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Abstract
A multiple-vehicles time-coordination guidance technique based on deep learning is suggested to address the coop-
erative guiding problem of hypersonic gliding vehicle entry phase. A dual-parameter bank angle profile is used in
longitudinal guiding to meet the requirements of time coordination. A vehicle trajectory database is constructed
along with a deep neural network (DNN) structure devised to fulfill the error criteria, and a trained network is
used to replace the conventional prediction approach. Moreover, an extended Kalman filter is constructed to detect
changes in aerodynamic parameters in real time, and the aerodynamic parameters are fed into a DNN. The lateral
guiding employs a logic for reversing the sign of bank angle, which is based on the segmented heading angle error
corridor. The final simulation results demonstrate that the built DNN is capable of addressing the cooperative guid-
ing requirements. The algorithm is highly accurate in terms of guiding, has a fast response time, and does not need
inter-munition communication, and it is capable of solving guidance orders that satisfy flight requirements even
when aerodynamic parameter disruptions occur.

Nomenclature
CAV Common Aero Vehicle
DNN Deep Neural Network
DQN Deep Q Network
DOF Degree of Freedom
EKF Extended Kalman Filter
HTV Hypersonic Technology Vehicle
HGV Hypersonic Glide Vehicle
QEGC Quasi-equilibrium Glide Condition

1.0 Introduction
Hypersonic glide vehicles (HGV) flying in near space rely mainly on aerodynamic force for control
and have a Mach number greater than 5 [1]. The entry phase of the hypersonic glide vehicle has the
characteristics of high speed, a wide range of speed change, long-range and high manoeuverable. Typical
HGVs are the common aero vehicle (CAV) [2] and hypersonic technology vehicle (HTV) [3]. In response
to the threats posed by hypersonic vehicles, various countries have successively developed anti-missile
interception systems such as Aegis and S-400, which greatly weakens the combat effectiveness and
penetration capabilities of hypersonic vehicles [4]. To improve the penetration capability of hypersonic
vehicles and achieve saturation strikes on targets, it is necessary to develop multi-hypersonic vehicles
coordinated strike technology.
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The flight process of the HGV is divided into five phases: boot-up, adjustment, initial entry, entry
glide and attack down [5]. Among them, the entry gliding phase has the longest flight distance, the
largest airspace span, and the most dramatic changes in aerodynamic characteristics. The complexity
of the state change during the vehicle’s entry phase will have a huge impact on the terminal guidance
phase. Therefore, it is reasonable to conduct time-coordinated guidance of the vehicle in the entry phase,
so that multiple vehicles can provide good handover conditions for the coordination of the next terminal
guidance phase and finally reach the designated target point at the same time.

The existing entry guidance methods mainly include nominal trajectory guidance and predictive cor-
rection guidance. Shen and Lu [6] obtained the constrained boundary of the bank angle according to the
height-speed entry corridor and obtained the nominal trajectory of the gliding phase by designing the
bank angle curve that met these requirements. Zhang et al. [7] studied the trajectory planning method
based on the three-dimensional drag acceleration profile. For predictive correction guidance, based on
a consideration of the path constraints, Joshi et al. [8] used the angle-of-attack and the bank angle as the
control variables of the prediction-correction guidance method. However, the above-mentioned guid-
ance methods apply to a single vehicle and cannot be directly used to the coordinated guidance of
multi-hypersonic vehicles.

