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ALMOST ALL CONVEX POLYHEDRA ARE 
ASYMMETRIC 

EDWARD A. BENDER AND NICHOLAS C. WORMALD 

1. Introduction. Although many types of rooted planar maps have been 
enumerated (see [8] for example), not much has been done on enumeration 
of entirely unrooted planar maps. Yet in virtually all cases of interest, it 
has appeared that comparatively very few of the maps are symmetric (have 
non-trivial automorphisms). This suggests that an asymptotic formula for 
the numbers of unrooted maps of a particular type on n edges can be 
obtained by dividing the numbers of rooted maps of that type on n edges 
by 4«, where 4« is the number of potentially distinct rootings of an 
asymmetric «-edged map. The assertion that almost all maps of a given 
type are asymmetric has previously been proved in only two non-trivial 
cases: for 3-connected planar triangulations by Tutte [9] and for all 
«-edged 3-connected planar maps in [5]. We prove here that it is also true 
for 3-connected planar maps with a given number of vertices and faces, 
uniformly as either parameter approaches infinity. The results of [9] and 
[5] follow from this result, as does an asymptotic formula for the number 
of 3-connected planar maps with v vertices and/faces, or with v vertices. 
All of these results carry over to asymptotic enumeration of the 
combinatorial types of convex polyhedra, via a theorem of Steinitz to the 
effect that a convex polyhedron is combinatorially equivalent to a 
3-connected planar map. Federico [2] gives a history of this problem. In 
particular, Steiner asked in 1832 for the number of «-faced convex 
polyhedra, which we answer asymptotically in Corollary 4.5. 

In what follows we refer to a planar map simply as a map. In Section 2 
some of the constructions to be used are introduced. The purpose of these 
constructions is to take from a symmetric map a chunk which determines 
the whole map. The main theorem of [1], giving an asymptotic formula for 
the number of rooted 3-connected maps by faces and vertices, is a basic 
tool in our method. It is stated in Section 3, where useful bounds are also 
obtained on the number of rooted 3-connected maps by vertices, faces and 
valence of the root face. The main result and some of its consequences are 
given in Section 4. 
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2. Automorphisms and constructions. Mani [3] showed that for each 
3-connected map M there is a convex polyhedron whose 1-skeleton is 
isomorphic to M such that every automorphism of M is induced by an 
isometry of the convex polyhedron. We do not use this result, but it helps 
in the visualisation of some of the results in this section. 

Throughout this paper, M denotes a 3-connected map with a non-trivial 
automorphism a of minimal order, which will be a prime. As usual we 
regard M as a dissection of a sphere II into the vertices, edges and faces of 
M (called the cells of M). We say a is sense-preserving if it preserves the 
orientation of n , and sense-reversing otherwise. (This concept can 
alternatively be defined combinatorially by studying the action of a on the 
cells of M.) An invariant cell of a is a cell of M fixed by a. 

If a is sense-reversing, then it has even order and hence order 2. So 
altogether, a must fall into one of the following three classes. Firstly, we 
say a is plane-reflective if it is sense-reversing of order 2 and has at least 
one invariant cell. (By Mani's result this would imply that a corresponds 
to the reflection of some convex polyhedron in a plane.) This is the most 
troublesome type of automorphism to deal with in regard to proving that 
hardly any polyhedra have one. Secondly, we say a is antipodal if it is 
sense-reversing and has no invariant cell (corresponding to a reflection of 
a polyhedron in some point). Thirdly, we say a is rotative if it is 
sense-preserving. (This corresponds to a rotation of a polyhedron.) An 
edge is flipped by a if it is fixed by a but its incident vertices are 
interchanged. All other invariant edges are transfixed by a. 

A cell-cycle of M is a set S of cells such that the graph G, whose vertex 
set is S and whose edge set consists of pairs of incident cells of M, is a 
cycle of length at least 4. In particular, each cell is adjacent to two others 
in G. Clearly no edge of S can be incident with both a face and a vertex of 
S. We use v or v(G) to denote the number of vertices of a graph or map G, 
n for edges, a n d / o r / ( M ) for the number of faces of a map M. We often 
use Euler's formula v + / — n = 2 and its consequence for triangulations, 
t h a t / = 2v — 4 and n = 3v — 6. The following structural result provides 
a convenient bound on one of the variables defined in the proof of 
Theorem 4.1. 

LEMMA 2.1. The diameter of a k-connected graph G does not exceed 
1 + (v - 2)1 k. 

Proof. By Menger's Theorem there are at least k internally-disjoint 
paths between any two vertices of G. At least one of these paths therefore 
has length at most 1 + (v — 2)/k. 

