and any I ∈ Inj-R,

S−i
(

S+
i (ev

ρ(I))
)

= ev
ρ(I).

(ii) Let i be a source of Q. Then for any vertex v and any P ∈ Prj-R,

S+
i

(
S−i (ev

λ(P))
)

= ev
λ(P).

Proof (i) If w 6= i, it follows from definition that S−i (S+
i (ev

ρ(I)))w = ev
ρ(I)w. For

w = i one should use the fact that⊕
t(a)=i

(ev
ρ(I))s(a)

ζ→ (ev
ρ(I))i

is an epimorphism to prove that S−i (S+
i (ev

ρ(I)))i = ev
ρ(I)i .

Similar arguments apply to prove part (ii).

Lemma 3.16 Let Q be a finite and acyclic quiver.
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(i) If i is a sink of Q, then the functor S+
i induces an isomorphism

HomQ

(
ev
ρ(I), ev

ρ( J)
) ∼= HomσiQ

(
S+

i (ev
ρ(I)), S+

i (ev
ρ( J))

)
,

for any I, J ∈ Inj-R.
(ii) If i is a source of Q, the functor S−i induces an isomorphism

HomQ(ev
λ(P), ev

λ(Q)) ∼= HomσiQ(S−i (ev
λ(P)), S−i (ev

λ(Q))),

for any P,Q ∈ Prj-R.

Proof Let us just consider part (i); one can prove part (ii) similarly. Lemma 3.15,
implies that S+

i is a faithful functor. Furthermore, since all maps in ev
ρ(I j) are epic,

for any g ∈ HomσiQ(S+
i (ev

ρ(I)), S+
i (ev

ρ( J))) there exists f ∈ HomQ(ev
ρ(I), ev

ρ( J)) such
that S+

i ( f ) = g. Therefore, S+
i is full, and the proof is complete.

We need the following result of Happel in the proof of our next lemma. See [Hap,
II, Lemma 3.4] for its proof.

Lemma 3.17 Let T and T′ be compactly generated triangulated categories. Let S be
a full subcategory of T that generates T and let F : T → T′ be a triangulated functor. If
for all X,Y ∈ S, the map

HomT(X,T iY ) −→ HomT′
(

F(X),T iF(Y )
)
,

where T is the suspension functor, is an isomorphism, then F is fully faithful.

Lemma 3.18 Let S be a full subcategory of A that is closed under direct sum and
direct summand. Assume that for any X,X′ ∈ S and i > 0, Exti

A(X,X′) = 0. Then the
functor

〈S〉 ↪→ K(A)
can−→ D(A)

is fully faithful.

Proof In view of Lemma 3.17, it is enough to prove that HomK(A)(X,ΣiX′) ∼=
HomD(A)(X,ΣiX′) for all X,X′ ∈ S and all i ∈ Z. We have

HomK(A)(X,ΣiX′) =

{
0 i 6= 0,

HomK(A)(X,X′) i = 0.

Since there is a full embedding functor from A to K(A),

HomK(A)(X,X′) = HomA(X,X′).

On the other hand, HomD(A)(X,ΣiX′) ∼= Exti
A(X,X′) and hence vanishes for

i 6= 0 and equals HomA(X,X′) for i = 0. So the proof is complete.

Now we are ready to prove our main theorem in this subsection. It not only pro-
vides a generalization of [Hap, Thm. 5.7, Chpt. I] to noetherian rings of finite global
dimension, but also provides a different proof for it.
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Theorem 3.19 Let R be a noetherian ring of finite global dimension and Q be a finite
acyclic quiver.

(i) Let i be a sink of Q. Then there is a commutative diagram

Kb(Inj-Q)
∼ //

OO

?�

Kb(Inj-σiQ)
OO

?�

Db
f (Q)

∼ // Db
f (σiQ)

whose rows are equivalences of triangulated categories.
(ii) Let i be a source of Q. Then there is a commutative diagram

Kb(Prj-Q)
∼ //

OO

?�

Kb(Prj-σiQ)OO

?�

Db
f (Q)

∼ // Db
f (σiQ)

whose rows are equivalences of triangulated categories.

Proof (i) First we claim that for every v,w ∈ V , I, J ∈ Inj-R and every j > 0,

Ext j
σiQ

(
S+

i (ev
ρ(I)), S+

i (ew
ρ ( J))

)
= 0.

By Lemma 3.14 for every w 6= i, S+
i (ew

ρ (I)) is an injective representation. Hence it

is enough to prove the claim for Ext j
σiQ

(S+
i (ev

ρ(I)), S+
i (ei

ρ( J))). Moreover, we have the
following short exact sequence of representations

(3.2) 0 −→ S+
i (ei

ρ( J)) −→
⊕

s(a)=i
a∈VσiQ

et(a),σiQ
ρ ( J) −→ ei,σiQ

ρ ( J) −→ 0.