Current multi-vehicle coordinated guidance methods are mostly applied to terminal guidance [9] or
low-speed unmanned aerial vehicles [10, 11, 12]; in terms of multi-missile cooperative guidance, the
existing cooperative guidance methods can be divided into a two-layer cooperative guidance architec-
ture and a “leader-follower” cooperative guidance architecture. Zhao et al. [13] proposed a two-layer
guidance architecture for the first time, in which the constrained guidance law satisfying the missile
flight characteristics was the bottom-level guidance control, and the centralised or decentralised coordi-
nation strategy including coordination variables was used as the upper-level coordination control. Zhang
et al. [14] proposed the leader-follower cooperative guidance architecture, which selected the reference
motion state of the missile according to the coordination requirements, and took the lead missile as the
desired reference motion state. By tracking the reference motion state of the leading missile or adjacent
ballistics, the reference motion state of the secondary missile gradually adjusted to the expected value,
thereby realising multi-missile cooperative guidance. Subsequent research was mostly based on the opti-
misation of the above two architectures. For stationary targets in the plane, Kumar et al. [15] designed
a time-constrained guidance law based on sliding mode control as the bottom layer guidance control,
and the upper layer coordinated control was based on the minimum sum of the sliding mode surface
deviations of all missiles to obtain cooperative guidance method with expected attack time as average
of remaining time. Compared with traditional missiles, HGVs have unique difficulties such as fast flight
speed and single control amount. For the hypersonic vehicle entry phase, coordinated guidance can be
separated into two types: lateral guidance and longitudinal guidance. For lateral guidance, Liang et al.
[16] used the shooting method to optimise the longitudinal bank angle profile to meet the terminal dis-
tance and height constraints, and laterally through the iterative heading angle corridor width to meet the
coordination time constraints. Yu et al. [17] proposed an analytical multi-projectile coordinated entry
guidance method. This method divided the entry trajectory into two sections. The first section adopted
a plan for the angle-of-attack, and the iterative bank angle satisfied the distance constraint. The second
section had a bank angle of zero and the iterative angle-of-attack met the time constraint. But this method
was not suitable for HGVs with drastic changes in lift-to-drag ratio. Fang et al. [18] proposed a time-
controllable entry guidance law, which used neural networks to predict the remaining flight time and
increased the lateral manoeuverability by adjusting the heading angle and corridor width to change the
flight time. Zhang et al. [19] proposed a deep reinforcement-based entry cooperative guidance method.
The longitudinal lift-to-drag ratio was calculated to obtain the modulus of bank angle based on the high-
precision longitudinal analytical solution. In lateral guidance, the DQN algorithm was used to adjust the
sign of the pitch angle to control the flight time. The above-mentioned time-coordination guidance algo-
rithms all change the flight time by increasing the lateral maneuverability of the vehicle and increasing
the lateral manoeuverability might cause the vehicle to miss the target or result in problems in avoiding
obstacles. For longitudinal guidance, Wang et al. [20] proposed a predictive-corrected cooperative guid-
ance law based on the altitude-velocity profile, which adjusted the remaining flight time and distance by
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adjusting the two trajectory parameters of the profile and further analysed the ability of co-time regu-
lation. Li et al. [21] proposed a time-coordination guidance algorithm based on the bank angle profile,
the time and range constraints were met by adjusting the parameter values of the bank angle profile, and
at the same time by adjusting the lateral error damping coefficient in the lateral direction, and the time
adjustment capability was further increased. But the change range of adjustment parameters of the algo-
rithm were too large to put it into real practice. The above two time-coordinated guidance algorithms
based on longitudinal guidance have real-time problems due to the large number of integral prediction
and it cannot meet the requirements of rapid guidance of hypersonic vehicles at high Mach numbers.

Based on the above analysis, this paper proposes a time-coordination entry guidance algorithm based
on deep learning. First, a dual-parameter bank angle profile is developed to suit the requirements of
time coordination and to set the groundwork for the vehicle trajectory database’s compilation. Second,
a vehicle trajectory database is built, and a framework is developed for a deep neural network (DNN)
that satisfies the error criteria to identify the functional relationship between the flight states and the
parameters of the profile in longitudinal guidance, which improves the real-time performance of the
algorithm. Moreover, the input parameters of the deep neural network contain perturbations in the lift
and drag coefficients that significantly improve the algorithm’s resilience. Finally, the extended Kalman
filter (EKF) is used to identify the disturbance coefficients online, and to meet the needs of the real flight
process, the disturbance coefficients are used as input parameters for the DNN training in the network
design.

2.0 Preliminary
2.1 System dynamics
In the entry phase of the vehicle, in order to grasp the main contradiction, the following assumptions
are made: the rotation of the Earth is not considered; considering that the longitudinal range of the
entry phase is relatively large, the Earth is regarded as a sphere. The 3DOF point-mass dynamics for
hypersonic entry vehicle over a non-rotating Earth are described by [22]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙi = Vi sin θi

λ̇i = Vi cos θi sinψi

ri cos φi

φ̇i = Vi cos θi cosψi

ri

V̇i = −Di − g sin θi

θ̇i = 1

Vi

[
Li cos σi +

(
V2

i

ri

− g

)
cos θi

]

ψ̇i = 1

Vi

(
Li sin σi

cos θi

+ V2
i

ri

cos θi sinψi tan φi

)
ṫi = 1

(1)

where i represents the ith vehicle; r is the nondimensional radial distance from the Earth’s centre to
the vehicle, the nondimensional parameter is the radius of the earth R0; λ and φ are the longitude and
latitude; V is the Earth-relative nondimensional velocity;

√
g0R0 is the nondimensional parameter; g0 is

the gravitational acceleration at sea level; θ is the flight-path angle of the Earth-relative velocity vector;
ψ is the heading angle of the same velocity vector; t is the time of vehicle fight; σ is the bank angle of
the vehicle about the relative velocity vector; L and D are the nondimensional lift and drag acceleration,
they are shown in the Equation (2): {

L = 0.5SρV2CL/m

D = 0.5SρV2CD/m
(2)
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where m is the vehicle mass; S is the vehicle reference area; ρ = ρ0e−h/7110 is the atmospheric density, ρ0

is the atmospheric density at sea level, h is the distance from the ground to the vehicle; CL and CD are
the lift coefficient and the drag coefficient, and they are a nonlinear function of the Mach number and
angle-of-attack. Aerodynamic data can be obtained from the references [23].

An energy-like variable e as the independent variable of the prediction and the input of the DNN:

e = 1/r − V2/2 (3)

ė = DV (4)

It is clear that e is the negative of the specific mechanical energy used in orbital mechanics, and it is
a monotonically increasing variable [24].