From [5] we have the following three results. 

LEMMA 2.2. If a is plane-reflective, then the set of invariant cells of a is a 
cell-cycle. 
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LEMMA 2.3. If a is antipodal, then there is a cell-cycle of M which is fixed 
setwise by a, contains no faces, and contains at most 2(v 4- l) /3 vertices. 

Actually, to obtain Lemma 2.3 from [5, Lemma 2.2] one must take the 
dual result, and also observe that since the cell-cycle of that lemma is 
obtained as the union of two shortest paths between two vertices, its 
length is at most 2(v + l) /3 by Lemma 2.1. 

LEMMA 2.4. If a is rotative, then it has precisely two invariant cells. 

A cell-cycle S of M partitions the remaining cells of M into two 
connected subsets (by the Jordan Curve Theorem) which we call the caps 
of S. Given M, either cap determines S and the other cap. Given a cap D, 
we can perform the following constructions. They are each begun by 
taking a simple closed curve C, contained in the union of the cells in S and 
intersecting them in consecutive cyclic order, such that C intersects each 
edge of S incident with faces of S at a unique point. The cells of the slice of 
M with respect to D are all the cells in D, together with the intersections of 
C with each cell of M, and the portions of the faces and edges of S lying on 
the same side of C as D. The other side of C is also a face of the slice, 
called the base of the slice. The slice corresponds to cutting a polyhedron 
by a plane of reflection. The join or \-join of M with respect to D is 
obtained from M by removing all edges and vertices lying on the other side 
of C from Z), introducing a new vertex there called the apex, joining the 
apex to all vertices on C, and extending all edges which cross C so that 
they meet the apex. For r ^ 3, an r-join of M with respect to D is obtained 
from the join by replacing the apex with an r-cycle, called the apex cycle, 
in such a way that each edge incident with the apex becomes incident 
with a vertex of the r-cycle, and so that each such vertex gets degree at 
least 3. 

The next result is immediate. 

LEMMA 2.5. The slice and join are dual constructions, in the sense that the 
dual map of the join of the dual of M (with respect to the dual of D) is the 
slice of M with respect to D. 

We next give situations in which the slice and join preserve the 
3-connectedness of M. 

LEMMA 2.6. If a is plane-reflective and S is the set of invariant cells of a, 
then S is a cell-cycle and the slice, the join and every r-join (r = 3) of M with 
respect to either cap of S are all 3-connected. 

Proof. For the slice this comes from [5, Lemma 2.4]. For the join it then 
follows from Lemma 2.5 and the fact that the dual of a 3-connected map is 
3-connected. This in turn implies that every r-join is 3-connected by 
simple graph theoretic arguments. 
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LEMMA 2.7. If S contains no faces, then the join of M with respect to either 
cap of S is ^-connected. 

Proof. This is immediate from [5, Lemma 2.5], in view of Lemma 2.5. 

Given a cell-cycle S, we use a = a(S) to denote the number of edges in 
S whose ends are in S, b = b(S) to denote the number of other edges in S 
(whose two incident faces are also in S), k = k(S) to denote the number 
of faces in S, and set d = a + k. We use v a n d / t o denote the numbers of 
vertices and faces of M respectively, and v* a n d / * for a given map M*, 
and set 8 = d/v. 

LEMMA 2.8. The valence of the apex of the join, and the valence of the base 
of the slice, of M with respect to a cap of S, are both d. 

Proof For the join this is immediate. For the slice it then follows from 
the duality mentioned in Lemma 2.5. 

LEMMA 2.9. If S is such that its two caps have equal numbers of vertices, 
faces and edges, then 

(i) for the slice M* of M with respect to a cap of S, we have 

v* = (v + a + k + b)/2, 

and 

f* = 1 + (/ + k)/2. 

(ii) for an r-join M* of M with respect to a cap of S, we have 

v * = r + (v + tf + / : - fe)/2, 

and 

f* = 1 - 8I ir + ( / + 2a + k)/2 

where ô] r is the Kronecker delta. 

Proof. The number of vertices in S is d — b = a + k — b, so the number 
of vertices in each cap is (v — a — k + b)/2. The number of faces in each 
cap is ( / — k)/2. To these must be added the contributions due to the cells 
arising from S in each construction. The lemma follows. 

LEMMA 2.10. If a is plane-reflective and S is the set of invariant cells of a, 
then 

( i ) / â 2a + K 
(ii) v ^ max{tf + k — b, a + 3/c — 36}, 

(iii)//v S 45 - 2, 
(iv) 2v - 4 ^ / 4- 2b - k. 