This, in turn, implies that inj.dimS+
i (ei

ρ( J)) ≤ 1. Therefore, we just need to show
that

Ext1
σiQ

(
S+

i (ev
ρ(I)
)
, S+

i (ei
ρ( J))) = 0.

To this end, assume that v 6= i and apply the functor HomσiQ(ev,σiQ
ρ (I),−) on

short exact sequence (3.2) to get the following exact sequence

0→ HomσiQ

(
ev,σiQ
ρ (I), S+

i (ei
ρ( J))

)
→

HomσiQ

(
ev,σiQ
ρ (I),

⊕
s(a)=i

a∈VσiQ

et(a),σiQ
ρ ( J)

)
∂→ HomσiQ

(
ev,σiQ
ρ (I), ei,σiQ

ρ ( J)
)
→

Ext1
σiQ

(
ev,σiQ
ρ (I), S+

i (ei
ρ( J))

)
→ 0.

The adjoint pair (ev,σiQ, ev,σiQ
ρ ) implies the existence of isomorphisms

HomσiQ

(
ev,σiQ
ρ (I),

⊕
s(a)=i

a∈VσiQ

et(a),σiQ
ρ ( J)

)
∼= HomR

( ⊕
s(a)=i

a∈VσiQ

( ⊕
σiQ(t(a),v)

I
)
, J
)
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and

HomσiQ

(
ev,σiQ
ρ (I), ei,σiQ

ρ ( J)
) ∼= HomR

( ⊕
σiQ(i,v)

I, J
)
,

where right-hand sides are clearly isomorphic. This implies that ∂ is an epimorphism
and hence Ext1

σiQ
(ev,σiQ
ρ (I), S+

i (ei
ρ( J))) = 0.

If v = i, we apply the functor HomσiQ(S+
i (ei

ρ(I)), · ) on short exact sequence (3.2)
to get the exact sequence

0→ HomσiQ

(
S+

i (ei
ρ(I)), S+

i (ei
ρ( J))

)
→ HomσiQ

(
S+

i (ei
ρ(I)),

⊕
s(a)=i

a∈VσiQ

et(a),σiQ
ρ ( J)

)
∂→

HomσiQ

(
S+

i (ei
ρ(I)), ei,σiQ

ρ ( J)
)
→ Ext1

σiQ

(
S+

i (ei
ρ(I)), S+

i (ei
ρ( J))

)
→ 0.

Moreover, we have the following commutative diagram

HomσiQ(S+
i (ei

ρ(I)),
⊕

s(a)=i,a∈VσiQ
et(a),σiQ
ρ ( J))

∂ //

o
��

HomσiQ(S+
i (ei

ρ(I)), ei,σiQ
ρ ( J))

o
��

HomR(
⊕

t(a)=i,a∈VQ
(ei
ρ(I))s(a), J)

Hom(η, J) // HomR((S+
i (ei

ρ(I)))i , J),

whose columns are isomorphism. Since J is injective and, by definition, there is the
following short exact sequence

0 −→ S+
i (ei

ρ(I))i

η
−→

⊕
t(a)=i
a∈VQ

(ei
ρ(I))s(a)

ζ
−→ (ei

ρ(I))i −→ 0,

the bottom row is an epimorphism. Hence ∂ is an epimorphism. The proof of our
claim is now complete.

Now, observe that since gl.dimR <∞, one can use a short exact sequence

0 −→
⊕

a
et(a)
λ (Ms(a)) −→

⊕
v

ev
λ(Mv) −→M→ 0

to see that gl.dimRep(Q,R) <∞. So Kb(Inj-Q) = 〈{ev
ρ(I) | v ∈ V, I ∈ Inj-R}〉.

On the other hand, in view of our claim and Lemma 3.18, there is a fully
faithful functor 〈{S+

i (ev
ρ(I)) | v ∈ V, I ∈ Inj-R}〉 → D(σiQ). Therefore,

〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉 can be considered as a subcategory of D(σiQ). More-

over, 〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉 contains ev,σiQ
ρ (I) for all I ∈ Inj-R and

v ∈ VσiQ. Indeed, by Lemma 3.14, for any vertex v 6= i, ev,σiQ
ρ (I) is contained in

〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉. Also for v = i, we have a triangle

S+
i (ei

ρ(I)) −→
⊕

s(a)=i
a∈VσiQ

et(a),σiQ
ρ (I) −→ ei,σiQ

ρ (I) 
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in D(σiQ) and so in 〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉 as a subcategory of D(σiQ).