2.2 Entry trajectory constraints
The typical path constraints of an entry vehicle include the heating rate limit Q̇max,i, the aerodynamic
overload limit nmax,i, the dynamic pressure limit qmax,i, and they can be expressed as [25]:

Q̇i = kQ,iρi
0.5Vi

3 � Q̇max,i (5)

ni =
√

Li
2 + Di

2 � nmax,i (6)

qi = 1

2
g0,iρiVi

2 � qmax,i (7)

where Q̇i is the heating rate and kQ,i is a constant, ni is the aerodynamic overload and qi is the dynamic
pressure. The above constraints are hard constraints for an entry vehicle, and the vehicle also needs to
meet the quasi-equilibrium guide condition (QEGC) soft constraint

Li cos σQEGC,i −
(

V2
i − 1

ri

)
cos θi

ri

≥ 0 (8)

where σQEGC,i is the bank angle of the vehicle in QEGC, generally the value is zero.
The typical final constraints are that the trajectory reaches the final longitude λf ,i and latitude ϕf ,i at a

specified final altitude rf ,i and velocity Vf ,i, it can be shown that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r(tf ,i) = rf ,i

V(tf ,i) = Vf ,i

λ(tf ,i) = λf ,i

ϕ(tf ,i) = ϕf ,i

(9)

where tf ,i is the time of the vehicle entry phase, rf ,i is the terminal radial distance from the Earth’s centre
to the vehicle, Vf ,i is the terminal Earth-relative velocity, λf ,i is the terminal longitude, ϕf ,i is the terminal
latitude. Regarding the question of the entry vehicles guidance, the final constraints of the longitude and
the latitude usually transform a distance sf from the target location.

Considering the time-coordination problem of multi-hypersonic vehicles, it is also necessary to meet
the terminal time constraints, which can be expressed as:

tf ,1 = tf ,2 = . . .= tf ,i = tco (10)

where tf ,i is the total time of entry flight, tco is the prescribed coordination time [21].
Therefore, the objective of time-coordination entry guidance is based on the 3DOF point-mass

dynamics Equation (1) to obtain the adjustment parameters of the bank angle profile that meet the
constraints Equations (5)–(10).
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Figure 1. Flowchart of the proposed time-coordination entry guidance algorithm.

3.0 Time-coordination guidance algorithm based on DNN
A traditional predictor-corrector guidance algorithm consists of two parts: longitudinal guidance and
lateral guidance. Longitudinal guidance determines the amplitude of the bank angle, and lateral guidance
uses the heading angle error corridor to determine the bank angle sign.

The longitudinal guidance is composed of two parts: prediction and correction. There is a large
amount of integration in the longitudinal guidance of vehicles, and there are real-time problems that
cannot be ignored for hypersonic vehicles. The traditional predictor-corrector guidance algorithm can
only predict the remaining distance, and cannot meet the needs of coordinated flight of hypersonic vehi-
cles. During the entry process, there will be aerodynamic parameter disturbances, and the hypersonic
vehicle mainly relies on aerodynamic force to achieve the entry mission. The aerodynamic parame-
ter disturbances will have a great impact on the accuracy of trajectory prediction and the successful
completion of the entry mission.

To solve the cooperative flight problem of vehicles, this paper constructs an improved bank angle
profile, which can accurately predict of the remaining distance and remaining time at the same time, so
that multiple vehicles can simultaneously reach the designated target point. For real-time problems, this
paper designs the DNN to identify the functional relationship between the flight states and the adjust-
ment paraments of the bank angle profile in the predictor-corrector, thereby effectively shortening the
guidance instruction solution time and improving the algorithm real-time react ability. For the robustness
problem, in the design of the DNN, the influence of atmospheric disturbance is considered to improve
the guidance accuracy of the algorithm, and all the aerodynamic parameters are identified online using
the EKF. The algorithm flowchart is shown in Fig. 1.

3.1 Angle-of-attack profile design
The control amount of the hypersonic vehicle entry flight phase is the angle-of-attack α and the bank
angle σ . Considering the thermal protection requirements of the initial phase of entry and the remaining
flight distance requirements, this study adopts the angle-of-attack profile is shown as [26]:

α=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αm V > V1

αL/Dmax − αm

Vb − Va

(V − Va)+ αm V2 � V � V1

αL/Dmax V < V2

(11)
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Figure 2. Bank angle profile of two adjustment parameters.

where αm is the maximum angle-of-attack, αL/Dmax is the maximum lift-to-drag ratio angle-of-attack,
Va, Vb, V1 and V2 are the set speed value; Va = 6, 500m/s, Vb = 5, 000m/s, V1 = 7, 000m/s and
V2 = 5, 400m/s.