Proof. From Lemma 2.6, S is a cell-cycle and so neither of the two faces 
incident with any of the a edges transfixed by a is one of the k faces in S, 
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which gives (i). To obtain (ii) we first distinguish the caps Z), and D2 of S, 
and give S a cyclic orientation so that each of its elements has a successor. 
Each of the a edges transfixed by a is associated with the vertex which is 
its successor. Each of the k faces in S is associated with its successor if that 
is a vertex, and otherwise (when the successor is a flipped edge) with the 
end of its successor which is in Dx. Each of the b edges flipped by a is 
associated with its end in D2. Each of the faces in S not incident with a 
flipped edge (of such faces there are at least k — 2b) is associated in 
addition with all its incident vertices not fixed by a, of which there are at 
least two. In this way no vertex of M is associated with more than one cell 
in S, and at least max{a + k + b, a + k + b + 2(k — 2b) } such 
associations have been defined, so (ii) follows. 

Set ft = b/v and K = k/v. From (ii) we get 

P ^ 1 - 8 and 2K ^ 3>8 + 1 - 8 ^ 4 - 46. 

Now from (i) 

f/v â 2(a + k)/v - K 

è 28 - (2 - 28), 

which is (iii). 
Note that at least 2b — k faces in S are incident with two flipped edges. 

Thus we must add at least 2b — k edges if we wish to triangulate M. 
A 3-connected triangulation has 2v — 4 faces, and (iv) follows. 

LEMMA 2.11. Suppose M* is an r-join of M with respect to a cap Dy with 

its apex or apex cycle distinguished. There are at most 1,1 possibilities for 

M — D given M*, and for r ^ 3 there are at least - ( I possibilities 

for M* given M — D. 

Proof M* defines the join of M uniquely. To choose an M — D given 
the join, choose which b of the d edges incident with the apex are 
extensions of edges in the cell-cycle S in the definition of the join. This 
identifies the faces in S incident with edges in S. The other faces in S are 
determined by the non-triangular faces incident with the apex of the join 
of M. Thus M — D is determined. Conversely, given M — D the d edges 

can be hooked up to an r-cycle in I j ways if one of the d edges is 

distinguished to remove any rotational symmetries of M — D. The 
binomial results from choosing which of the d edges is to be the first (in 
the clockwise direction say) incident with each vertex in the r-cycle. Since 
an edge can be distinguished in at most d ways, the stated lower bound 
follows. 
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3. Enumeration results for rooted maps. In this section we state and 
derive formulae which are used in the next section to bound the numbers 
of polyhedra with non-trivial automorphisms. 

Henceforth in this paper, B(fi) denotes 

(4/1(2 - / i ) y 4 ( 2 / i - 1) 

\ ( 2 / i - l ) 2 / (2 - / i ) 2 ' 

A(o, X) denotes 

(2 - a)4(2-*> 

1 / ( 2 / i - 1X2 - M ) V / 2
P / ,v 

(1 - a)2(1"a)AX(3 - 2a - A)3_2a~~X' 

gv yr denotes the number of rooted 3-connected maps with v vertices a n d / 
faces, and — and o( ) refer to the passage of v to infinity unless otherwise 
specified. 

We take the following result from [1, Theorem 1]. 

LEMMA 3.1. Suppose e > 0. Then 

_ . . \ \ 5 / 2 

uniformly as v,f—* oo provided 

- + £ < j u < 2 - £ where /* = ( / - l)/(v - 1). 

The next lemma is the result of simple calculations. 

LEMMA 3.2. For - < u < 2, 
2 

rf log IQi) 4|u(2 - M) 
(0 = lOg T, 

du (2/i - l ) 2 

rf2 log j?Qt) 2Qi + 1 ) 
00 9 = < 0, 

d\£ ju(2 - M X 2 M - 1) 
(iii) f/ie maximum of B(n) occurs at 

3 + V7 
" = ^ ^ 

and has a value of 

16 
—(17 + 7 Y / 7 ) < 21.05, 
27 V 

256 
(iv) B(\) = 16, 16 < 5(1.8), lim_ B(ji) = > 9.48. 

/*->2 27 
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For most of our purposes the following rough bound on numbers of 
maps will suffice. 

LEMMA 3.3. Let /x = / /v. Then 

lim qty = 5(/i) 
v—>oo 

uniformly for 1 = JU < 2. 

Proof Since 2?(/x) is bounded this follows from Lemma 3.1 provided 
1 ^ /A < 2 — € for any fixed € > 0. To close the gap near /x = 2, we first 
observe that from [6, equation (5.11) ] the number of rooted 3-connected 
triangulations with v ^ 4 vertices is 

2(4v - 11)! /256 V 
(3.1) T(v) = - '- ^ ( — + o(l) . 