This yields that ei,σiQ
ρ (I) is contained in 〈{S+

i (ev
ρ(I)) | v ∈ V, I ∈ Inj-R}〉. So

〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉 ∼= 〈{ev,σiQ
ρ (I) | v ∈ VσiQ, I ∈ Inj-R}〉.

Since gl.dimσiQ <∞, 〈{ev,σiQ
ρ (I) | v ∈ VσiQ, I ∈ Inj-R}〉 ∼= Db(σiQ). Therefore, by

Lemma 3.16, the following composition is an equivalence

Kb(Inj-Q) = 〈{ev
ρ(I) | v ∈ V, I ∈ Inj-R}〉

S+
i

−→ 〈{S+
i (ev

ρ(I)) | v ∈ V, I ∈ Inj-R}〉
Q
−→ Db(σiQ),

where Q is the canonical functor. But Db(σiQ) ∼= Kb(Inj-σiQ), because we have
gl.dimσiQ <∞. Hence, we have the following commutative diagram

Kb(Inj-Q)
∼ //

OO

?�

Kb(Inj-σiQ)OO

?�

(Kb(Inj-Q))c ∼ // (Kb(Inj-σiQ))c.

Now, an easy argument shows that since gl.dimQ < ∞ (resp. gl.dimσiQ < ∞),
(Kb(Inj-Q))c ∼= Kc(Inj-Q) (resp. (Kb(Inj-σiQ))c ∼= Kc(Inj-σiQ)). Hence Proposi-
tion 2.10 gets the desired result.

(ii) Follows using a similar argument, so we skip the proof.

Corollary 3.20 Let T be a tree and Q1 and Q2 be two quivers with the same underly-
ing graph as T. Then Db

f (Q1) ∼= Db
f (Q2).

Proof Note that in this case Q1 can be obtained from Q2 by a finite sequence of
reflection functors; see [Hap]. So Theorem 3.19 implies the result.

Remark 3.21 (i) For any v ∈ V , let v+ (resp. v−), denote the set of arrows
starting in (resp. ending in) v. The quiver Q is called strongly locally finite if v+ and
v− are finite sets for any v ∈ V and the set of paths between every two vertices is
finite. All arguments in this subsection work to show that Theorem 3.19 is valid for
any strongly locally finite quiver.

(ii) Trivially the argument in the above theorem can be repeated finitely many
times to get more derived equivalences. A natural attempt is to try to extend this
approach to infinitely many steps. For instance, when R is a noetherian ring of finite
global dimension, we do not know if we have the following equivalence:

Db
f (A+∞) ∼= Db

f (A−∞).

Note that A−∞ can be obtained from A+∞ by applying the functor S+
∗ infinitely many

times, where ∗ ∈ N.

https://doi.org/10.4153/CJM-2014-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-018-7


52 J. Asadollahi, R. Hafezi, and R. Vahed

Next we present an example to show that Theorem 3.19 may be valid even without
assumption on the global dimension of the underlying ring. Although we do not have
any idea how to prove it or even if it is true for any quiver.

To this end, let us recall Rickard’s Theorem on tilting complexes. He proved that
two rings A and B are derived equivalent; i.e., there exists a derived equivalence
Db(Mod-A) ∼= Db(Mod-B), if and only if B is isomorphic to End(T), where T is
an object of the homotopy category of bounded complexes of finitely generated pro-
jective A-modules, Kb(prj-A), satisfying

(a) HomKb(prj-A)(T,T[i]) = 0 for i 6= 0,

(b) add-T generates Kb(prj-A) as a triangulated category,

where add-T denotes the class of all direct summands of finite direct sums of copies
of T. Complex T is called a tilting complex.

Example 3.22 Let R be an arbitrary ring and Q be the quiver ·1 → ·2 → ·3.
Consider T1 := e3

ρ(R) and T3 := e1
ρ(R) as complexes concentrated in degree zero and

finally consider T2 to be a complex with (T2)1 = e2
ρ(R) and (T2)0 = e1

ρ(R) with the
inclusion map and zero elsewhere. Set T = T1⊕T2⊕T3. An easy computation yields
HomK(Q)(T,ΣiT) = 0 for i 6= 0. Moreover, since 〈T〉 contains ei

ρ(R) for i = 1, 2, 3,

add-T generates Kb(prj-Q). Also, we have

EndK(Q)(T,T) ∼=

R 0 0
0 R 0
R R R

 ,

which is isomorphic to Rσ1Q. Therefore, by Rickard’s Theorem, Db(Q) and Db(σ1Q)
are equivalent. Moreover, if R is a right coherent ring, then [Ric, Proposition 8.2]
implies that Db(mod-Q) ∼= Db(mod-σ1Q).
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