3.2 Dual-parameter bank angle profile design
For the initial descent phase of the entry vehicle, the altitude of the vehicle is high, and the aerodynamic
effect is small, and it is difficult to effectively control the trajectory of the vehicle. Normally, open-loop
guidance with a constant tilt angle is used. After meeting the QEGC, the vehicle moves to the gliding
phase. The bank profile of the gliding phase of the HGV is usually designed as a single parameter to
meet the needs of adjusting the flight distance. In this section, the vehicle bank angle profile is designed
as a parabolic dual-parameter profile, and the time and distance are adjusted at the same time to meet
the needs of time-coordinated guidance. For the longitudinal guidance of the gliding phase, the dual-
parameter bank angle profile is shown in Fig. 2. In Fig. 2, when the three points on the curve are known,
the curve equation can be determined. Therefore, the horizontal and vertical coordinates corresponding
to the three points can be used as characteristic values for determining the shape of the curve. When
four of the values are determined, the remaining two can be used as adjustment parameters to adjust the
remaining flight time and distance. The curve function is defined as shown in Equation (12)

|σ (e)| = k1e
2 + k2e + k3 (12)

where k1, k2 and k3 are the bank angle profile coefficient, they can be determined by Equation (13)⎧⎪⎨
⎪⎩
σ0 = k1e2

0 + k2e0 + k3

σmid = k1e2
mid + k2emid + k3

σf = k1e2
f + k2ef + k3

(13)

where σ0, σmid and σf are the initial bank angle of the gliding phase, the bank angle at the midpoint,
and the terminal bank angle of the gliding phase. e0 is the initial energy and it is determined by the
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state of the vehicle after the end of the initial descent, ef is terminal energy and it determined by ter-
minal geocentric rf ,i distance and terminal velocity Vf ,i, emid is the midpoint energy, as shown in the
Equation (14):

emid = (e0 + ef )/2 (14)

Equation (13) is a system of linear equations with three variables ki(i = 1, 2, 3) and three equations.
Therefore, according to the Cramer’s rule, the value of k1, k2 and k3 can be obtained:

k1 =

∣∣∣∣∣∣∣
σ0 e0 1

σmid emid 1

σf ef 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e2

0 e0 1

e2
mid emid 1

e2
f ef 1

∣∣∣∣∣∣∣
, k2 =

∣∣∣∣∣∣∣
e2

0 σ0 1

e2
mid σmid 1

e2
f σf 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e2

0 e0 1

e2
mid emid 1

e2
f ef 1

∣∣∣∣∣∣∣
, k1 =

∣∣∣∣∣∣∣
e2

0 e0 σ0

e2
mid emid σmid

e2
f ef σf

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e2

0 e0 1

e2
mid emid 1

e2
f ef 1

∣∣∣∣∣∣∣
(15)

where σ0 is designed as a definite value, e0, emid and ef are definite values. The remaining flight distance
and time of the vehicle are adjusted by adjusting the values of σmid and σf .

3.3 Determining the amplitude of bank angle based on DNN
Artificial intelligence technology has gradually matured in recent years, owing to advancements in com-
puter software and hardware. The purpose of this paper is to demonstrate how deep learning in artificial
intelligence technology can be used to enhance the real-time performance of collaborative guidance
algorithms. Proposed by Hinton et al. [27] in 1986, deep learning replaced the original single fixed
feature layer with multiple hidden layers. The activation function used the Sigmoid function, and the
error backpropagation algorithm was used to train the model. The network obtained by deep learning
had a multi-layer structure, and each layer had multiple neurons. The network structure that met the
requirements could be obtained by adjusting the weight relationship among the neurons. At present,
deep learning is mostly used in low-speed unmanned aerial vehicles [28, 29] and less in hypersonic
aircraft. In this paper, the trained DNN can be used to fit the non-linear mapping relationship between
the input and output in the prediction.

After combining the bank angle profile in Equation (12) of the traditional prediction, the remaining
distance and time can be obtained by establishing a longitudinal motion equation shown as Equation
(16) with non-dimension energy as the independent variable⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds

de
= cos θ

rD
dr

de
= sin θ

D

dθ

de
=

[
L cos σ +

(
V2 − 1

r

)
cos θ

r

]
1

DV2

dt

de
= 1

DV

(16)

where V = √
2(1/r − e).

From the analysis of Equation (16), it can be seen that the input of the DNN is: the non-dimension
energy e, the nondimensional radial distance r, the flight-path angle θ , the bank angle σ , the nondimen-
sional aerodynamic lift acceleration L and drag acceleration D. The bank angle is determined by the
bank angle adjustment parameters σmid and σf . Considering that the vehicle is in a real flight environ-
ment, the aerodynamic parameters are disturbed compared to the those in normal conditions, the lift
acceleration and the drag acceleration are affected by the disturbance coefficients kcl and kcd. Therefore,
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Table 1. Initial state quantity change table

Amount of change Change interval Step size
θ/(◦) [−0.004, 0.004] 0.002
kcl [0.9, 1.1] 0.1
kcd [0.9, 1.1] 0.1
σmid/(◦) [50, 80] 1
σf/(◦) [10, 40] 1

Input data set Data out of order Affine AffineELU ELU Affine Predictive value

Label value

Loss functionOptimizerParameter update

Figure 3. The structure of the DNN.

the input of the DNN is: xNN = [ e r θ σmid σf kcl kcd ]; output is: yNN = [ s t ]. Considering that DNN is
sensitive to input data, the upper and lower bounds of the input data should not exceed the upper and
lower bounds of the training data, as shown in Table 1. The range of energy is [0.5552, 0.9637], and the
range of nondimensional radial distance is [1.0089, 1.0044].