(3v - 7)!(v - 2)! V 27 / 
The latter inequality comes from Stirling's formula. A rooted 3-connected 
map with v vertices and tiv faces can be triangulated by adding 
(2 — JU)V — 4 edges. Thus each such map can be obtained from a 
3-connected triangulation with v vertices by removing some set of 
(2 — jLt)v — 4 of its 3v — 6 edges. Hence 

? v . / = ( ( 2 - u ) v 6 - 4 ) r ( v ) ' (2 - M)v 

and so for ju > 2 — e we have 

256 

27 ' 

where c, —» 0 as € —» 0. 

Similarly, a rooted 3-connected map with (2 — e)v faces can be turned 
into a rooted 3-connected map with /xv faces, for fi > 2 — c, by adding 
(/A —(2 — €) )v edges. Thus each of the former can be obtained from at 
least one of the latter by removing some set of (ti — 2 + c)v of its edges. 
Hence, as before, 

< i 3~ • £ ) V K , <7v,<2-<)v < V(M - 2 + € ) v / ^ / 

for fx > 2 — e. Since n — 2 + e < e, this gives 

ql'j > (<f(3 ]_ 3-, + o(i) ) '(5(2 - c) + 0(i) ) 

for fixed c by Lemma 3.1. Thus 

https://doi.org/10.4153/CJM-1985-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-046-0


CONVEX POLYHEDRA 861 

i /v 256 

ilj >Yi~i2 + 0(1) 

where e2 —» 0 as c —> 0 by Lemma 3.2 (iv). Together with (3.2) this closes 
the gap. 

A rooted near-triangulation is a rooted map in which every non-root face 
has valence 3. 

LEMMA 3.4. Let T(v, o) be the number of 3-connected rooted near-
triangulations with v vertices and root face valence ov, and take e > 0. 
Then 

(2 - o)4{2~a) 

(1 - a)2(1_a)(3 - 2a) 3 _ 2 a 

uniformly for 0 = a = 1 — c. 

Proof Let w = av. From [6, equation (5.10) ], 

3(m - l)!(m - 4)! (4v - m - y - 8)! 
r ( v ' a) = 72 77. ^ 

X 

(3v - 6)! j\(j + \)\(m -j - 3)! 

(m+j- \)(m - 3/ - 3) 

(m - j - l)!(v - m - j - \)\ 

where the summation ranges over 0 ë y ^ min{w — 3, v — m — 1}. 
Thus 

TV xi/v < [ (^ ! ) 2 (4v ~ m - y ) ! ] ^ 
r(v, a) ^ max 5 5 

L(3v)! j (j\)2(m - j)\2(v - m - j)\ 1 
X (1+0(1)) 

uniformly for 0 = o ^ 1 as v —» 00. The ratio of consecutive terms in the 
function to be maximised is 

(m - j)\v - m - j)/(j2(4v - m - j) ) + o(l) 

when all factors are sufficiently large. Setting this equal to 1 gives 

j — (v — m)m/(3v — 2m). 

This clearly determines the maximum of the function in question when 
€ < o < 1 — €. Thus, from Stirling's formula, for e < o < 1 — e 

T(y, o)]/v ^ [m2m(3(2v - m)2)4v'm-j]Uv/[(3v)3v(m(v - m))2j 

X (m(2v - m))2{m~j)(3(v - m)2)v'm'j(3v - 2m)3v~2m]Uv(\ + o(\)) 

(2 - a ) 4 ( 2 ^ 

(1 - a)2(1_a)(3 - 2a) 
3=2-0 + o(l). 
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In the near-triangulations under consideration, we have / = (2 — a)v — 1, 
so 

/ ^ (2 - €)v - 1 for a ^ 6. 

Lemmas 3.2 (iv) and 3.3 complete the proof since 

(2 - a)4 ( 2~ a ) 

lim ln , T—~- = 256/27. 
«-0(1 - a)2(1"a )(3 - 2a) 3 _ 2 a 

LEMMA 3.5. Let T(v9 a, X) Z?e f/ie number of rooted 1-connected maps with 
root face of valence av and with f/v = 2 — a — X. Then 

7(v, a, X)1/v ^ A(o,\) 4- o(l) 

uniformly for 0 < a < 1 and 0 < X < 2 — a. 

Proo/. A near-triangulation with root face of valence av has 
v(2 — a) — 1 faces (counting the root face) and v(3 — 2a) — 3 edges 
which are internal, that is, non-incident with the root face. Hence each of 
the maps counted by T(v, a, X) can be formed by removing Xv — 1 of the 
internal edges of some near-triangulation with v vertices and root face of 
valence av. Therefore 

^ . . . « S T X . . . ) ^ - ^ - 3 ) . 

Thus the lemma follows for a < 1 — € from Lemma 3.4 and Stirling's 
formula. For a ^ 1 — €, each map M counted by T(v, a, X) can be 
modified to a new 3-connected map M' with root face valence L(l — c)vJ 
by the addition of a new edge in the root face of M, which becomes the 
root edge of M'. It follows that 

T(v, a, X) ^ T(v, a', X') 

where 

a' = L(l - e)vJ and V = 2 - a' - ( / + l)/v 

= X + 0(c). 

Hence, from what we have already shown, 

T(v, a, X)1/v ^ ,4(a', X') + o(l) 

^ .4(a, X) + o(l) 4- e2 

where £2 —> 0 as c —» 0. This completes the proof. 

4. Bounds on the numbers of symmetric polyhedra. Throughout this 
section c denotes a positive constant strictly less than 1, perhaps different 
at each occurrence, and similarly e denotes some positive constant at each 
occurrence. 
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THEOREM 4.1. The number of symmetric unrooted 3-connected maps with 
v vertices and f faces is o(cvqv J) uniformly for 1/2 < f/v < 2. 

Proof Antipodal and rotative automorphisms are the easiest to deal 
with, so we do these before plane-reflective. In each case, bounds on the 
constant c may readily be obtained from our proof, but we do not do so 
since the results will not be best possible. In each case, we verify the 
theorem with the implicit assumption that 1 ^ f/v < 2. The reciprocal 
range is covered by applying the established result to the dual maps in 
each case. 

The numbers of unrooted 3-connected maps with v vertices and/faces 
and with an antipodal, rotative or plane-reflective automorphism a are 
denoted by/?,(v,/),/?2(v,/) and/?3(v,/) respectively. 

First of all suppose a is antipodal. Let S denote the cell-cycle of M 
whose existence is asserted by Lemma 2.3 and let D be a cap of S. The 
caps of S are interchanged by a and at the same time each element of S is 
mapped to its opposite in the cycle. Hence D determines M, and also the 
hypotheses of Lemma 2.9 are satisfied. Let M* be the join of M rooted so 
that the apex is the root vertex. Then by Lemma 2.11, M* determines M 
uniquely. By Lemma 2.7, M* is 3-connected. We have k = b = 0 and 
a ^ (2v + 2)/3. Thus by Lemma 2.9. 

(4.1) v* = 1 + (v + a)/2 < 2 + 5v/6 

and 

(4.2) / * = ( / + 2a)/2. 

By Lemmas 3.2 (iii) and 3.3, the number P\(v,f) of possibilities for M* is 
bounded by 21.05v , which is at most 12.7V by (4.1). By Lemmas 3.2 and 
3.3, 

qvJ> (16 ~ o(l) )v 

uniformly for 1 = f/v ^ 1.8, which establishes the theorem in this range. 
From (4.1), (4.2) a n d / ^ 2v we have 

/ * / v * > / / v - o(\). 

Thus for f/v > 1.8, Lemma 3.2 gives 

B(f*/v*) < B(f/v) 4- o(l), 

so by Lemma 3.3. 

Pl(v,f)l/V < (B(f*/v*) + o(l)ym/v 

<(B(f/v) + o(\)f6 (by (4.1)) 

<(B(f/v) + (l))-]/6qlj 

and so 
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(4.3) px(vj) = o(cvqvJ). 

Next suppose a is rotative, of order / ^ 2. By Lemma 2.4, a has just two 
invariant cells, which we assume at first to be vertices. Suppose/?2*(v,/) 
is the number of such M. Let P be a shortest path joining the two 
invariant vertices. Since P is shortest, any vertex in P n OL'(P) for some 
1 ^ k ^ / — 1 must be invariant under ak. Since ak i*= 1, such a vertex 
must be invariant under a by Lemma 2.4 applied to a . Hence the images 
of P under a0, a1, . . . , a / _ 1 are internally disjoint. The union of two 
adjacent such images is a cell-cycle S of vertices and faces, such that one 
cap D of S contains precisely Ml of the faces of M. S contains at most 
2(v — 2)11 + 2 vertices, and also at most 2(v + l) /3 vertices by Lemma 
2.1 applied to P. Let M* be the join of M with respect to D, rooted so that 
its apex is the root vertex. Then 

a < min{2v// + 2, 2v/3 + 1 } , b = 0 and k = 0, 

and the number of possibilities for M given M* is at most a = v. Also 

v* = (v - 2)11 + û/2 + 2, 

/* =///+*. 
Again, M* is 3-connected by Lemma 2.7. If / = 2, we get (4.1) and (4.2), 
and hence the number of possibilities for M* is bounded by o{cvqv A by 
(4.3). If / ^ 3, v* < 2v/3 + 3, and so the number of possibilities for M* is 
bounded by 

21.05v* < (8 + o(l))v , 

which is again (cvqv A. Hence 

P2*(v>f) < v 2 o(cvqvf) = o(cvqvf). 