The first prerequisite for training a DNN is to obtain a reliable data set. This paper uses Equation (16)
to obtain the DNN data set. Choosing e = 0.5552 and r = 1.0089 as the initial state, the bank angle
adjustment parameters σmid and σf , aerodynamic parameter disturbance coefficient kcl and kcd, and the
flight-path angle θ as the initial state change, are shown in Table 1.

The fourth-order Runge-Kutta integration according to the Equation (16) is performed to obtain the
reentry trajectories in different initial states, taking 60 points on each trajectory and generating 4,095,000
pairs of data for creating a database of HGV trajectory points. In the database, 90% pairs of data are
randomly selected for the training set, and the remaining 10% pairs of data are used for the test set.

The problem outlined in this paper is a regression problem in deep learning. After obtaining the data
set required for training, the designed DNN structure is shown in Fig. 3. In a DNN, the number of hidden
layers and units in each layer need to be determined first. The deeper the number of layers of the DNN,
the higher the number of neurons in each layer, the more complicated the calculation process that can
be replaced, and the higher the approximation accuracy. However, as the number of layers and neurons
increases, the time of calculation will also increase. At present, there is no clear method for the selection
of the number of layers and neurons, and the deep network structure that meets the error requirements is
obtained after many attempts based on specific problems. Table 2 shows the training set mean absolute
error and test set mean absolute error of different neuron node numbers under the same hidden layer.
Table 3 shows the influence of the number of hidden layers on the mean absolute error.
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Table 2. The influence of the number of neuron nodes on the error

Serial Hidden Number of Training set mean Test set mean
number layers hidden units Epochs absolute error absolute error
1 2 7 200 4.99∗10−5 5.11∗10−5

2 2 8 200 4.18∗10−5 4.45∗10−5

3 2 9 200 4.02∗10−5 4.01∗10−5

4 2 10 200 3.85∗10−5 3.37∗10−5

5 2 11 200 3.45∗10−5 2.97∗10−5

6 2 12 200 3.55∗10−5 3.14∗10−5

7 2 13 200 3.46∗10−5 3.12∗10−5

Table 3. The influence of the number of hidden layers on the error

Serial Hidden Number of Training set mean Test set mean
number layers hidden units Epochs absolute error absolute error
1 3 11 200 3.44∗10−5 3.14∗10−5

2 4 11 200 1.08∗10−5 8.89∗10−6

3 5 11 200 5.87∗10−6 5.53∗10−6

4 6 11 200 7.81∗10−6 7.35∗10−6

5 7 11 200 7.01∗10−6 3.91∗10−6

6 8 11 200 6.89∗10−6 3.54∗10−6

Based on Tables 2 and 3, five hidden layers are selected, and the number of hidden units in each layer
is 11. The activation function selects ELU function:

ELU(x) =
{

x, x ≥ 0;

ex − 1, x< 0;
(17)

the parameter optimiser selects Adam optimiser, the loss function selects MSE function:

MSE(ŷ, y) =
∑n

i=1 (y − ŷ)2

n
(18)

where n is the number of samples, ŷ is the label value, and y is the network estimate, the evaluation
metrics select MAE function:

MAE(ŷ, y) =
∑n

i=1

∣∣(yi − ŷi)
∣∣

n
(19)

In addition to selecting the number of layers and nodes of the DNN, appropriate hyper-parameters
(batch size and epochs) need to be selected during the training of the DNN. When the batch size is
selected as 64, and epochs is selected as 500, the curve of average sum-of-squares error during the
training set and the test set training histories is shown in Figs. 4 and 5.

To verify the accuracy of the trained DNN, 100 sample points are randomly selected and put into the
trained network to obtain the remaining distance and remaining time. The study compared the remaining
distance and remaining time obtained by the DNN with the remaining distance and remaining time
obtained by integration, as shown in Figs. 6 and 7. Figures 8 and 9 are the absolute error curves of
the remaining distance and remaining time fit by the DNN respectively. In Fig. 8, the maximum error
of the remaining flight distance is 52 kilometers. In Fig. 9, the maximum error of the remaining flight
time is 7.2 seconds. The error is within the allowed range for the HGV with a range of several thousand
kilometers and a flying duration of several thousand seconds.

After the DNN is trained, the prediction can be replaced by the DNN, and the correction uses the
binary Newton iteration method to solve the two parameters of the bank angle profile. In each guidance
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Figure 4. Training histories of the training set error.