Now suppose the invariant cells of a are not both vertices. If an edge, w 
say, is invariant, introduce a new vertex, u say, in that edge and regard the 
two portions of w separated by u as edges. Two more new edges incident 
with u can be introduced, contained in the faces incident with w, so that 
the resulting map is still 3-connected and fixed by a and u is invariant. 
Similarly, if a face is invariant, we can introduce a new vertex u and / 
(if / ^ 3) or 4 (if / = 2) new incident edges in the face, to achieve the 
same result. Hence we get a map M' with vertices invariant under a, with 
v' = v -f 1 or v + 2 vertices a n d / ' = / + 2 o r / + / — l o r / + 2 / — 1 
faces. By the previous result and Lemma 3.3, the number of such M' is 

°(cV'<lv\f') = °(cV(lvj) if / = 2, 

and is at most 

(8 4- o(\) Y' = o(cvqvf) i f / i : 3. 
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As each M' corresponds to a bounded number of M, we now have 

(4.4) p2(v,f) = o(c\f). 

Finally suppose a is plane-reflective. Let S denote the cell-cycle of 
invariant cells of a, whose existence is asserted by Lemma 2.2, and let D 
be a cap of S. Let M* be an r-join of M with respect to D, rooted so that 
the root face is the one bounded by the apex cycle. By Lemma 2.6, M* is 
3-connected. At some points in our argument we will demonstrate that for 
v sufficiently large (recalling 8 = d/v) 

(4.5) B(M)>iT( /VVr ' [ (* v ) / (* ; ) ] , / ' + c. 

By Lemmas 2.11 and 3.3 this implies that the number of possibilities for M 
in such cases is o(cvqv A. Set 

ix = f/v, H = (3 + V7)/4 a n d & = B(H)-

We distinguish two ranges of /A. 

Case 1. 1 ̂  /i S i/ . Here let r = max{ L6/2J, 3}. Note that 

[ ( t ) / ( ô ; ) ] 1 / v < ( ô v e / ( 2 è ) ) f t / ( 2 v , + ° ( i ) 

by Stirling's formula. This is at most e / 4 4- o(\) since wUw ^ eUe for 
w > 0. Also by Lemma 2.9 (ii) 

v* = v/X + 0(1) where X = 2/(1 + S). 

Thus for v large (4.5) is implied by 

B(n) > ed/4B(f*/v*)ux + c 

or 

X log 5(/A) - log B(f*/v*) - (2 - X)/4 ^ €. 

By Lemmas 2.9 (ii) and 2.10 ( i ) , /* ë / + 1, so 

/* /v* â A/z + o(l). 

Thus by Lemma 3.2, it suffices to find e > 0 such that € is a lower bound 
on each of the following quantities for the stated ranges of A/x: 

(4.6) A log B(ii) - log B(\fx) - (2 - A)/4 

when A/i ^ / / ; and 

(4.7) A log JB(JH) - log À - (2 - A)/4 

when A/A ^ 7/. 
We have by Lemma 2.10 (iii) 
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(4.8) A g 8/(/i + 6) â 32/(27 + y/ï). 

Differentiating (4.6) with respect to [x gives 

(4 9) x d lQg g(M) - X d l0g B(Kli) 

dp d(Xfi) 

By Lemma 3.2, d log B(x)/dx is decreasing and so (4.9) is positive as 
X > 1. Hence (4.6) is increasing in \i. By (4.8), JU ^ 8/X — 6. So for (4.6) 
we need only consider 

(4.10) X log B(8/X - 6) - log 5(8 - 6A) - (2 - X)/4 

for 32/(27 + V?) = A ^ 8/7 and 

(4.11) A log B(\) - log B(X) - (2 - X)/4 

for 8/7 ^ A ^ // . The second derivative of (4.10) is 

1/A - 2/(A - 1) + 48/(5 - 4A) - 169/(16 - 13A). 