Figure 5. Training histories of the test set error.

cycle, the two parameters of the bank angle profile are corrected based on the constraints of distance
and time. {

sNN = sf

tNN = td

(20)
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Figure 6. Fitting curve of the remaining distance.

Figure 7. Fitting curve of the remaining time.

where sNN is the remaining distance fitted by the DNN, sf is the ideal remaining distance, it can be
obtained from the current longitude and latitude and the terminal longitude and latitude; tNN is the
remaining time fitted by the DNN, td is the ideal remaining distance, it can be obtained by subtract-
ing the elapsed time from the total time. Based on Equation (1), sf and td can be obtained from the
current state x = [ r λ φ V θ ψ t ] of the vehicle:

sf = arccos( sin φ sin φf + cos φ cos φf cos(θf − θ )) (21)

td = tco − t (22)
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Figure 8. The remaining distance error of DNN.

Figure 9. The remaining time error of DNN.

In Equations (21)–(22), sf and td are known variables, sNN and tNN are adjusted by the input of the
DNN, the input of the DNN can be changed by adjusting the two adjustment parameters of the bank angle
profile. Therefore, Equation (20) can be transformed into a two-variable nonlinear system of equations:
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{
Q(σmid, σf ) = sNN − sf = 0

P(σmid, σf ) = tNN − td = 0
(23)

Equation (23) can be solved by using the Newton iteration method of finding the roots of the binary
nonlinear equation system. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σmid,k+1 = σmid,k + QP′

σf − PQ′
σf

P′
σmid Q′

σf
− Q′

σmid
P′
σf

σf ,k+1 = σf ,k + PQ′
σmid

− QP′
σmid

P′
σmid Q′

σf
− Q′

σmid
P′
σf

(24)

whereafter the initial values of σmid and σf are determined, σmid and σf of the next iteration are obtained
from Equation (24) The initial values of σmid and σf of the next guidance cycle are the final values of
σmid and σf of the previous guidance cycle. Q′

σmid , Q′
σf , P′

σmid and P′
σf are the partial derivatives of Equation

(23) concerning two parameters (σmid, σf ), they can be obtained by finite difference approximation, for
instance

Q′
σmid ,k = Q(σmid,k +
, σf ,k) − Q(σmid,k, σf ,k)



(25)

where 
> 0 is a small constant. According to Equations (24)–(25), the values of iterative σmid,k and
σf ,k(k = 1, 2, 3 . . . ) can be obtained. Substituting the values of σmid,k and σf ,k into Equation (23), the
DNN can quickly calculate the values of Q(σmid, σf ) and P(σmid, σf ). When the values of Q(σmid, σf )
and P(σmid, σf ) satisfy the following Equation (26), at this time, the final values of the two adjustment
parameters of the bank angle profile in one guidance period can be obtained:{

Q(σmid,k, σf ,k)< ε1

P(σmid,k, σf ,k)< ε2

(26)

where ε1 is the small error value of the distance, ε2 is the small error value of the time.

3.4 Determining the sign of the bank angle based on the section heading angle corridor
This paper uses the heading angle corridor method to determine the sign of the bank angle for lateral
guidance.

ψLos = arctan
sin(λf − λ)

cos φ cos φf − sin φ cos(λf − λ)
(27)

where ψLos is the line angle of sight from the current position of the vehicle to the target, λ and φ are
the current latitude and longitude, they can be obtained from the current state x = [ r λ φ V θ ψ t ].
Therefore, the current heading angle error is that:


ψ =ψ −ψlos (28)

When the heading angle error exceeds the preset error corridor, the sign of the bank angle should
be changed; otherwise, when the heading angle does not exceed the error corridor, the sign of the bank
angle remains unchanged. In other words:

sign(σn) =

⎧⎪⎨
⎪⎩

−1,
ψ > δψ

1,
ψ <−δψ
sign(σn−1), −δψ ≤
ψ ≤ δψ

(29)

where σn is the current bank angle, σn−1 is the bank angle of the previous moment, δψ is the preset
heading angle error threshold. To control the accuracy of the landing point, this paper adopts a segmented
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Figure 10. The segmented heading angle error threshold.

heading angle error threshold, the larger heading angle error threshold δψmax is adopted in the initial
phase of flight, and the smaller heading angle error threshold δψmin is adopted in the phase of approaching
the terminal energy, as Fig. 10 shows.

3.5 Aerodynamic parameter identification
The performance of the entry vehicle is reduced due to insufficient accuracy in the ground wind tunnel
test or the pre-estimated aerodynamic characteristics of the aerodynamic calculation and the actual flight.
In the design process of the DNN in this paper, the influence of the aerodynamic parameter disturbance
( kcl kcd ) has been taken into consideration and used as the input of the DNN. In order to obtain kcl and
kcd in the guidance process, EKF is used for online aerodynamic identification.