Since 4(16 - 13A)/13 < 5 - 4A we have 

169/(16 - 13A) > 52/(5 - 4A), 

and so this second derivative is negative for the appropriate A. Thus (4.10) 
is minimised for extremal A. It is at least .032 at A = 32/(27 -f y/ï) and at 
least .022 at A - 8/7. The derivative of (4.11) is 

log(2A - l)2 - log(A(2 - A) ) + log 4 + 1/4, 

which is positive since A(2 — A) ^ (2A — 1) for A = 1. Hence (4.11) is 
minimised for A = 8/7, at which point it has the same value as (4.10). 

By Lemma 3.2, (4.7) has positive derivative with respect to JU, so we only 
consider the minimum value of /x for each A, subject to 

ju ^ 8/X - 6, ii ^ 1 and /A ^ H/X. 

This gives 

(4.12) X log £(8/X - 6) - log B - (2 - X)/4 

for 32/(27 + y ^ ) ^ X ^ (29 - \/7)/24, 

(4.13) X log B(H/X) - log B - (2 - X)/4 

for (29 - \ /7)/24 ^ X ^ //, and 

(4.14) X log B{\) - log B - (2 - X)/4 

for H ^ X ^ 2. The second derivative of (4.12) is 

8 / 6X - 7 _ 26 \ 

XV(X - 1)(4 - 3X) 16 - 13X/ 
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which is negative for this range of X. At the extreme values of X, (4.12) is at 
least .011 and .045. The derivative of (4.13) is 

log 4 - 2 log(2 - H/X) + log(2///X - 1) + 1/4 

which is positive since H/X è 1 here. Hence in (4.13) we may take X at its 
minimum, which is covered by (4.12). Finally, (4.14) has positive 
derivative, so again take X at its minimum, //, which is covered by (4.13). 
Thus € = .011 is a lower bound on (4.6) and (4.7), and we have (4.5). 

Case 2. H ^ /x < 2. This time let 

r = max{ L(a + k)/{\ + B) J, 3} 

= 8v/(l + B) + 0(1). 

Using Lemma 2.9 (ii) for v*, and B(f*/v*) ^ B, (4.5) follows from 

5(,)>^--^f;)l7[(5;H,/v + £-
Note that 

^-w-(^n(*)f+»-w+.,H 
where the bracketed quantity is a probability whose maximum over / is 
attained at 

/ = 8V/(JC + 1) + O(l). 

Hence 

[(^£-rp = (1 + „£>« + „(,) 
and 

( ^ y v*'<2"> < 0 + 5-,/2)s + o(i). 

Thus it suffices to have 

(4.15) B(n) > E(8) + € 

where 

£(S) = B]/2((\ + 2?1/2)£/(l + B))8' 

Now let M* be the slice of M with respect to D, rooted so that the base 
of the slice is the root face. By Lemma 2.6, M* is 3-connected. Given M*, 

there are at most ( I ^ 28v possibilities for M, since then M is 

determined by the a edges in S transfixed by a. Set 
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2 log[ (1 - a)(3 - 2a - X)/(2 - a)2] < 0. 

a = d/v* and X = 2 - a - /* /v* . 

By Lemmas 2.9 (i), 2.10 (ii) and 2.10 (iv) we have v* ^ v and so a ^ o, 

2Xv* = 2v - / 4- 2b - k - 2 < 4v - If 

and 2Xv* ^ X(v + ôv). 

Thus 

(4.16) 0 < X < 2(2 - /x)/(l + Ô). 

Also 1 ^ v*/v implies a â o. So by Lemmas 2.8, 3.3 and 3.5 it suffices to 
have 

(4.17) B(ii) > 28A(o, X) + €. 

Note that for 0 < jti < 1, 

(4.18) (1 - a)(3 - a) < (2 - a)2. 

Hence 

3 log ,4 (a, X) 

3a 

Thus (4.17) is implied by 

(4.19) B(n) > 2sA (8, X) + e. 

To complete the proof we will demonstrate the existence of e > 0 such 
that for H ^ /x ^ 2 and 0 < 8 < 1, either (4.15) holds or (4.19) holds for 
all X satisfying (4.16). 

Observe that A(8, X) ^ A(8, (3 - 2ô)/2) and that 

d\og[28A(8, (3 - 28)/2)] 

= 2 log[(l - fi)(3 - 2Ô)(2 - 8)-2/y/2l 

which is negative by (4.18). Hence 2 A (o, (3 — 2o)/2) is a decreasing 
function of ô. At ô = .8, it is less than 13.2, and thus so is 2 A (o, X) 
for ô ^ .8 and all X. Also, E(8) increases with o and is less than 17.6 
when Ô = .8. Since B(\.l) > 18, we now have (4.15) or (4.19) for 
H ^ /x ^ 1.7. 