The identification quantity is selected as the actual lift coefficient CL and drag coefficient CD, and
it is considered that the change of lift coefficient and drag coefficient conforms to the Gauss-Markov
process. The selected state quantity is 	X = [ H V θ CL CD ], the state transition model can be obtained
according to Equations (1)–(2), as shown in the Equation (30)

	̇X = f (	X) + 	ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dĤ

dt
= V̂ sin θ̂ +ωH

dV̂

dt
= −e− (r−Re)

hs SV̂2ρ0CD

2m
− g sin θ̂ +ωV

dθ̂

dt
= −e− (r−Re)

hs SV̂2ρ0CL cos σ

2mV̂
− g sin θ̂

V̂
+ V cos θ̂

r̂
+ωθ

dCL

dt
=ωL

dCD

dt
=ωD

(30)

where 	ω= [
ωH ωV ωθ ωL ωD

]
is the process noise of each state quantity.

The navigation system measures the relative velocity vector Ṽ and the non-gravitational acceleration
vector aNav, obtain the lift acceleration L̃ and drag acceleration D̃, consider the real-time measurable
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Figure 11. kcl aerodynamic identification error.

Figure 12. kcd aerodynamic identification error.

height H̃, [30] and establish the observation model as

	y = f (	X) + 	vk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̃c = L̃ + vL

D̃c = D̃ + vD

H̃c = H̃ + vH

Ṽc = Ṽ + vV

(31)

https://doi.org/10.1017/aer.2022.82 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.82


The Aeronautical Journal 619

Table 4. Time-coordination entry missions

Altitude Velocity Longitude Latitude Flight path Heading Time
Missions (km) (m/s) (◦) (◦) angle (◦) angle (◦) (s)
Vehicle 1 100.0 7,400.0 −144.3 40.0 −1.0 40.0 1850.0
Vehicle 2 100.0 7,400.0 −153.7 45.0 −1.0 40.0 1850.0
Vehicle 3 100.0 7,400.0 −148.7 45.0 −1.0 40.0 1850.0
Vehicle 4 100.0 7,400.0 −135.7 35.0 −1.0 40.0 1850.0
Terminal conditions 28.0 2,000.0 −32 37.0 – – –

Figure 13. Altitude-velocity profile curve in nominal condition.

where L̃c, D̃c, H̃c, Ṽc are the measured values of lift acceleration, drag acceleration, altitude, and velocity
respectively; 	vk = [ vL vD vH vV ] is the observation noise.

According to literature [31], an EKF is created and utilised to estimate the real lift coefficient and
drag coefficient. The aerodynamic parameter disturbance coefficient is obtained by the ratio of the actual
value of the lift coefficient CL and the actual value of the drag coefficient CD obtained by the identification
of the nominal value of the lift coefficient CL0 and the nominal value of the drag coefficient CD0 obtained
according to the literature [23]. In other words:

⎧⎪⎪⎨
⎪⎪⎩

kcl = CL

CL0

kcd = CD

CD0

(32)

The fluctuation range of the aerodynamic parameter correction coefficient is [−20%, 20%], and the
sine function 1+0.2sin

(
2π
3

t
)

used to characterise, error curve is obtained by comparing kcl and kcd

obtained by aerodynamic identification with the true value is shown in Fig. 11 and Fig. 12. It can be
seen from Figs. 11 and 12 that EKF can accurately estimate kcl and kcd.
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Figure 14. Ground track in nominal condition.

Figure 15. Bank angle profiles in nominal condition.

4.0 Simulation
The CAV-H vehicle selected for the entry vehicle model has a mass of 907kg and a reference area
of 0.4838m2 [32]. The heating rate, aerodynamic overload, and dynamic pressure constraints are set
as Q̇max = 1000kw/m2, nmax = 3g0, qmax = 150kpa respectively. In the angle-of-attack profile, αm= 20◦,
αL/Dmax = 10◦. In the predictor-corrector, the iteration cut-off errors are ε1 = 5km and ε2 = 5s. The initial
values of the designed bank angle profiles are set as σ0 = 60◦, σmid = 70◦, σ0 = 35◦. The heading angle
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Table 5. Terminal errors in nominal conditions

Vehicle Velocity (m/s) High (km) Time (s)
1 −0.2237 0.5427 1.8000
2 −0.0416 −0.0987 −2.8000
3 1.0858 −0.0810 −0.2000
4 0.4422 −0.0276 0.7000

Table 6. Algorithm running time comparison

Time-coordination algorithm Time-coordination algorithm based
Vehicle based on integral (ms) on the deep learning (ms)
1 37.7197 0.5064
2 36.6179 0.5006
3 44.0150 0.4995
4 36.8901 0.4990

Table 7. The perturbation settings in guidance simulation

Disturbance parameters Δh0 ΔV0 Δλ0 Δϕ0 Δθ0 Δψ0 ΔCL ΔCD Δm
Value ±5km ±100m/s ±2.0◦ ±2.0◦ ±0.2◦ ±1.0◦ ±10% ±10% ±3%

error threshold is set as δψmax = 10◦, δψmax = 5◦. In addition, the terminal cut-off condition is selected
as the vehicle speed. In DNN, the batch size is set as 64, and the epochs are set as 500.