We may now assume 1.7 â /x < 2. Then 

4(2 - /x)/(l + o) < 2/(1 + o) < (3 - Ô)/(l + Ô) < 3 - 20, 

and so yi(o, X) is maximised at X = 2(2 — //,)/( 1 + 8) = X say. Therefore 
(4.19) is implied by 

(4.20) B(IL) > F(/x, Ô) + c 
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where 

F(/i, 5) = 2sA (8, 2(2 - /x)/(l -f 5 ) ) . 

We may also assume 8 ^ .3, since £"(.3) < 8. We have 

dX/dS < 0 and 8 log A (8, X)/8X > 0 

as X < (3 - 28)/2. Hence 

8 log F(/A, fi) , „ , 3 log A(8, X) , 8 log A(8, X) 3X 
= log 2 + H  

8S 85 8X 80 

ë log 2 + 2 log[ (1 - 8)(3 - 28)/(2 - 8)2]. 

The latter is negative at 8 = .3, and its derivative is less than 

2/(2 - 8) - 1/(1 - 8) < 0, 

so it stays negative. Thus F(/x, 8) is decreasing in 8 for fixed \x. It is also 
decreasing in \x for fixed 8 as 

8 log A (8, X)/8X > 0 and 8X/3/x < 0. 

Recall that E(8) is increasing in 8. The following table completes the proof 
that 

(4.21) p3(v,f) = o(cvqvJ), 

where, for instance, the implication of the third line is that for 
1.941 ^ /i ^ 1.968, (4.15) holds whenever 8 ^ .52 and (4.20) holds 
whenever 8 ^ .52. The theorem follows from (4.3), (4.4) and (4.21). 

/* 8 BQi) E(8) M F(8, /Z) 

2.0 .43 > 9.48 < 9.43 1.987 < 9.48 
1.987 .475 > 10.17 < 10.17 1.968 < 10.17 
1.968 .52 > 10.96 < 10.96 1.941 < 10.96 
1.941 .57 > 11.95 < 11.92 1.9 < 11.91 
1.9 .635 > 13.29 < 13.29 1.82 < 13.28 
1.82 .729 > 15.56 < 15.55 1.6 < 15.0 

A map with n edges has at most An automorphisms. Thus, once it has 
been shown that the symmetric maps comprise at most o(n~ ) of the maps 
of a given type with n edges, we can obtain an asymptotic formula for the 
number of such unrooted maps by dividing the number of rooted maps 
by An. 

COROLLARY 4.2. The number of combinatorially distinct ^-connected 
maps, or convex polyhedra, with v vertices and f faces, is asymptotic to 
qvf/(4(v + f — 2) ) as v —» oo uniformly for 1/2 < f/v < 2. 
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Lemma 3.1 gives ^^asymptotically, and Mullin and Schellenberg [4] 
give it exactly. Put t ing/ = 2v — 4 gives the following. 

COROLLARY 4.3. ( [9] ). At most o(cvT(v) ) of the convex polyhedra with 
v vertices and all faces triangular are symmetric. Hence the number with v 
vertices is given asymptotically by 7\v)/(4(3v — 6)), where T(v) is given 
explicitly by (3.1). 

Since 2v ^ n ^ 3v — 6 we obtain the following. 

COROLLARY 4.4. ( [5] ). The fraction of the n-edged convex polyhedra 
which are symmetric is at most o(cn). 

This implies that Tutte's asymptotic formula for the number of rooted 
3-connected «-edged maps [7] can be divided by An to give an asymptotic 
formula for the unrooted ones. 

Let 

qv = 2 qvf 
f 

be the number of rooted 3-connected maps with v vertices. Then 
[1, Theorems 1 and 2] gives qv — K{v) where 

r, , (4 + V7V /2 3 + V7 /38V7 - 100V/2 

K(v)=\-^f-) ^ 7 ^ 1 9 ) 
/16 V " 1 

x ( _ ( 1 7 + 7 V 7 ) j . 

By Lemmas 3.2 and 3.3 almost all 3-connected maps satisfy 

/ = v(3 + V7)/4 + o(\). 

Hence for almost all, n ~ v(7 + \ /7)/4, so we have the following. 

COROLLARY 4.5. At most o(cvK(v) ) convex polyhedra with v vertices are 
symmetric. Hence the number of convex polyhedra with v vertices is 
asymptotic to K(v)/[v(l + \H) ] as v —> oo. Duality gives the same result 
with vertices replaced by faces. 
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