In the simulations, unless noted otherwise all the following numerical results are generated using a
computer with AMD Ryzen 7 4800H processor (2.90 GHz, 8 cores, 16 threads), 16.0 GB memory, and
a Windows operation system. The DNN training environment is PyCharm Community Edition, and the
development language is Python, and the training framework is selected as tensorflow2.0.

4.1 Multi-task simulation under nominal conditions
Under nominal conditions, for the time-coordination entry mission based on deep learning of the hyper-
sonic gliding vehicle, the four different initial positions of the vehicles in Table 4 are selected for
simulation to verify the effectiveness of the algorithm.

The terminal status of each flight mission is shown in Table 4. Figures 13, 14 and 15 are numerical
simulation images of each flight mission under nominal conditions. Figure 13 shows the high-velocity
profile curve for different missions, the four curves all satisfy the Quasi-Equilibrium Guide Condition
and path constraints. Figure 14 displays the ground track in nominal condition. Figure 15 is the bank
angle profile in nominal condition, the terminal bank angle is gradually reduced to meet the time con-
straint. Table 5 shows the terminal errors based on deep learning. It can be seen that the terminal errors
of each mission meet the error requirements. Table 6 compares the traditional integration algorithm with
time-coordination algorithm based on deep learning in this paper for each guidance cycle. It should be
noted that the algorithm proposed in this paper is only 2% of the loss time of the traditional integration
algorithm.

Therefore, from the above simulation results, it can be seen that the time-coordination guidance algo-
rithm based on deep learning proposed in this paper can meet the needs of multi-HGV entry coordination
flight, and the addition of a DNN greatly improves the real-time performance of this algorithm.
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Figure 16. Altitude-velocity profiles curve for mission 4 under disturbance conditions.

Figure 17. Ground tracks for mission 4 under disturbance conditions.

4.2 Multi-task simulation under disturbance conditions
The trained DNN itself has a certain amount of anti-interference ability; in this paper, the EKF is
used to identify the aerodynamic parameters online and use them as the input for the DNN, which can
greatly improve the robustness of the time-coordination guidance algorithm. To verify the robustness
and accuracy of the time-coordination guidance algorithm based on deep learning, 200-run Monte Carlo
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Figure 18. Bank angle profiles for mission 4 under disturbance conditions.

Figure 19. Falling point dispersion for mission 4 under disturbance conditions.

simulations are conducted on mission 4 in Table 4. The initial state deviations and parameter deviations
in Table 7 conform to the normal distribution.

The numerical simulation results under disturbance conditions are shown in Figs. 16, 17, 18, 19, 20
and 21. Figure 16 displays the high-velocity profile curve for mission 4 under disturbance conditions,
the curve shows that under disturbance conditions, the trajectory can still satisfy the path constraints
and Quasi-Equilibrium Guide Condition. Figure 17 shows the ground tracks for mission 4 under distur-
bance conditions. Figure 18 displays the bank angle profiles for mission 4 under disturbance conditions,
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Figure 20. Terminal altitude-velocity error dispersion for mission 4 under disturbance conditions.

Figure 21. Histogram of terminal flight time errors for mission 4 under disturbance conditions.

it can be concluded that the bank angle can still fluctuate within a reasonable range under disturbance
conditions. Figure 19 is the falling point dispersion for mission 4 under disturbance conditions, it can be
seen that the terminal drop points are scattered along the flight direction, most of the landing points are
within 5km, and the rest are within 10km, which meets the needs of entry guidance. Figure 20 shows the
terminal altitude-velocity error dispersion for mission 4 under disturbance conditions. From Fig. 20, it is
indicated that the terminal velocity error is within 1.8m/s, and the terminal altitude error is within 2km.
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Figure 21 shows the histogram of terminal flight time errors for mission 4 under disturbance conditions,
it indicates that the flight time error is within 4s.

Thus, it can be established from the simulation results that the time-coordination guidance algorithm
based on deep learning proposed in this paper still has good guidance accuracy under the condition of
initial state disturbance and parameter disturbance, proving the robustness of the algorithm in this paper.

5.0 Conclusion
This paper presented a guiding system for multi-hypersonic gliding vehicles that utilised DNN for guid-
ance. A dual-parameter bank angle profile was used to suit the requirements of time coordination. To
address the real-time needs of the HGV guiding algorithm, this research developed a range of DNN
architectures and used error comparison to pick the network structure that was most suited for the situ-
ation at hand. A vehicle trajectory database was created and utilised to train the DNN structure that had
been established. To enhance the algorithm’s resilience, the EKF was employed to detect the disturbance
coefficient of aerodynamic parameters online and utilised it as one of DNN the inputs to enhance the
algorithm’s anti-interference capacity. The simulation results using CAV-H vehicles demonstrated that
the developed DNN structure was capable of meeting the temporal coordination requirements of several
vehicles. Assuming the guiding accuracy matches the criteria, this method exhibited high resilience,
excellent real-time performance, and the potential for online application.
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